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Abstract

As a common medium-throughput technique, qPCR (quantitative real-time polymerase

chain reaction) is widely used to measure levels of nucleic acids. In addition to accurate

and complete data, experimenters have unavoidably observed some incomplete and

uncertainly determined qPCR data because of intrinsically low overall amounts of biologi-

cal materials, such as nucleic acids present in biofluids. When there are samples with

uncertainly determined qPCR data, some investigators apply the statistical complete-

case method by excluding the subset of samples with uncertainly determined data from

analysis (CO), while others simply choose not to analyze (CNA) these datasets alto-

gether. To include as many observations as possible in analysis for interesting differential

changes between groups, some investigators set incomplete observations equal to the

maximum quality qPCR cycle (MC), such as 32 and 40. Although straightforward, these

methods may decrease the sample size, skew the data distribution, and compromise sta-

tistical power and research reproducibility across replicate qPCR studies. To overcome

the shortcomings of the existing, commonly-used qPCR data analysis methods and to

join the efforts in advancing statistical analysis in rigorous preclinical research, we pro-

pose a robust nonparametric statistical cycle-to-threshold method (CTOT) to analyze

incomplete qPCR data for two-group comparisons. CTOT incorporates important charac-

teristics of qPCR data and time-to-event statistical methodology, resulting in a novel ana-

lytical method for qPCR data that is built around good quality data from all subjects,

certainly determined or not. Considering the benchmark full data (BFD), we compared the

abilities of CTOT, CO, MC, and CNA statistical methods to detect interesting differential

changes between groups with informative but uncertainly determined qPCR data. Our

simulations and applications show that CTOT improves the power of detecting and con-

firming differential changes in many situations over the three commonly used methods

without excess type I errors. The robust nonparametric statistical method of CTOT helps

leverage qPCR technology and increase the power to detect differential changes that
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may assist decision making with respect to biomarker detection and early diagnosis, with

the goal of improving the management of patient healthcare.

Introduction

Recent studies have indicated the value of informative but uncertainly determined qPCR data

in patient and disease management while using human biofluids, such as serum, to assess levels

of pathogens, nucleic acids, and tumor cells [1, 2]. Research on the levels of biological materials

in biofluids holds promise to identify biomarkers for early detection of diseases and to opti-

mize treatment regimens, such as treatment dosage, frequency, and duration [1, 3–5]. For the

context of this study, investigators have faced uncertainly determined qPCR observations due

to the overall low levels of nucleic acids, such as in biofluids, in addition to certainly quantified

qPCR data [1, 2, 3, 6]. While levels of molecular targets may be uncertainly determined due to

experimental errors, in this study we focus on scenarios with errorless pre-PCR preparation

and reliable real-time qPCR reactions, as these scenarios represent good and proper practice of

qPCR technologies [7]. Even under the carefully optimized and properly conducted studies,

targets with absent or low levels in biological samples (e.g., serum) are inherently difficult to

measure and certainly determine. However, interesting differential changes may involve

absent or low molecular levels, for example, the transmission from large or moderate levels to

absent or low levels. Technically, the true quantification cycle Cq values of these measurands

with low levels are censored at a known censoring point C1, e.g., 32 or 40, and they are often

reported as undetermined by commercial qPCR products [8–12]. The phenomenon is similar

to administrator censoring at the end of a survival or time-to-event study, as it occurs at a

known ending point C1, the end of a qPCR experiment [13, 14]. Other types of censoring, e.g.,

participants dropout without experiencing an event of interest before the end of the study, are

not relevant to qPCR experiments with errorless pre-PCR preparation and reliable real-time

qPCR reactions [13, 14]. For simplicity, we use “uncertain qPCR data” to refer to those qPCR

observations that are uncertainly determined in the scenarios with errorless pre-PCR prepara-

tion and reliable real-time qPCR reactions. In this study, we designed and evaluated a non-

parametric statistical cycle-to-threshold method (CTOT) to improve power in detecting

interesting differential changes with uncertain but informative qPCR data between groups of

interest. While maintaining the type I error rate, the robust statistical method with improved

power may help leverage qPCR technology, enhance screening and detection of biomarker

candidates, and contribute to treatment optimization and precision medicine.

As an application of the widely-used PCR technique, qPCR has been used to measure gene

expression, identify biomarkers, and understand biological mechanisms, e.g., toxicity, cancer,

and cardiovascular disease, among many others [1–3, 15–17]. qPCR technology is used to

assess the levels of a molecular target via the continuous monitoring and quantification of a

fluorescence signal that is proportional to the input of the DNA of interest in the PCR expo-

nential phase. Among other applications, qPCR technology has been widely used to measure

the levels of RNA transcripts, e.g., virus RNAs, messenger RNAs (mRNAs) and microRNAs.

qPCR is a popular method for development of diagnostic assays due to its high performance

[18–20]. The number of publications on the topic of qPCR and microRNAs has increased

from fewer than 1,500 in 2016 to more than 2,500 in 2020 in the Web of Science, as illustrated

in S1 Fig [21]. Technically, the RT-qPCR method uses complementary DNAs (cDNAs)

reverse-transcribed from RNA for subsequent qPCR amplification, while the qPCR method
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directly uses DNA for qPCR amplification. In this paper, the term “qPCR data” refers to data

resulting from either qPCR or RT-qPCR reactions.

Like many bioanalytical technologies, a qPCR assay is usually established with a limit of

detection (LOD) and a lower limit of quantification (LLOQ) to detect or quantify the initial

concentration of molecular input [1, 22, 23]. The terms of LOD and LLOQ are conceptualized

as the minimum concentration of DNA that can be accurately detected and the minimum con-

centration that can be accurately quantified, respectively [24, 25]. LLOQ is usually larger than

LOD [1, 24, 25]. For example, the LOD of plasma hepatitis C virus RNA in the Roche COBAS

TaqMan HCV 2.0 assay was considered 9.3–10 international units per mL (IU/mL), while the

LLOQ was larger and considered 25 IU/mL [1]. In addition, a qPCR assay may have a limit of

blank (LOB), which is the highest concentration expected to be observed when replicates of a

blank sample containing no targets of interest are measured [24, 25]. LOB is usually set to a

high percentile of the distribution of observed concentrations of blank samples, e.g., 95th per-

centile [24, 25]. LOD is then set so that only a small proportion of its distribution is below

LOB. For example, LOD is often set at 5th percentile of the distribution of its observed concen-

trations [24, 25]. Because of intrinsic measurement limitations of LLOQ, LOD, and LOB, rare

or completely absent nucleic acids tend not to be certainly quantified with exact values in

qPCR [8–12]. Biologically, the effect of the treatment may decrease the concentration of a

molecular target, e.g. virus RNA, to null or to a level below LLOQ or LOD [1]. Conversely, the

steady levels of a molecular target under untreated conditions may be below LLOQ or LOD.

Technically, the input amount of DNA template for a qPCR assay may be limited by the avail-

ability of the biological sample (e.g., serum) itself and because of potential issues with inhibi-

tion of the qPCR from the carryover of components, such as salts, in the DNA template

solution [22]. These situations result in incomplete or uncertain qPCR quantification with bio-

logical, clinical, and/or technical relevance.

As illustrated in Fig 1, the initial input of a molecular target is continuously amplified

through cycles until the pre-set maximum cycle, e.g., 40, is reached. In literature, the notations

of Cq and Ct are often used to denote the amplification cycle number that intersects the fluo-

rescence threshold [20, 26–28]. For simplicity, we use the notation of Cq instead of Ct to follow

the MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experi-

ments) guidelines in this study [20]. In general, the lower the initial concentrations, the higher

the Cq values as more amplification cycles are needed to reach the fluorescence threshold (Fig

1). Because of LLOQ, LOD, and LOB, many researchers specify contextual Cq cut-offs

(denoted as C1) varying between 32 and 50 [2, 22, 29, 30]. Specifically, because of the inverse

relationship between initial concentrations and the Cq values, the original Cq values less than

C1 are considered certain for contextual purposes. For others, the quantification is considered

uncertain with true values hidden in a range (e.g., Cq� C1) or plausibly affected with non-neg-

ligible factors (e.g., incorrect dilutions of DNA template and DNA-oligonucleotide binding

issues).

Many differential changes in qPCR data have been detected with inferential statistical meth-

ods, which make inferences about the study/target populations using data collected from sam-

ples through study designs. The inferences and generalizations are valid if the underlying

statistical assumptions are not violated. Informative but uncertain qPCR observations may

challenge the underlying assumptions of commonly used statistical methods to analyze qPCR

data, e.g. t-tests and its variant methods of applying the complete-observation method (CO)

and setting incomplete observations equivalent to the maximum quality number of qPCR

cycles (MC) [31]. Besides CO and MC, the method of choosing not to analyze (CNA) targets

with incomplete observations has been used in the context of two-group comparisons with

qPCR data [20, 31]. In the current study, we designed a cycle-to-threshold method (CTOT)
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that was enriched by the time-to-event statistical framework and important characteristics of

qPCR data. These characteristics include the principle underlying qPCR data normalization,

the utilization of a fluorescence threshold in a qPCR experiment, and the potential for a few or

some observations to be censored at the end of a well-conducted qPCR experiment [32, 33]. It

is worth noting that, in this study, qPCR data normalization does not refer to the alignment of

observed data to a statistical distribution, such as a normal distribution [34, 35]. It refers to the

process to correct unwanted variance in Cq values before statistical analysis, which has been

implemented in the widely used 2(-Delta Delta C(T)) method for real-time quantitative PCR

analysis [27, 31]. The principle of such normalization has been widely utilized in many bio-

medical research areas, such as sequencing data analysis and neuroimage analysis [36, 37]. We

used simulations to investigate the performance of CTOT, MC, CO, and CNA methods and

explored applicational aspects of CTOT with respect to biomarker detection in liquid biopsies

when low or absent levels of molecules, e.g., microRNAs, indicate biological processes of inter-

est, e.g., pathogenic processes, normal biological processes, and biological responses to an

exposure or therapeutic treatment. The performance of the CTOT, MC, and CO methods

were explored in terms of statistical reproducibility or potential research reproducibility as sta-

tistical reproducibility is often related to research reproducibility [33, 38]. In simulations, we

can simulate many replicates of samples in a target population. The abundant replicates are

used to evaluate the abilities of a statistical method to draw inferences with different replicates

of the same underlying truth. The maintenance of a low nominal type I error rate, such as 0.05

and 0.005, and achievement of a high statistical power, such as 80% and 90%, are two manifes-

tations of potential research reproducibility of a statistical method [38, 39]. Specifically, a type

I error is the probability that researchers reject a true null hypothesis. An example of a type I

error is that researchers determine a difference when there is no difference between treated

and untreated subjects. Correspondingly, statistical power is the probability that researchers

Fig 1. Amplification curves of qPCR reactions. In the example, five molecular targets reached the threshold of 0.5 before the 32nd cycle, i.e., Cq< 32,

while two reached the threshold between the 32nd and the 40th cycle. The eighth molecular target did not reach the threshold by the 40th cycle, i.e.,

Cq> 40. QuantStudio Real-Time PCR software version 1.3 (Applied Biosystems by Thermo Fisher Scientific) was used to create the figure.

https://doi.org/10.1371/journal.pone.0263070.g001
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reject a false null hypothesis. In this study, we obtained the empirical type I error rate and sta-

tistical power of a statistical method in simulations. Finally, we applied CTOT to perform sen-

sitivity analysis and statistically verify biomarker discoveries in a previously published dataset

of circulating microRNAs with potentially uncertain Cq observations [3].

Our simulations and applications showed that CTOT could be more robust and more pow-

erful in many situations, compared with existing methods, such as the CNA, CO, and MC

methods. It could improve the power of identifying informative differential changes between

control and treated groups over the existing methods without excess type I errors, when min-

ute sizes and low levels of molecular targets are involved in the differential changes. In the

application, CTOT detected potentially differential expression that could be overlooked other-

wise by existing methods (CNA, MC, and CO). Therefore, we propose CTOT, the robust non-

parametric cycle-to-threshold method, to leverage or compensate uncertain but informative

qPCR data and leverage their potential for biomarker detection, early diagnosis, or treatment

optimization.

Materials and methods

CTOT

In this study, we designed the CTOT method to analyze qPCR data with certain and uncertain

quantification, which were collected for group comparison to test the null hypothesis of equal-

ity, such as equal gene expression across two groups. The certain and uncertain qPCR data can

be organized and tabulated as illustrated in Table 1. In Table 1, Y(ijk) denotes the Cq value

reported by a qPCR assay for molecular target j (j = 1, 2, . . ., or g) of sample i (i = 1, 2, . . ., or

n) in group k (k = 1 or 2). The common outcome notation of Y in the statistics field is used to

denote Cq for notation simplicity and generalizability, since Cq is one of the two outcomes in

the study setting. Likewise, a common notation of an indicator variable in the statistics field is

used to denote whether Cq< C1. φ(ijk) denotes I(Y(ijk)< C1), which is a binary variable that

takes the value of 1 when the Cq is smaller than C1 and takes the value of 0 otherwise. φ(ijk) is

another outcome in the study setting and is used to incorporate the information on whether

the true Cq is observed with sufficient certainty. For datasets with just certain observations,

φ(ijk) is 1 for any molecular target j of sample i with treatment k and can be ignored in analysis

to test the null hypothesis of no relationship between the treatment (or exposure) and the levels

of a molecular target. In addition, normalization is used to correct unwanted variance in Y(ijk),

due to unwanted factors, such as different molecular target input amounts, which may cause

samples in the same group to reach the fluorescence threshold at different cycles [27, 40].

ΔY(ijk) denotes the normalized Cq with unwanted variance (e.g., the input variance) corrected

via the equation of ΔY(ijk) = Y(ijk)–Y(irk), where Y(irk) denotes the well-observed Cq value of the

normalizer of sample i (i = 1, 2, . . ., or n) in group k (k = 1 or 2).

Table 1. Symbolic qPCR data set.

Group Outcome Normalized Outcome

1 (Y(1j1), φ(1j1)), . . ., (Y(nj1), φ(nj1)) (ΔY(1j1), φ(1j1)), . . ., (ΔY(nj1), φ(nj1))

2 (Y(1j2), φ(1j2)), . . ., (Y(nj2), φ(nj2)) (ΔY(1j2), φ(1j2)), . . ., (ΔY(nj2), φ(nj2))

Y(ijk) denotes the Cq value reported by a qPCR assay for molecular target j (j = 1, 2, . . ., or g) of sample i (i = 1, 2, . . .,

or n) in group k (k = 1 or 2). ΔY(ijk) denotes normalized Cq for molecular target j of sample i in group k. φ(ijk) denotes

I(Y(ijk)< C1), where C1 denotes an assay-specific maximum cycle threshold for quality, clinical, or biological

relevance.

https://doi.org/10.1371/journal.pone.0263070.t001
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As mentioned earlier, there has been a dilemma or disagreement in handling qPCR data

with uncertain observations. To address the data analysis challenge, we thoroughly considered

scientific and statistical features of qPCR data. The qPCR amplification trajectory has biologi-

cal parallels, one of which is the growth curve of a non-enveloped virus, adenovirus type 5, in

human cells [41]. In the example of adenovirus type 5, after the eclipse and latent periods, the

concentration of virus progeny reaches a threshold and virions are released from cells into the

extracellular environment. Researchers term the release of virions as viral shedding and often

treat it as an event of interest [42, 43]. Likewise, we can treat the reach of the fluorescence

threshold in qPCR reactions as an event of interest. Therefore, the data illustrated in Table 1

are like time-to-event data. Considering the qPCR features, we call the observations in Table 1

cycle-to-threshold data to reflect the fact that we are interested in whether the fluorescence

threshold is reached and the corresponding amplification cycle if it is reached.

Like in time-to-event studies, we used the conditional rates to reach the threshold to test

the null hypothesis of no relationship between the treatment and levels of a target molecule

(H0). The conditional rate is defined as lim
d!0

1

d
PðDy � DY < Dy þ djDY � DyÞ and denoted as

λ(ΔY), where ΔY is the normalized cycle outcome. λ(ΔY) sufficiently defines the normalized

cycle distribution to reach the fluorescence threshold. If the normalized cycle distribution to

reach the fluorescence threshold was the same in the treatment and control groups, our data

would support that H0: λ1(ΔY) = λ2(ΔY). The alternative hypothesis can be one-sided, e.g.,

λ1(ΔY) < λ2(ΔY), or two-sided, e.g., λ1(ΔY) 6¼ λ2(ΔY). To test the null hypothesis, we need a

test statistic. We can translate the test statistic of the exact time-to-event log-rank method to

our setting, should the proportional conditional rate, which means λ1(ΔY) = δ λ2(ΔY) where δ
is a constant, can be assumed. Likewise, we can adapt the generalized version of the exact log-

rank method, i.e. exact Fleming-Harrington method, if the proportional conditional rate

assumption may be violated [13, 14]. The p-value is obtained with the exact distribution in the

exact log-rank or Fleming-Harrington test while it is obtained with a normal distribution with

the mean of 0 and standard deviation of 1 in the traditional log-rank test, which is appropriate

for studies with a large sample size. We use the exact tests to account for small sample sizes,

which are commonly used in preclinical studies and early phases of clinical studies [3, 44–48].

First, we explain the adaption of the exact time-to-event log-rank method to our setting

with two comparison groups, e.g., the control and treatment groups, as follows. Suppose that

we observe at least one sample reaching the fluorescence threshold at r distinct points in the

combined samples of the two groups, i.e., at least one Cq value is observed at each of the r

points. With each detection point d (d = 1, 2, 3 . . ., r), we can organize and tabulate the data as

shown in Table 2. For each d, let Pd1 and Pd2 be the respective number of molecular targets,

e.g., microRNAs, that can be possibly detected at the start of the detection point d in the two

groups. Let Pd be the sum of Pd1 and Pd2. Let Od1 and Od2 denote the number of molecular

Table 2. Contingency table on the observations at a detection point.

Group Potential to be detected Detected Undetected (Incomplete)

1 Pd1 Od1 Pd1- Od1

2 Pd2 Od2 Pd2- Od2

Total Pd Od Pd- Od

Pd1 and Pd2 denote the number of molecular targets, e.g., microRNAs, that can possibly be detected at the start of the

detection point d in Group 1 and Group 2, respectively. Pd denotes the sum of Pd1 and Pd2. Od1 and Od2 denotes the

number of molecular targets that are detected at the detection point d in Group 1 and Group 2, respectively. Od

denotes the sum of Od1 and Od2.

https://doi.org/10.1371/journal.pone.0263070.t002
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targets that are detected at the detection point d in the two groups, respectively. Likewise, let

Od be the sum of Od1 and Od2. Given that Od is detected at d, under the null hypothesis, the

variable of Od1 given Pd1, Pd2, Od, and Pd follows a hypergeometric distribution, which is

PðOdk ¼ odkjPdk;Od; Pd � OdÞ ¼

Od

odk

 !
Pd � Od

Pdk � odk

 !

Pd

Pdk

 ! ; k ¼ 1 or 2. Therefore,

EðOdkjPdk;Od; Pd � OdÞ ¼
Od
Pd

Pdk ¼
bldPdk, where bld is an estimate of the overall reaching rate at

d. Let Edk = E(Odk|Pdk, Od, Pd–Od), we can use μdk = Odk–Edk as the kernel of the test statistic.

Let Vdk = var(μdk), UD ¼
XD

d¼1
mdk and V ¼

XD

d¼1
Vdk. The p-value of the test statistic CTOT ¼

UD
V1=2 can be obtained with the exact distribution via the existing R package, coin [49–51]. In a

summary, under the null hypothesis of a common cycle-to-threshold rate for two groups

(k = 1 or 2), the CTOT test statistic is formed using the sum of the observed minus expected

counts over all detected points. As highlighted in the flowchart to perform CTOT with the R

coin package (Fig 2), a monotonic transformation that preserves the original order of ΔY(ijk)

for molecular target j (j = 1, 2, . . ., or g) of sample i (i = 1, 2, . . ., or n) in group k (k = 1 or 2),

e.g. eΔY(ijk) > 0, can be applied for efficient execution by a software tool, e.g. the function of

logrank_test in the R coin package. It is worth to mention that the exact Fleming-Harrington

test in the R coin package calculates optional weights, which are often denoted p and q, for ear-

lier event time and later event time. If both p and q are equal to zero, the exact Fleming-Har-

rington test is reduced to the exact log-rank test.

Table 3 connects CTOT and qPCR data features and common time-to-event parameters.

Hazard rate, hazard ratio, median survival time, and the proportion surviving at the end of a

study are common time-to-event parameters for interpretation [13, 14, 52, 53]. Correspond-

ingly, the CTOT rate, CTOT ratio, median Cq, and the proportion of uncertain quantifications

can also be used to interpret CTOT results. Thus, in addition to p-value, the effect size estimate

of the CTOT ratio can be reported in applications of the CTOT method. For researchers who

are familiar with time-to-event analysis, the CTOT rate and ratio are good starting points to

understand CTOT interpretable parameters. For researchers who are familiar with qPCR data

interpretation, the median Cq and proportion of uncertain quantification is a good starting

point to understand CTOT’s interpretable parameters.

Existing MC, CO, and CNA methods

The MC method sets uncertain Cq values to C1 [11, 29, 31, 54–56]. As illustrated in Eq

(1), for any φ(ijk) = 0, i.e. Y(ijk) � C1, the single value of C1 is filled in to obtain the MC nor-

malized Cq value, denoted as ΔY(ijk)_MC in Eq (1), for molecular target j (j = 1, 2, . . ., or g)

of sample i (i = 1, 2, . . ., or n) in group k (k = 1 or 2). For other samples with φ(ijk) = 1, i.e.,

Y(ijk) < C1, Y(ijk) is used to obtain ΔY(ijk)_MC. In the literature, MC normalized Cq values

are subsequently used to perform analysis with methods designed for continuous out-

comes, e.g., ANOVA and t-tests [31, 55]. As mentioned in the Introduction section, with-

out the loss of generalization, we aimed to test the null hypothesis of no relationship

between the treatment (or exposure) groups and molecular target levels measured by

qPCR. Various types of t-tests have been applied frequently in literature to test the null

hypothesis. Statistically, two-independent-groups comparisons were relevant to the set-

ting in this study. Therefore, t-tests for two-independent-groups comparisons were used

along with the MC method to illustrate the performance, advantages, and limitations of
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the MC method.

DYðijkÞ MC ¼
YðijkÞ � YðirkÞ; if φ

ðijkÞ ¼ 1

C1 � YðirkÞ; if φ
ðijkÞ ¼ 0

ð1Þ

(

In contrast, the CO method excludes the samples with φ(ijk) = 0 from subsequent analysis

[11, 31, 56, 57]. The CO normalized Cq values, for example, Y(ijk)_CO of sample i (i = 1, 2, . . .,

or n) in group k (k = 1 or 2) in Eq (2), are subsequently used to perform analysis with methods

designed for continuous outcomes, e.g. t-tests [31, 56, 57]. In this study, t-tests for two-inde-

pendent-groups comparisons were used along with the CO method to illustrate the perfor-

mance, advantages, and limitations of the CO method. The t-test for two-independent-groups

comparisons is one of the widely-used tests for qPCR data [2, 58].

DYðijkÞ CO ¼
YðijkÞ � YðirkÞ; if φ

ðijkÞ ¼ 1

ðexcludedÞ; if φ
ðijkÞ ¼ 0

ð2Þ

(

The CNA method simply chooses not to analyze the molecular targets with uncertain

qPCR data. With the CNA method, should φ(ijk) = 0 exist for molecular target j (j = 1, 2, . . ., or

g) for any sample i (i = 1, 2, . . ., or n) in group k (k = 1 or 2), the molecular target will be

excluded from subsequent analysis [20].

Simulation evaluations and real-world examples

We used simulations to comparatively evaluate the performance of CTOT in analyzing qPCR

data that may arise in laboratory experiments [3, 59, 60]. Simulations are important to com-

paring CTOT’s statistical power with existing analytical methods and verifying the mainte-

nance of type I error rates in CTOT, in which the exact distribution has been utilized to obtain

p-values and control type I error rates in the method design stage [49]. Random draws from

known distributions are used to efficiently generate data for simulation evaluations. The

descriptive statistics, such as range, of the resulting simulated data will be compared with Cq

data in literature. In order to generate realistic Cq values in simulations, as illustrated in

Table 5, the intercept β0 was randomly selected from a normal distribution with the mean of

10 and standard deviation of 2.24, i.e., N(10, 2.24). The effect size of β1 was randomly selected

from a normal distribution with the mean of 1 and standard deviation of 4.47, i.e., N(1, 4.47).

The normalizer was based on a normal distribution with the mean of 25 and standard

Fig 2. The flowchart to perform CTOT with the R coin package. Y(ijk) denotes the Cq value reported by a qPCR assay

for molecular target j (j = 1, 2, . . ., or g) of sample i (i = 1, 2, . . ., or n) in group k (k = 1 or 2). ΔY(ijk) denotes normalized

Cq for target j of sample i in group k.

https://doi.org/10.1371/journal.pone.0263070.g002

Table 3. Connection between CTOT and qPCR data features and common time-to-event parameters.

Time-to-event parameters Time-to-event definitions CTOT parameters CTOT definitions

Hazard rate Conditional rate to reach the event (often denoted as λ) CTOT rate Conditional rate to reach the fluorescence

threshold

Hazard ratio Ratio of λ1 and λ2, where λj is the hazard rate in group j CTOT ratio Ratio of λ1 and λ2, where λj is the CTOT rate

in group j

Median survival time Time by which 50% of the group of interest have died and

another 50% of them have survived

Median Cq Median of the cycles when targets reach the

fluorescence threshold

Proportion surviving at the

end of a study

The proportion of the group of interest who have

survived at the end of the study

Proportion of uncertain

quantifications

Proportion of uncertain quantification by the

quality cycle cut-off (C1)

https://doi.org/10.1371/journal.pone.0263070.t003
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deviation of 0.45, i.e., N(25, 0.45). The means and standard deviation values were in reference

to parametric models fit to a set of rat Cq values and were expected to ensure that the simu-

lated data is reasonably realistic [3]. It is worth to mention that the choices of N(25, 0.45), N

(10, 2.24) and N(1, 4.47) are nonexclusive. Researchers can test the methods with any simula-

tion parameters/approaches of choice. Therefore, initial starting values are based on a set of rat

Cq values in the data-generation simulation mechanisms, as simulations are often partially

based on real data for generalization [49, 59].

The assumption of a normal distribution is usually invoked for well-observed qPCR data in

practice, while a t distribution is often reasonably assumed when the sample size is small [2,

56, 57]. Consequently, we simulated microRNAs, including the microRNA normalizer, with

Cq values following normal distributions with varying parameters. It is worth noting that, in

this setting, the normalized Cq values (ΔCq) are still normally distributed, as the sum or differ-

ence of two independent normally distributed random variables is normally distributed and

ΔCq is the difference between Cq values of molecular targets and the normalizer in the widely

used 2(-Delta Delta C(T)) method [27, 61]. We also used data simulated based on other distri-

butions to evaluate the statistical power of CTOT in detecting differential changes. Different

data-generating models were used for the purposes of simulation and method evaluation [59].

Because the distributions of molecular targets in liquid biopsies, such as circulating micro-

RNAs with levels varying, are uncertain or unknown in various biological and environmental

conditions, it is necessary to assess how robust CTOT is when the assumption of normality is

violated [6, 59]. In addition to normal distributions, we simulated ΔCq data based on extreme

Table 5. Simulation models with respective density functions and parameters.

y = eΔCq Log-normal distribution Weibull distribution Log-logistic distribution

Probability Density Function 1

ys
ffiffiffiffi
2p
p e �

1

2s2
ðlogðyÞ� miÞ2ð Þ where mi = β0+xi β1

mipyp� 1e� mi yp where μi = e-p(β0+xi β1)
l

1
g

i t
1
g� 1

g 1þðli tÞ
1
g

� �2 where λi = e-(β0+xi β1)

Parameters For Empirical Power Investigation β0: 100 random variables from N(10, 2.24);

β1: 100 random variables from N(1, 4.47); σ = 1,2

N(v, η): Normal distribution with mean v and standard deviation η

ΔCq denotes normalized Cq. The natural logarithm of a variable that follows a log-normal distribution is normally distributed. Likewise, the distribution of the natural

logarithm of a variable that follows a Weibull distribution is an extreme value distribution. The distribution of the natural logarithm of a variable that follows a log-

logistic distribution is a logistic distribution. Therefore, with the natural logarithm transformation, we can obtain normalized Cq values (ΔCq) that follow a normal,

extreme value, or logistic distribution by simulation with log-normal, Weibull, or log-logistic distribution, respectively.

https://doi.org/10.1371/journal.pone.0263070.t005

Table 4. One-to-one correspondence of the distributions of simulated ΔCq and eΔCq data.

Simulation Type Distribution of eΔCq Data Distribution of ΔCq Data

A Log-normal Normal

B Weibull Extreme Value

C Log-logistic Logistic

ΔCq denotes normalized Cq. The natural logarithm of a variable that follows a log-normal distribution is normally

distributed. Likewise, the distribution of the natural logarithm of a variable that follows a Weibull distribution is an

extreme value distribution. The distribution of the natural logarithm of a variable that follows a log-logistic

distribution is a logistic distribution. Therefore, with the natural logarithm transformation, we can obtain normalized

Cq values (ΔCq) that follow a normal, extreme value, or logistic distribution by simulation with log-normal, Weibull,

or log-logistic distribution, respectively.

https://doi.org/10.1371/journal.pone.0263070.t004
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value distributions and logistic distributions with varying parameters to assess the reach of

CTOT in terms of detecting differential changes with non-normal distributions involved.

Compared to normal distributions, the two distribution types may have longer or heavier tails,

which may represent the features that are not compatible with normal distributions, e.g., the

involvements of rare or completely absent nucleic acids in informative differential changes [1,

13]. As proven by statistical theories, the two distribution types are related to Weibull distribu-

tions and log-logistic distributions (S2 Fig). Details regarding the distribution relationships are

not included in the scope of this paper. Interested readers may see references on theoretical

statistics [61, 62].

In simulations under the log-normal, Weibull, and log-logistic types (Table 4), the compari-

sons of the performances of the three methods of CTOT, MC, and CO were preceded as: first,

the replicate data sets were simulated in the context of a known distribution and population

parameters with variation from small treatment effects to strong effects (Table 5). Each data

set has two groups of subjects, i.e., the control and treatment (or exposure) groups. The sample

size was set to be 5 in each group as it represented the small sample size, which was commonly

used in laboratory experiments [44–48, 63, 64].

Likewise, a common nominal type I error rate of 0.05 was used [3]. Researchers may simu-

late data with a larger sample size that is compatible with their research context or use a smaller

nominal type I error rate. We then applied three analytical methods to analyze each simulated

replicate. With the known true relationships in simulations, the type I error rates and statistical

power of the three methods were empirically obtained and compared [59].

We simulated 1,000 sample replicates for 300 data scenarios with different distributions or

parameter sets [3]. The data from a real-world rat in-vivo microRNA qPCR experiment are

used as the base case to obtain the parameter values [3]. Therefore, the 300 scenarios poten-

tially represent 300 microRNAs. We used 300 microRNAs as targets exclusively for illustrative

purpose, while limiting the computational burden of simulations. Each of the 1,000 replicates

consisted of 10 samples, five of which represented the control group and the other five repre-

sented the treated or exposed group. In notation, for each replicate, Y(ijk) denotes the Cq value

reported by a qPCR assay for molecular targets j (j = 1, 2, . . ., or 300) of sample i (i = 1, 2, . . .,

or 5) in group k (k = 1 or 2). Counting on the 1,000 replicates, this simulated 10,000 samples,

each of which had 300 microRNAs as targets. Leveraging an existing simulation R package,

survsim, and the relationship between the distributions (Table 4 and S2 Fig), we simulated

data using models with varying parameters under 100 log-normal distributions, 100 Weibull

distributions, and 100 log-logistic distributions [62, 65]. In total, 300 distributions were used

to represent the distributions of 300 microRNAs under various conditions. The simulation

models are summarized in Table 5.

The empirical power was calculated based on the following steps: (1) repeatedly simulated

Cq data along with group categories under fixed parameter settings (Table 5); (2) analyzed the

simulated full data sets using given association tests and compared the resulting p-value of a

given significant level, α (e.g., α = 0.05) to determine success (in rejecting the null hypothesis)

or failure; and (3) compute the success rate over multiple replicates.

The R statistical software tool was used to perform statistical analysis [66]. Particularly, the

existing R packages of survsim and coin were used to perform simulations and apply the

CTOT method, respectively [50, 65]. The datasets used and/or analyzed during the current

study are available from the corresponding author on reasonable request.

As reported by Silva et al. [3], male and female F344 adult rats were fed a diet containing 0,

30, 60, 120, 180, or 240 ppm each of MEL and CYA for 28 days and terminal blood was col-

lected by cardiac puncture and processed to serum. Total RNA, including microRNAs, was

isolated from the rat serum samples using a miRCURY RNA Isolation Kit for Biofluids
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(Exiqon, Vedbaek, Denmark). TaqMan miRNA assays and an ABI 7900HT Fast Real-Time

PCR System (Applied Biosystems by Life Technologies, NY, USA) were used to quantify the

microRNAs, including miR-128-3p and miR-210-3p. Five spike-ins (Exiqon) were added at

different stages of the experiment for quality control of the RNA extraction and quantitative

reverse transcription PCR procedures [3].

Results

Simulation results

In this study, without the loss of generalization, we developed and evaluated CTOT, a robust

nonparametric cycle-to-threshold method, to test the null hypothesis of no relationship

between the treatment (or exposure) groups and molecular target levels measured by qPCR.

The alternative hypothesis can be one-sided or two-sided depending on the study purpose

[61]. Using simulations, we evaluated the power of CTOT to detect nonzero effects of expo-

sures or treatments with a two-sided alternative hypothesis. Overall, as shown in Fig 3, the sim-

ulated Cq data are reasonably in line with realistic biological scenarios (the range of medians:

26.03 to 42.17).

As shown in Fig 3, some simulated Cq data might be inaccurately or incompletely measured

by qPCR should 32 or 40 be the cutoff for data quality control or biological/clinical relevance

in practice [11, 29, 55, 56]. Without the loss of generalization, we applied the cutoff of 40 in the

evaluation via simulation. Fig 4 presents the results of the replicates with at least one uncertain

observation, i.e., at least one Cq� 40, in each replicate. The results of log-normal, Weibull,

and log-logistic simulations were plotted in the three adjacent panels in Fig 4. In each panel,

the empirical power of interest was presented on the vertical axis, while the simulation scenar-

ios were ordered on the horizontal axis. We define the benchmark with full data analyzed

using t-tests for two-independent-groups comparisons as BFD. The empirical power of the

CTOT, MC, and CO methods as well as BFD was plotted pairwise using different color and

symbols. The current standard method to detect a differential change via normalized Cq was

the t-test with equal or unequal variances in the two groups of comparison [45, 67, 68]. The

simulation scenarios were primarily ordered by the empirical power of BFD in a nondecreas-

ing order. The scenarios were secondarily ordered by the absolute value of the effect size of

treatment, i.e., |β1| in Table 5. For all simulated scenarios, BFD had the most accurate data val-

ues, but some data points could not be fully observed in reality due to LLOQ, LOD, and LOB.

Therefore, BFD might not directly pertain to practice. It is necessary to evaluate the effective-

ness of analytical methods in compensating for uncertain qPCR data, such as the CTOT, CO,

and MC methods, compared with BFD. For simulation scenarios in Fig 4 A, the empirical

overall power values of the CTOT and MC methods were slightly lower than that of BFD

(empirical overall power: 77.77%, 77.02%, and 79.87%; 95% Monte Carlo CI: 77.35%-78.19%,

76.59%-77.44%, and 79.46%-80.27%, respectively; Table 6). The empirical overall power of the

CO method was much lower than that of BFD (empirical overall power: 26.38% and 79.87%;

95% Monte Carlo CI: 25.93%-26.83% and 79.46%-80.27%, respectively; Table 6). Likewise, Fig

4B and 4C indicated that the empirical power of the CTOT and MC methods were better than

that of the CO method (Table 6). While the overall power of CTOT seemed similar to that of

MC, the overall performance of CTOT was statistically and significantly better than that of

MC (improvement in empirical overall power: 0.75% [p-value < 0.001], 1.19% [p-

value< 0.001] and 1.56% [p-value< 0.001] for the log-normal, Weibull, and log-logistic simu-

lation types, respectively; Table 6). The improvement was slightly bigger but not diminished

when the simulation type changed from log-normal to Weibull or log-logistic with the distri-

bution of Cq not normally distributed. This indicates that CTOT is a robust method without
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restrictive distributional assumptions. This observation is consistent with the nonparametric

nature of CTOT. In contrast, the CNA method would not analyze the simulated comparisons

with observations that could be incompletely measured in practice [20, 31].

Fig 5A illustrates the application of the MC, CO, CTOT, and BFD methods on a simulated

Cq data set. Fig 5B illustrates the limitations of the MC and CO methods compared to CTOT

and BFD. As indicated in a study by Zhuang et al. [69], the CO method reduces the sample

size, while the MC method can strikingly decrease both Cq and normalized Cq, both of which

tend to bring false negatives. The utilization of range values in CTOT can mitigate the deficit

Fig 3. Boxplots of simulated Cq data. The points above the solid line would be uncertainly measured by qPCR should 40 be the cutoff for data quality control or for

biological, clinical, or technical concerns in practice. The points above the dash line would be uncertainly measured by qPCR should 32 be the cutoff for quality

control or for biological, clinical, or technical concerns in practice.

https://doi.org/10.1371/journal.pone.0263070.g003
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of MC as the ranges permit inclusion of the true values of Cq. As shown in Fig 5B, with uncer-

tain Cq values set to 40, one of the common maximum quality qPCR cycle cutoffs [22, 29],

MC failed to detect the differential change that was detected by BFD (p-values: 0.126 and

0.034, respectively). Considering the range of Cq� 40, CTOT could correctly detect the differ-

ence (p-value: 0.008; Fig 5B), should the significance level of 0.05 be applied, as described in

the Materials and Methods section of this article. In addition, should the CO method be

Fig 4. The empirical power of the CTOT, MC, and CO methods compared with that of BFD. BFD stands for the benchmark with full data analyzed with the

current standard method, which includes t-tests for two-group comparisons. CTOT stands for the cycle-to-threshold method, while CO denotes the complete-

observation method and MC denotes the method that sets uncertain and incomplete observations equal to the assay-specific maximum cycle threshold C1. Uncertain

qPCR data may occur in one or both groups under comparison. % denotes the percentage of uncertainty that is observed in only one group among the replicates. nrep

denotes the number of the replicates with at least one uncertain observation. β0 and β1 are parameters of the underlying models. |β1| is the absolute value of effect size.

Panels A, B, and C represent the empirical power of the log-normal, Weibull, and log-logistic simulation type, respectively.

https://doi.org/10.1371/journal.pone.0263070.g004
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applied, 3 out of 5 observations in the second group would be removed from analysis and the

difference between the two groups would be considered undetectable (p-value: 0.113; Fig 5B),

while it is detectable by CTOT (p-value: 0.008) when the realistic Cq cutoff, 40, is applied [22,

29]. Therefore, CTOT may mitigate the deficits of CO and MC in data analysis.

In addition, it is interesting to note that a low frequency of uncertain observations in qPCR

data may not deteriorate the performance of CO and MC (compared with BFD), especially

when the sample Cq values arise from an underlying normal distribution and uncertain obser-

vations are not influential points that cause foremost changes in the analysis and decisions

[70]. For example, there is merely one Cq observation higher than 40 in the scenario illustrated

in Fig 6. Both CO and MC methods established statistical significance in this scenario (p-

value: 0.047 and 0.020, respectively). Should the maximum quality qPCR cycle be 40, CO

would exclude the single uncertain observation from analysis. MC would set the Cq value

larger than 40 to be 40 and obtain the p-value of 0.02, similar that of BFD. However, the p-

value of CTOT was 0.079. A larger p-value occurs in this case because CTOT is a nonparamet-

ric method, while CO and MC are parametric methods. Like many other nonparametric meth-

ods, the test statistic of CTOT is constructed in terms of ranks among the normalized Cq

values, as described in the Materials and Methods section. The t-tests used in CO and MC

focus on comparing the mean values of the two groups with the normality assumption after

excluding or imposing a value to the uncertain Cq observation. Realistically, the sample mean

values of the original and normalized Cq observations tend to be unknown in the samples with

uncertain observations. When there are many qPCR observations censored at C1, the lowest

Cq value that can be quantified with acceptable certainty for the context of use, the sample

mean values of the original and normalized Cq observations tend to be biased downward by

the MC and CO methods [71]. Instead of a number, the range an uncertain observation

belongs to, e.g., being larger than or equal to 40, is often available as illustrated in Fig 1, the

amplification qPCR plot. With information in the ranges of uncertain observations, CTOT

focuses on the order or ranks of the observations to construct the test statistics and compare

the groups. Thus, CTOT can be more robust and powerful in many situations (Table 6 and Fig

5). However, CTOT might be less powerful than the parametric methods, CO, and MC, in a

case when there is minor uncertainty and the underlying Cq distribution is a normal distribu-

tion, like the situation illustrated in Fig 6.

We obtained the results of 10,000 replicates for each log-normal simulation with β1 equal to

0, β0 equal to 5 or 10, and σ equal to 1 or 2, respectively (Fig 7). The empirical type I error rates

of CTOT, MC, and CO as well as the analysis on benchmark data (BFD) were within the

Monte Carlo 95% confidence interval of 0.046 to 0.054 corresponding to a nominal type I

Table 6. Empirical overall power of the CTOT, MC, and CO methods with analysis on benchmark data. BFD stands for the benchmark with full data analyzed with

the current standard method, which includes t-tests for two-group comparisons. CTOT stands for the cycle-to-threshold method, while CO denotes the complete-observa-

tion method and MC denotes the method that sets uncertain observations equal to the assay-specific maximum cycle threshold C1.

Simulation Type Evaluation BFD CTOT CO MC

Log-normal

(n = 37,100)

Correct Decisions 29,630 28,853 9,788 28,573

Empirical Overall Power (95% Monte

Carlo CI)

79.87%

(79.46%-80.27%

77.77%

(77.35%-78.19%)

26.38%

(25.93%-26.83%)

77.02%

(76.59%-77.44%

Weibull (n = 25,861) Correct Decisions 24,043 23,879 5,912 23,572

Empirical Overall Power (95% Monte

Carlo CI)

92.97%

(92.66%-93.28%)

92.34%

(92.01%-92.66%)

22.86%

(22.35%-23.37%)

91.15%

(90.80%-91.50%)

Log-logistic

(n = 54,293)

Correct Decisions 27,496 26,339 9,475 25,491

Empirical Overall Power (95% Monte

Carlo CI)

50.64%

(50.22%-51.06%)

48.51%

(48.09%-48.93%)

17.45%

(17.13%-17.77%)

46.95%

(46.53%-47.37%)

https://doi.org/10.1371/journal.pone.0263070.t006
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error rate of 0.05. Similar to what we observed in simulated data for power analysis (Fig 3),

some of the simulated Cq data for type I error investigation might not be accurately measured

by qPCR should 40 be the cutoff for data quality control or biological/clinical relevance in

practice. Thus, some replicates involved uncertain data in simulation. We then determined the

type I error rate of CTOT with the replicates that had at least one uncertain observation. With

the 710 replicates that satisfied the criterion of at least one uncertain observation, the type I

error rate of CTOT was 0.042. The type I error rate of CTOT is satisfactory as it is within the

Monte Carlo 95% confidence interval from 0.034 to 0.066, which corresponds to the 710 repli-

cates with uncertain observations and the nominal type I error rate of 0.05 [72].

Fig 5. An Example to Illustrate the Issue of Potential False Negatives of MC and CO. (A) The original Cq data simulated with a normal

distribution (corresponding to the log-normal simulation type in Table 2, β0 = 13.35 and β1 = 2.06; the corresponding empirical power of BFD is

0.80). (B) The normalized Cq data with the BFD, CTOT, MC, or CO methods applied. The filled diamonds denote the Cq data with BFD. BFD

stands for the benchmark with full data analyzed with the current standard method, which include t-tests for two-group comparisons. The filled

triangles denote the Cq data with CTOT, the cycle-to-threshold method. The vertical green arrows indicate the ranges uncertain observations

belong to, e.g., being greater than or equal to the assay-specific maximum cycle threshold C1. The filled squares denote the Cq data with MC, the

method that sets uncertain and incomplete observations equal to C1. The maximum quality cycle threshold C1 = 40 is highlighted with a horizontal

solid line. The open circles denote the Cq data with CO, the complete-observation method. The first five simulated samples belong to Group 1. The

second five simulated samples belong to Group 2. The vertical dash line separates Groups 1 and 2.

https://doi.org/10.1371/journal.pone.0263070.g005
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Real-world application results

For the application illustration, we applied CTOT to a published experimental data set. The

application involved sensitivity analysis with the two Cq cutoff values most commonly used in

the literature, 32 and 40 [3, 22, 23, 55, 56, 73]. In general, sensitivity analysis assesses how sen-

sitive a model or analysis result is to its data or input variables, on which the model or analysis

result is built [74, 75]. Silva et al. [3] reported that serum microRNAs, including miR-128-3p

and miR-210-3p, were affected in a dose-dependent manner by nephrotoxic doses of mela-

mine (MEL) and cyanuric acid (CYA) in male and female rats. All Cq values of microRNAs

Fig 6. An example to illustrate differences of the MC, CO, and CTOT methods. (A) The original Cq data simulated with a normal distribution

(corresponding to the log-normal simulation type in Table 5, β0 = 8.47 and β1 = 4.65; the corresponding empirical power of BFD is 0.91). (B) The

normalized Cq data with the BFD, CTOT, MC, or CO methods applied. The filled diamonds denote the Cq data with BFD. BFD stands for the

benchmark with full data analyzed with the current standard method, which include t-tests for two-group comparisons. The filled triangles denote

the Cq data with CTOT, the cycle-to-threshold method. The vertical green arrows indicate the ranges uncertain observations belong to, e.g., being

greater than or equal to the assay-specific maximum cycle threshold C1. The filled squares denote the Cq data with MC, the method that sets

uncertain and incomplete observations equal to the assay-specific maximum cycle threshold C1. The maximum quality cycle threshold C1 = 40 is

highlighted with a horizontal solid line. The open circle denoted CO, the complete-observation method. The first five simulated samples belong to

Group 1. The second five simulated samples belong to Group 2. The vertical dash line separates Groups 1 and 2.

https://doi.org/10.1371/journal.pone.0263070.g006
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miR-128-3p and miR-210-3p were less than 40, the default Cq cutoff value for quality control

in the qPCR software tool (Applied Biosystems Sequence Detection Systems (SDS) software,

version 2.4.1). Others have suggested using the Cq cutoff of 32, i.e., C1 = 32, for circulating

microRNAs [55, 73]. With a Cq cutoff of 32 applied to the serum miR-128-3p and miR-210-3p

qPCR data, three of the 20 two-group comparisons between a control group and one of the

exposure groups of 30, 60, 120, 180, and 240 ppm MEL and CYA on male and female rats had

certainly determined data, i.e., Cq< 32 in both the control and exposure groups, while the

remaining 17 had at least one uncertain observation in either of the two groups of comparison.

As simulation results showed that CTOT could detect differential changes in many situations

without excess type I errors, we applied CTOT to the data on the 17 two-group comparisons.

As shown in Fig 8, the p-values of six out of 17 tests were found to be less than 0.05 by both

CTOT with C1 = 32 and t-tests with the original data (all original Cq values < 40). The one

found to be marginally significant by the t-test with the original data (p-value = 0.048) was not

confirmed to be statistically significant by CTOT with C1 = 32, should the significance level of

0.05 be applied. The p-values of all other 10 out of 17 tests were found to be larger than 0.05 by

both CTOT with C1 = 32 and t-tests with the original data (all original Cq values< 40). Thus,

CTOT was able to confirm all similarities between the control and exposure groups and

detected all but one significant difference, regardless of a more conservative Cq cutoff value,

with the qPCR data on serum microRNAs miR-210-3p and miR-128-3p [3].

As discussed, CTOT might help ascertain some differential expressions that would be

missed otherwise by CNA, CO, MC, or all of these statistical methods. In the application illus-

trated in the scatter plot of Fig 8, CTOT confirmed six of the seven differential changes (p-

values� 0.05) that were detected by t-tests with C1 = 40 [3]. In contrast, MC confirmed five

out of seven differential changes, while CO confirmed only two out of seven differential

changes (Fig 8). Therefore, consistent with our simulations (Table 6 and Figs 4 and 5), CTOT

can alleviate both the disadvantages and consequences, especially mitigatable false negatives,

Fig 7. Empirical type I error rates of CTOT, BFD, CO, and MC methods. CTOT stands for the cycle-to-threshold

method. BFD stands for the benchmark with full data analyzed with the current standard method, which includes t-

tests for two-group comparisons. CO denotes the complete-observation method and MC denotes the method that sets

uncertain observations equal to the assay-specific maximum cycle threshold C1. In the simulation, C1 is set to be 40.

ΔCq followed normal distributions and eΔCq followed log-normal distributions. Parameter Set 1: β0 = 5, σ = 1;

Parameter Set 2: β0 = 10, σ = 1; +Parameter Set 3: β0 = 5, σ = 2; and Parameter Set 4: β0 = 10, σ = 2 with the

parameterization listed for log-normal distribution in Table 2.

https://doi.org/10.1371/journal.pone.0263070.g007
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of CO, MC, and CNA by leveraging the range information of uncertain observations. Table 7,

in the Conclusions section, summarizes the advantages and disadvantages of CTOT, CNA,

CO, BFD and MC.

Discussion

Several analytical technologies, such as qPCR, enable the measurement of molecular targets for

biomarker discoveries, early diagnosis and treatment, as well as better patient and disease

management. However, some data may be uncertain but still contain useful information for

differential changes between controls and treatments of interest. Because of LOB, LOD and

LLOQ, some researchers focus on differential changes that involve well-observed data in both

groups. While this strategy has advanced biological discoveries, it may bring research irrepro-

ducibility and limit knowledge from further accumulating and evolving in differential detec-

tion with emergent qPCR-based technologies, e.g., qPCR-based liquid biopsies.

Fig 8. Comparison of the statistical significance between t-tests with C1 = 40 and CTOT with C1 = 32. The sensitivity

analysis was performed on 17 two-group comparisons on rat serum microRNAs miR-210-3p and miR-128-3p, where there

was at least one uncertain observation in either of the two groups of comparison [3]. The p-values based on t-tests and CTOT

(cycle-to-threshold method) are plotted in a -log10 scale on x-axis and y-axis, respectively. C1 denotes an assay-specific

maximum cycle threshold for clinical, quality, or biological relevance, e.g., the cycle number that corresponds to LLOQ

(lower limit of quantification). The solid lines are set at p-value = 0.05 and the dashed lines are set at p-value = 0.005. The

inset Venn diagram illustrates statistically significant differences of levels of circulating microRNAs between control and

treated groups, applying the CTOT, MC, or CO method and a maximum quality cycle threshold of C1 = 32 to the data

reported by Silva et al. [3].

https://doi.org/10.1371/journal.pone.0263070.g008
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In some studies, researchers have sufficient historical data and have accumulated knowl-

edge on the data distribution type of the target population, e.g., the normal distribution.

Researchers may choose the most appropriate statistical methods accordingly. However, it is

possible that the underlying data distribution is not well-known and, therefore, lacks corre-

sponding parametric methods. In some studies, we do not know or are unsure of the underly-

ing data distributions. If there are many absent levels in samples, the distribution of Cq values

would not be a normal or t distribution as the probability of going to infinite in a normal or t

distribution is extremely low. When the underlying model assumptions are not valid, the

results of the parametric models tend to be invalid and less robust than those of nonparametric

models that do not assume an underlying distribution of the data. In these studies, a robust

nonparametric or a semi-parametric method will be more appropriate as it does not use or

heavily assume the underlying distribution of the target population.

A nonparametric method may fit the current context with uncertain qPCR data better

because the concentration distributions of molecular targets under exploration, such as micro-

RNAs in liquid biopsy, are unclear under various biological and environmental conditions. In

the investigation via simulation, the empirical power of our CTOT method is very close to that

of the benchmark with full data analyzed with the current standard method, t-tests. The results

of CTOT are consistent with the theoretical expectations for a nonparametric method and per-

forms better than the parametric methods when the underlying distribution is very different

from the normal or t distribution. Therefore, should CTOT detect a significant differential

change, the result will be robust as the method does not assume an underlying distribution.

Furthermore, CTOT pushes the analysis limit and helps overcome the limitations of com-

monly used analytic strategies, e.g., the CNA, MC, and CO methods. CTOT fully accounts for

outcomes, binary, continuous, or ranges, and aligns with the principle of normalization in

analysis. The utilization of exact distribution in inferences helps researchers obtain the

Table 7. Methods to analyze qPCR data with uncertain observations.

Method Outcome Data Type in Normalization and

Analysis

Advantages Disadvantages

CTOT Two outcome variables: A continuous variable,

i.e., observed Cq values or contextual Cq cut-off

C1, and a binary variable, i.e., being observed or

censored at C1

It is a robust nonparametric method with good

Type I error and power properties. CTOT

overcomes the decrease of sample size caused by

CO and the artificially decreased variance of Cq in

MC. The utilization of exact distribution in

inferences helps researchers obtain the minimum

sample size and uses resources in a cost-effective

way, which are often required in preclinical studies

and early phases of clinical studies

When the underlying data distribution is known,

its statistical power may be less strong than the

parametric methods that match the underlying data

distribution, as CTOT is a nonparametric method

CNA Not applicable since no analysis is performed False positive rates are zero True positive rates are zero. No evaluations on

candidate biomarkers with uncertain Cq values

CO One outcome variable: A continuous variable, i.e.,

completely observed Cq values only with the

incomplete observations deleted from analysis

It is useful when the reduced sample size is still

large enough to discover or verify a differential

change and the true Cq data distribution is a

normal distribution

It reduces the sample size of a study, which may

decrease statistical power in the evaluation of a

candidate biomarker. In addition, its statistical

power is limited when the true Cq data distribution

is not a normal distribution

BFD One outcome variable: A continuous variable, i.e.,

simulated/assumed Cq values that are observed or

unobserved in reality due to contextual Cq cut-off

C1

It may be used as a benchmark in simulations BFD does not directly pertain to practice because

some data points cannot be fully observed in reality

due to LLOQ (a lower limit of quantification), LOD

(limit of detection), and LOB (limit of blank)

MC One outcome variable: A continuous variable, i.e.,

completely observed Cq values and contextual Cq

cut-off C1, to which the incomplete observations

were set

The filled-in values with contextual Cq cut-off C1

may still allow the discovery or verification of a

differential change, especially when the true Cq

data distribution is a normal distribution

MC may bring false discoveries when the Cq data

distribution is skewed by the simple imputation

method or when the true Cq data distribution is

not a normal distribution

https://doi.org/10.1371/journal.pone.0263070.t007
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minimum sample size and uses resources in a cost-effective way [49]. In preclinical studies

and early phases of clinical studies, the sample sizes are often required to be as minimal as pos-

sible. With CTOT, researchers can use the valid and robust analytical method to analyze

incomplete qPCR quantification and do not have to choose not to analyze (CNA) such incom-

plete data. CTOT overcomes the decrease of sample size caused by CO and the artificially

decreased variance of Cq in MC. It can also overcome the restrictiveness in distributional

assumptions of the current standard method, e.g. two-group t-tests [61]. Thus, it leverages

qPCR technology and contributes to the reproducibility of both certain and uncertain qPCR

data.

If we model part of the outcomes, i.e., the binary outcome on the reach of the fluorescence

threshold, and apply an analytical method, such as logistic regression, we will retain informa-

tion on the occurrence of uncertainty or incompleteness due to low or absent levels of molecu-

lar targets, but we lose information on the timing of events. Recently proposed methods, such

as the expectation-maximization-based imputation and the Markov chain Monte Carlo-based

hierarchical model methods, impute missing or censored observations with observed data and

statistical assumptions [11, 12]. The imputation methods are expected to perform well in the

situations when the statistical assumptions are not violated and information in observed data

is sufficient to impute missing or censored observations well enough for study objectives [11,

12, 76]. There remain the situations when the true Cq values of the incomplete observations

cannot be imputed well from the observed data (e.g., actually, Cq = infinity), or when it is

insensible to assume the statistical assumptions, e.g., normality or other parametric assump-

tions [2, 31]. A nonparametric method may fit better than a parametric method that uses or

assumes the underlying distribution of the population, as the concentration distributions of

molecular targets under exploration, such as microRNAs, are unclear under various biological

and environmental conditions. Simulation results indicate that CTOT, a nonparametric

method that incorporates ranges in analysis, may robustly detect differential expression when

the statistical assumptions, e.g., normality or other parametric assumptions, are violated.

The utilization of p-values for decision making has been discussed recently in both the liter-

ature and the research community. Research reproducibility is vital to the regulatory sciences

in the biopharmaceutical area. In this study, we used the power of 80% and the nominal type I

error rate of 0.05 in simulations. In sensitivity analysis, the alpha level of 0.05 was used as it is

compatible with existing real-world data [3]. The type I error rate of 0.05 and sample size of 5

in a group are commonly used in rat in vivo studies to explore exposure effects on microRNAs

[3, 44–48]. The type I error rate and sample size are usually decided to achieve a sensible

power level, e.g., 80%, to detect a biologically meaningful population effect of a treatment on a

microRNA with reasonable resources. Literature has shown that, with a low power, such as

0.52, p-values become unreliable for inference as the type I error rate may be inflated [77].

Meanwhile, the p-value cutoff for decision making should not be reduced too small to detect

true differences with a sensible statistical power, if the sample size is fixed; otherwise, the

power will be decreased with false negatives increased. A low alpha level without a compatible

sample size may decrease power unfavorably and increase false negatives (S3 Fig). For exam-

ple, should we change the alpha level from 0.05 to 0.005, the decreased power may be as low as

0.1, given that the other factors are fixed. Should the alpha level in the sensitivity analysis be set

to be 0.005, only three tests have a lesser p-value (Fig 8). Researchers may use a lower alpha

level, e.g. 0.005, and/or, a higher power, e.g. 90% with a compatible sample size and study pur-

pose [39]. Therefore, like many studies, the use of the p-value, as well as the choice of the p-

value cutoff for the study to detect interesting differential changes in molecular targets with

the qPCR technology, depends on several interrelated factors, including the study question,

target population (e.g. the effect size and standard deviation in the target population), available
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resources (e.g. sample size), and acceptable decision thresholds (e.g. type I error rate and

power) [78].

The CTOT method presented here is designed for detecting differential changes with rela-

tive quantification of qPCR data, which directly compares groups using normalized Cq data

[3, 20, 79]. Absolute quantification can be obtained once the raw qPCR data are compared

with pre-determined standard curves [60, 80]. More reagents are needed for standard dilutions

to create a standard curve and standard dilutions may bring errors [79]. Furthermore, when

the differential changes between groups are of interest, absolute quantification and the deter-

mination of the exact levels of DNA input are not necessarily needed, as relative quantification

can determine the differential changes with reference molecular targets and samples [28, 60,

79]. Even in well-conducted absolute quantification studies, uncertain data may still be

observed as left-truncated, e.g.<25 international units per mL (IU/mL) for plasma HCV RNA

[1]. The CTOT method cannot be directly used to analyze the qPCR absolute quantification

for differential changes. However, statistical methods that deal with left-truncated or interval-

censored data may be adapted or leveraged [12, 81, 82].

One limitation of this study is that it assumes errorless pre-PCR preparation and reliable

real-time qPCR reactions. An example of a pre-PCR preparation limitation is hemolysis of

blood samples, which may bring unwanted effects when assessing transcript levels in serum

and plasma samples [26, 83]. CTOT is currently not designed to account for errors in pre-PCR

preparation and qPCR reactions. Prior knowledge and experimental approaches may be used

to check whether it is sensible to assume errorless pre-PCR preparation and reliable real-time

qPCR reactions. For example, to take into account the extent of blood hemolysis, researchers

may classify samples as being hemolyzed if their absorbance at 414 nm exceeded a value of 0.2

[26]. A thorough discussion on pre-PCR preparation and real-time qPCR reactions are out of

the scope of the present study. Interested readers may refer to published guidelines and litera-

ture [7, 20, 26, 84].

Our study addresses a data analysis challenge when using qPCR data that can be encoun-

tered, for example, in the face of a new biomarker detection method with microRNAs in liquid

biopsies. The data analysis challenge comes with auxiliary information that all missing or cen-

sored data are larger than or equal to the assay-specific maximum qPCR cycle threshold,

which is denoted C1 in the paper, in the scenarios with errorless pre-PCR preparation and reli-

able real-time qPCR reactions. An auxiliary variable contains information about missing data

but is not needed if there are no missing data. CTOT leverage auxiliary information on C1. In

addition, the application of CTOT is illustrated with analysis of microRNAs, but the method

itself is not microRNA-specific and may be fit for other molecular targets, e.g. viral DNA and

mRNAs, as long as uncertain qPCR data are observed for group comparisons and qPCR tech-

nology is reliably utilized with good practice [85].

Conclusions

Biomarker detection and validation with liquid biopsies have faced an analytical challenge due

to the overall low levels of nucleic acids in biofluids. In this study, we focus on the identifica-

tion or validation of cell-free biomarkers in biofluids with qPCR technology, particularly those

that represent good practice with errorless pre-PCR preparation and reliable, real-time qPCR

reactions. Existing commonly used approaches, including CO, CNA, and MC, exclude samples

with uncertainly determined qPCR Cq data, exclude groups with uncertainly determined

qPCR Cq data, or set the uncertainly determined qPCR Cq values as all equal to an assay-spe-

cific Cq cutoff, e.g., C1 in this study. These approaches are inadequate to consider all available

information or have made a strong but questionable assumption on samples. In reference to
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how qPCR Cq data are technically obtained, the challenge to validate the population-level dis-

tributions of the Cq values with uncertain observations, and unique Cq data features, e.g.,

uncertainly determined observations that have true Cq values greater than or equal to C1, we

designed a novel nonparametric statistical method, CTOT, to improve biomarker detection

and validation for liquid biopsies. Our simulations and applied real-world examples show that

CTOT represents a new approach and framework for future studies to detect and validate bio-

markers with informative but uncertain qPCR Cq values. Table 7 summarizes the advantages

and disadvantages of CTOT, CO, CNA, and MC as well as BFD, which was used in simula-

tions. Compared with the three commonly used methods of CO, CNA, and MC, the greatest

advantage of CTOT is that it is more robust and powerful to detect remarkable differential

changes that involve at least one group that tend to have very low levels of nucleic acids, thus

resulting in incomplete or uncertain qPCR data. In general, the more authentic differential

changes are identified regarding biological processes of interest, the higher the chances of dis-

covery of safe and effective therapeutics and diagnostic devices (or tests).

Supporting information

S1 Fig. Literature on the topic of qPCR and microRNAs in web of science. The search result

covers the period from 1/1/2016 to 12/31/2020. The literature search was performed in the

Web of Science Core Collection, which covered over 1.7 billion references and over 30,000

indexed journals [21]. Specifically, we formed one search with keywords and the Boolean oper-

ators of OR and AND. The keyword of microRNA and the alternative spelling of miRNA were

combined in the search using the Boolean operator of OR. The Boolean operator of AND was

further used to restrict the search to include literature on qPCR and microRNA. We obtained

search results with “TS = (microRNA OR miRNA) AND TS = (qPCR OR qRT-PCR)” and

with the Advanced Search capability in the Web of Science, where TS denoted topic and was a

search field tag.

(TIF)

S2 Fig. Theoretical distribution relationships used in simulation. Three proofed distribu-

tion relationships are used in simulation. Solid lines with arrows represent transformations

from one distribution to another. NLT stands for a natural logarithm transformation. ET

stands for exponential transformation. For example, the natural logarithm of a variable that

follows a log-normal distribution is normally distributed. Likewise, the distribution of the nat-

ural logarithm of a variable that follows a Weibull distribution is an extreme value distribution.

The distribution of the natural logarithm of a variable that follows a log-logistic distribution is

a logistic distribution. Both NLT and ET are monotonic transformations that preserve the

order of the original data.

(TIF)

S3 Fig. Power analysis of two-sided t-test for two independent groups. The sample size is 5

in each group. The population mean μ1 varies from 20 to 30 in Group 1, while the population

mean μ2 varies from 32 to 40 in Group 2. For simplicity, the population standard deviation is

fixed to be 1 in each group. The significance levels (alpha) are set to be 0.001, 0.005, 0.05, or 0.2

for analytical illustration.

(TIF)

S1 Table. A tabular summary of power analysis of two-sided t-test for two independent

groups. The sample size is 5 in each group. The population mean mu1 varies from 20 to 30 in

Group 1, while the population mean mu2 varies from 32 to 40 in Group 2. For simplicity, the

population standard deviation is fixed to be 1 in each group. The significance levels (alpha) are
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set to be 0.001, 0.005, 0.05, or 0.2 for analytical illustration.

(CSV)

S2 Table. The empirical power of the CTOT, BFD, CO, and MC methods by parameter

sets. BFD stands for the benchmark with full data analyzed with the current standard method,

which includes t-tests for two-group comparisons. CTOT stands for the cycle-to-threshold

method, while CO denotes the complete-observation method and MC denotes the method

that sets uncertain and incomplete observations equal to the assay-specific maximum cycle

threshold C1. Uncertain qPCR data may occur in one or both groups under comparison.

(CSV)

S1 Text. R codes for Figs 5 and 6.

(TXT)
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