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FoxP3 isoforms and PD-1
expression by T regulatory cells in
multiple sclerosis
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Forkhead box P3 (FoxP3)+ regulatory T cells (Treg) are powerful mediators of immune regulation and
immune homeostasis. In humans, Tregs are a heterogeneous population expressing surface markers
which define phenotypically and functionally distinct subsets. Moreover, it is now clear that intracellular
staining for FoxP3 does not unequivocally identify “true” suppressor cells, since several FoxP3 isoforms
exist, and different reagents for FoxP3 detection are available. Here, we propose a strategy to identify
potentially functional and suppressive Treg cells in an autoimmune disease like multiple sclerosis,

and we suggest that in patients affected by this disease these cells are both reduced in number and
functionally exhausted.

At every moment since its appearance in the developing organism, the immune system is in constant activ-
ity, continuously adapting itself to the environment and responding to environmental cues which determine its
“configuration” at any given moment. To balance these perpetual challenges and unceasing activating signals,
regulatory mechanisms exist which control the extent of immune activation, shutting down immune responses
once the threat has been eliminated'. T regulatory lymphocytes are a fundamental component of these control
mechanisms, and they represent a population of suppressor cells that contain autoreactive and over-shooting
inflammatory immune responses by active suppression. Several subsets of T regulatory lymphocytes have been
identified in humans and in experimental animals; their common feature is the ability to inhibit the effects of
immune activation, such as proliferation or cytokine production by effector cells of both the innate and the
adaptive arms of the immune system. It is now clear that conventional lymphocytes may acquire regulatory func-
tions following stimulation in the presence of the appropriate cytokine milieu. However, the thymus hosts the
development of a distinct lineage of CD4* lymphocytes naturally committed to suppressive functions: natural T
regulatory cells (Treg)>>.

The key transcription factor controlling T cell development and function is FoxP3, and its deficiency deter-
mines highly aggressive systemic autoimmunity, both in mice and in humans*. Contrary to murine Treg
cells, however, human Tregs are not homogeneous in gene expression, phenotype, and suppressive functions’.
Moreover, in humans several splicing variants of FoxP3 have been described®™!!, adding to the heterogeneity of
the human Treg landscape. Indeed, two main isoforms are expressed at equivalent levels by Treg cells: one is the
full-length isoform (FoxP3{l), while the other lacks exon 2 (FoxP3A2), which contains the sequences involved
in the interaction with retinoic acid-related orphan receptor o and ~t (RORa and RORAt). The main functional
distinction between these two isoforms consists in the inability of FoxPA2 to interact with RORa!'? and RORt!
and to inhibit their function, ultimately contrasting the development of Th17 cells. A third isoform has also been
described which lacks both exon 2 and exon 7 (FoxP3A2A7), which contrary to the other two isoforms facilitates
Th17 differentiation'*. The factors that regulate the generation of alternatively spliced isoforms include metabolic
determinants, such as the impairment of the glycolytic pathway with consequent accumulation of the glycolytic
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enzyme enolase 1 in the nucleus and its binding to the FOXP3 promoter'®, and exposure of T cells to the proin-
flammatory cytokine IL13™.

Several studies have revealed that quantitative or qualitative declines in Treg cells contribute to the develop-
ment of autoimmune diseases, although given the vast heterogeneity and complexity of these disorders a consen-
sus has not been reached, and conflicting results have often been generated!®.

The precise identification of natural T regulatory cells in the peripheral blood is in itself a challenge, since
proteins expressed by T regulatory cells are mostly shared by activated conventional effector cells. However, in
ex-vivo freshly isolated lymphocytes, the expression of certain combinations of markers neatly pinpoints distinct
subsets of Tregs with varying suppressive abilities. Following the first characterization of human Tregs'’, several
studies have identified markers which are predominantly expressed - or selectively downregulated - by these
cells'®23,

Miyara and colleagues® have shown that CD45RA is a useful marker when combined with CD25 and
FoxP3 expression to study the heterogeneity of Treg cells. In particular CD4* CD45RA~CD25" cells show potent
suppressive activity and the highest levels of FoxP3 expression.

Previous observations by our lab?? have shown that the catalytic inactivation and conversion of extracellular
ATP by CD39 is an anti-inflammatory key mechanism of Treg cells with implications in immune suppression, and
that coexpression of CD39, CD45R0, and CCRé identifies a confined subset of activated effector/memory-like
suppressor cells?.

Based on recent data on the functional consequences of the differential expression of the distinct FoxP3 iso-
forms, and thanks to the availability of isoform-specific antibodies, we have investigated FoxP3 expression by Treg
cells in patients with multiple sclerosis (MS) and in healthy donors (HD), focusing on the Treg subtypes identified
by differential expression of surface markers. Also, we have measured expression of the inhibitory receptor PD-1
by Treg subsets, adding another piece to the complex puzzle of the factors regulating Treg activity. Our data shows
that both naive and memory Treg cells, defined by the expression of surface markers, are reduced in frequency in
MS patients. Moreover, in patients Treg cells mainly express the FoxP3 isoform lacking exon 2; additionally, these
cells present high membrane levels of inhibitory PD-1.

Results

Identification of FoxP3* cells using different antibody clones unveils differences in Treg fre-
quencies. To analyze whether immune dysregulation in patients with MS is associated with a decline in Treg
frequencies in the peripheral blood, we investigated the expression of FoxP3 by flow cytometry both in healthy
donors (HD) and in MS patients. We detected FoxP3 using the commercially available antibody clones PCH101,
150D, 259D/C7, 236A/E7. The PCH101 antibody reacts with an epitope located at the amino terminus of human
FoxP3, detecting all FoxP3 isoforms, while the 150D antibody recognizes only the epitope encoded by exon 2
(FoxP3-E2), thus identifying Tregs with immune-suppressive abilities; antibodies 259D/C7 and 236A/E7 rec-
ognize an epitope located downstream of exon 2%. Freshly isolated PBMCs were stained with these 4 antibody
clones in conjunction with surface staining of CD4 and CD25. In order to minimize inter-experimental variation,
staining conditions were kept strictly homogeneous and the flow cytometer was calibrated prior to each meas-
urement. These conditions allow us to measure with confidence also the Median Fluorescence Intensity (MFI)
for FoxP3 staining.

The results show that the percentages of FoxP3" Treg cells identified by gating on the CD4*CD25"8h cells are
more variable in MS patients compared to HD (Fig. 1a vs b). Indeed, we observed that in MS patients, intensity
of FoxP3" cells, which correlates to the number of molecules per cell (Fig. 2c), was significantly lower than that
of healthy individuals.

To confirm that PCH101 and 150D/E4 recognize different FoxP3 isoforms, we sorted CD4+CD25M8"CD127"¢
cells and performed Western blotting using both antibodies to detect FoxP3 in the same sample (suppl. Figure 1).
Indeed, the 150D/E4 antibody identifies one single band, which correspond to the isoforms containing exon 2,
while the PCH101 antibody identifies two distinct bands, at 44 and 47KDa, since it recognizes an epitope located
at the N-terminus of the protein and thus binds to all isoforms, which have different molecular weights.

Previous studies have shown that expression of CD39 defines the subset of Treg cells endowed with the most
powerful suppressive abilities?>?>?. To correlate the expression of FoxP3 isoforms with immune function, we
determined the positivity for FoxP3 with the available anti-FoxP3 clones in combination with surface staining
of CD39 (Fig. 2c). Within CD4*CD25hh cells, the fraction of FoxP3+ CD39" identified with clone 150D was
significantly lower in MS patients compared to healthy donors; staining with the other antibody clones revealed
lower frequencies of CD39"FoxP3* cells in MS patients, although statistical significance was not reached. Thus,
Tregs from MS patients express lower amounts of the FoxP3-E2 isoform which confers full suppressive abilities.

The highest percentages of Treg cells were detected by staining with PCH101 (Fig. 1), while the use of the
150D clone led to detection of a lower fraction of FoxP3" cells. In HD, the percentage of FoxP3™ cells is less
dependent on the antibody clone used, and consistently 70-80% of CD4+CD25"8" cells express FoxP3, while
in MS patients the fraction of FoxP3* cells is generally lower. Cumulative data show that CD25"8"FoxP3 cell
frequencies in MS patients and in healthy donors are significantly different when clone 150D is used, while the
same numbers of FoxP3™ cells are detected with clone PCH101 (Fig. 2a). Moreover, MS patients consistently show
reduced levels of FoxP3 expression as measured by MFI.

Finally, to confirm our flow cytometric results, we asked whether MS individuals are carrying less FOXP3
transcripts with exon 2. Fresh PBMCs obtained from HD and MS individuals were stained with a mixture of
fluorochrome-conjugated antibodies (CD4, CD25, CD127, CD39, FoxP3) the fraction of CD4*CD25"8" and
CD4+CD25"¢ from each individual was sorted to purity. Sorted cells were then used to perform real-time PCR
for FOXP3 isoforms (Fig. 2d). Results showed no differences in total FOXP3 expression between HD and MS in
agreement with the flow cytometric data. However, in CD4+ CD25"¢" cells from in MS patients we measured
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Figure 1. Representative plots showing the frequencies for Treg cells in PBMCs from a healthy donor (a)
and an MS patient (b). PBMCs from the same sample were stained in 4 replicates with the different anti-
FoxP3 clones (150D, 236A, 259D, PCH101). Numbers indicate percent of cells in each quadrant.

lower levels of FOXP3 isoforms carrying exon 2, confirming the data obtained staining with the different FOXP3
antibody clones.

The lower percentages of FoxP3* Treg cells in MS patients correlate with reduced frequencies
of memory Treg cells expressing the FoxP3-E2 isoform.  Given that expression of the FoxP3 splicing
variant containing exon 2 has been associated with immune-suppressive abilities, and that the antibody clone
150D recognizes precisely an epitope encoded by a sequence present in exon 2, we performed a phenotypic
study of Treg cells in PBMCs obtained from healthy individuals and MS patients, with the aim of clearly defining
the cell subsets expressing FoxP3-E2 within CD4*CD25¢" cells. Following the strategy for the identification
of distinct Treg subsets proposed by Miyara and colleagues®, we stained cells with CD4, CD25, and CD45RA
and defined three main subsets of cells within CD4*CD25* lymphocytes: CD25"¢"CD45RA~ memory Treg,
CD25+*CD45RA™ naive Treg, and CD25°*CD45RA ™~ activated T cells. Expression of CD39 and of the FoxP3-E2
isoform was then evaluated in each subset (Figs 3 and 4). The subset which was most enriched in FoxP3™" cells, as
expected, was the CD25MghCD45RA - memory Treg, in both cohorts of individuals. However, MS patients showed
a statistically significant reduction of these cells (Fig. 4b). Also, FoxP3 expression levels were higher in healthy
individuals compared to MS patients. The analysis of CD39 expression confirmed that this marker is prevalently
present on memory Treg cells (Fig. 4d), and more so in healthy individuals. Interestingly, also within the naive
Treg compartment FoxP3-E2 expression was significantly reduced in MS patients (Fig. 4a). As expected, CD39
expression was lowest in naive Treg cells, in both HD and MS patients (Fig. 4c). Overall, these results indicate that
the antibody clone 150D, used in combination with surface markers that define Treg subsets, reveals a reduction
of distinct subsets of Treg cells in MS patients.

The deficiency in memory Treg exon-2 in MS is associated with highest expression of PD-1.
CD4CD25g"FoxP3 Treg cells, similar to conventional CD4 ™" T cells, express specific coinhibitory and costim-
ulatory receptors involved in signaling pathways that modulate their functions. One such receptor is programmed
cell death protein 1 (PD-1), which is expressed upon T cell activation, and provides a negative feedback to the
effector functions of T cells during inflammation. It was recently demonstrated®® that human circulating Treg
cells expressing high amounts of PD-1 are impaired in their ability to suppress CD4 " effector T cells. Indeed, high
PD-1 expression identifies a population of dysfunctional, IFN~-producing Treg cells, which are present also in
healthy individuals, and which have been found to be expanded in tumor infiltrating Treg cells in malignant glio-
mas?8. Thus, to further characterize the features of circulating Treg in MS individuals, we evaluated the expression
of PD-1 in CD4+CD25"#"CD45RA ™ cells by flow cytometry, in PBMCs obtained from MS and HD. As shown,
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Figure 2. Frequencies and Median Fluorescence Intensity (MFI) of FoxP3* cells within CD4*CD258" cells
(a,c) or CD4*CD25™8"CD39+ cells (b) from the PBMCs of HD (grey bar, n=6) or MS individuals (black bar,
n=06). (d) rtPCR quantification of FOXP3 transcripts expressing exon 2 (with Ex2), without exon 2 (without
Ex2) on CD4+CD25"8" sorted cells obtained from RRMS patients (n =4) or healthy donors (n=4). Significant
values: *p < 0.05; **p < 0.001. Statistical comparisons were performed by Student’s paired T test.

this subset comprises the majority of FoxP3TCD39" effector Treg cells. Results show that Treg cells from MS
patients express significantly higher levels of PD-1 compared to HDs (Fig. 5a and b), denoting an exhausted and
dysfunctional status. Expression of PD-1 by the other Treg subsets was comparable between patients and healthy
controls (not shown).

Discussion

Treg cells play a central role in the maintenance of immune homeostasis, and their immune-suppressive functions
are driven by the expression of the master regulator gene FOXP3. The central role of the FoxP3 transcription fac-
tor in maintaining immune homeostasis is best exemplified by the systemic autoimmune disease IPEX syndrome
which affects individuals carrying mutations in FOXP3>. Several isoforms of FoxP3 have been described, arising
from alternative splicing. A large number of instances has uncovered the role of alternative splicing in shaping
cellular responses and in contributing to defects in immune function?, and here we have performed a study to
characterize the FoxP3 isoforms present in MS patients in correlation with Treg surface proteins as surrogate
markers for immune and cellular function. Of the known Foxp3 isoforms, the FoxP3A2 isoform lacks exon 2,
which contains sequences crucial for the interaction with two transcription factors, RORa and RORAt, who have
been shown to regulate differentiation of pro-inflammatory Th17 cells'>'**. Th17 cells have been involved in the
pathogenesis of several autoimmune disorders, as MS*'-33. Interestingly, the close developmental interrelationship
between immune-suppressive Tregs and proinflammatory Th17 cells allows shifts between a regulatory and an
inflammatory condition, depending on environmental cues'>****. Defects in the Treg cell population have been
shown to underlie several autoimmune disorders, although conflicting results concerning the nature and the
quality of this deficiency have been reported in the literature!®. More recently, also, several reports have assigned a
negative prognostic value to tumor-infiltrating Treg cells, although in some tumor sites the presence of Treg cells
is associated with improved survival®®. These conflicting results may be due to variability in the detection of Treg
cells with different reagents and read-outs, hindering the proper understanding of the mechanisms controlling
immune regulation in different settings.

Here, by using stringent methods for the identification of human Treg cells, we show that in patients affected
by multiple sclerosis there exists a significant reduction of Treg cells expressing the FoxP3-E2 isoform. Moreover,
we show that in MS patients there is a reduction of both naive and memory Treg cells, with memory Tregs dis-
playing an increased expression of PD-1, a cell-exhaustion marker.

We find that in MS patients a lower fraction of Treg cells expresses the FoxP3-E2 isoform, compared to
healthy donors, and this may deprive Treg cells of a further level of immunoregulation, through the inability
to inhibit the transcription factors RORa and RORAt and the consequent failure to prevent the development of
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Figure 3. Definition of subpopulations of Treg cells by detection of cell surface molecules in one representative
healthy donor (a) and one representative MS patient (b). PBMCs were stained for CD4, CD25, CD39, CD45RA,
and FoxP3-exon2 (anti-FoxP3 clone 150D). Numbers indicate percent of cells in each quadrant. Three main
subsets of CD4" cells containing different levels of FoxP3 were defined by the expression of CD45RA and CD25:
naive Treg cells (CD45RA* CD25%), memory Treg (CD45RA~ CD257), activated Treg (CD45RA~ CD25%7). In
each subset the combination with CD39 and FoxP3-exon2 identifies true Treg cells.

proinflammatory cells. The lower frequency of FoxP3™ cells identified with the antibody clone specific for exon
2 in MS patients may thus explain the decreased immunoregulatory abilities of Treg cells in this disease’” . A
possible explanation for the events which lead to splicing of the full-length FoxP3 protein may be the metabolic
imbalances present in patients with chronic inflammatory diseases, as previously suggested'”. These results are in
agreement with previous work reporting that a reduction of functionally effective Treg cells underlies the patho-
genesis of autoimmunity*’~*.

Furthermore, we find that Treg cells isolated from MS patients express high levels of PD-1, confirming the
notion that in these individuals the immune system is chronically activated in waves (such as those which occur
during a chronic viral infection) and thus regulatory T cells become functionally exhausted, and as the disease
proceeds immunoregulation may become compromised also due to upregulation of inhibitor molecules such
as PD-1. Treg cells expressing high levels of PD-1 have been described in tumor settings*! and also in the con-
text of autoimmunity*%. Recently, stimulation through solely CD28 has been associated with high production of
proinflammatory cytokines in MS patients®. Interestingly, CD28 has also been shown to be a crucial mediator of
PD-1-induced inhibition of T cell function**. We have found a higher expression of PD-1 on regulatory T cells
associated with a lower frequency of these cells in MS patients. Thus, in MS patients, probably due to chronic
stimulation by unknown environmental agents (viral infections, dysbiotic gut flora), the subset of regulatory
T cells is less represented in the peripheral blood than in healthy donors, and those few Treg cell which are still
circulating are inhibited in their functions by the expression of PD-1.

In conclusion, this study underlines the importance of studying T regulatory cells taking in consideration the
existence of distinct FoxP3 isoforms which identify cells with potentially diverse suppressive abilities and which
may be differently expressed in health and in disease. The suppressive abilities of Treg cells are also influenced by
the regulator of cell exhaustion PD-1, and the observation that Treg cells in MS patients express high levels of this
molecule confirms previous findings of Treg dysfunction in autoimmunity.

Methods

Human samples and clinical specimens. Blood samples were collected from 13 MS patients with the
relapsing-remitting form of MS (RR-MS), into 10 mL sodium heparin Vacutainer tubes (BD Biosciences, San Jose,
CA) at the Neurology Department of the San Camillo Hospital, Rome, according to the guidelines and recom-
mendations of the institution, which approved the study (6 male, 7 females, average age 43,6 range 32-55; EDSS
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Figure 4. Percentage of FoxP3* (a,b) and of FoxP37CD39" cells (¢,d) within naive and memory Treg cells.
MFI of FoxP3 in naive (e) and memory (f) Treg cells. Blue dots: healthy donors (n=12); red dots: MS patients
(n=13). Statistical comparisons were performed by Student’s unpaired T test. Significant values: **p < 0.005,
#8p < 0,001, ###%p < 0.0001.

0-3,5). At the time of sampling, patients fell in the NEDA (no evidence of disease activity) category, following
evaluation of clinical and neuroradiological parameters*. Healthy donors were recruited at the Fondazione Santa
Lucia as approved by the Ethical Committee of the Institute (6 female, 6 male, average age 39.9, range 27-53). All
patients and healthy donors provided informed consent.

PBMCs from HD and RR-MS were isolated by Ficoll and immediately stained for flow cytometric analysis or
used as total cell lysates in Western Blot.

Flow Cytometry of FoxP3 antibody clones staining and Treg phenotype.  Fresh PBMC (ex-vivo)
from MS patients and healthy controls were stained with CD4 PerCP-Cy5.5 (Biolegend), CD25 BV421
(Biolegend), CD39 FITC (Miltenyi Biotech), followed by fixation, permeabilization and intracellular staining
with FoxP3 PE (clone 236A/E7, eBioscience; clone 150D/E4, eBioscience; clone 259D/C7, Becton Dickinson;
clone PCH101, eBioscience). Live/Dead Fixable Aqua Dead cell stain (Invitrogen) was added to the cocktail
of surface mAbs. Cells were acquired on a Beckman Coulter CyAn flow cytometer and analyzed using FlowJo
9.9.5 software. For the experiments on the Treg phenotype fresh PBMCs from MS and HD donors were stained
with CD4APC-¢780 (eBioscience), CD25 BV421 (Biolegend), CD45RA PE-Cy7 (Beckman Coulter), CD39 FITC
(Miltenyi Biotech), FoxP3 PE (150D/E4, eBioscience), PD-1 BV650 (Becton Dickinson), CD127 APC-Alexa647
(Miltenyi Biotech), Live/dead cell stain. Cells were acquired on a Beckman Coulter CytoFLEX, and analyzed
using Flowjo 10. Statistical analysis was performed using unpaired Student’s T test.
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Figure 5. PD-1 expression measured as percent of positive cells (a) or MFI (b). PD-1 expression was measured
on cells gated on blue dots: healthy donors (n=12); red dots: MS patients (n = 13). Statistical comparisons were
performed by Student’s unpaired T test. Cells were gated on CD4+CD25"FoxP3-exon2™ *p < 0.05, **p < 0.005.

Cell Sorting. PBMCs were isolated by Ficoll from healthy donor blood. Cells were then stained with CD4,
CD25, and CD127 to identify Treg cells. Cells were sorted using a MoFlo cell sorter (Beckman Coulter). Purity of
sorted cells was consistently >98%.

Immunoblotting (Western Blot). Total cell lysates were prepared in modified RIPA buffer (50 mM Tris/
HCI, pH 8, 150 mM NaCl, 1% Nonidet P40, 0.5% sodium deoxycholate and 0.03% SDS) with 1 mM Na,;VO, and
a cocktail of antiproteases from Sigma. A total 30-40 g of proteins was separated by 8% SDS/PAGE and analyzed
by Western blots. Membranes were cut vertically and incubated with different FoxP3 antibodies (PCH101 and
150D/E4, eBioscience). Inmunoblots were analyzed by ECL with the ECL Western Blotting Reagent (Pierce).
Tubulin o/ (Cell Signaling) was used as loading control.

RNA isolation, RT-PCR and q-PCR. Total RNA was isolated from T cells with ReliaPrep™ RNA Cell -
Miniprep System (Promega) following manufacture’s instructions, and 100 ng of cDNA was retro-transcribed
using SuperScript™ II Reverse Transcriptase (Invitrogen).

The quantitative PCR was performed using the LightCycler® 480 SYBR Green I Master Mix (Roche) and
using specific couples of primers (Total FOXP3 FW: 5'-CAGCCATGATCAGCCTCACA-3’; Total FOXP3
REV: 5-GCACTGGGATTTGGGAAGGT-3/; FOXP3 with Ex2 FW: 5'-CAGCTGCAGCTGCCCACACTG-3;
FOXP3 with Ex2 REV: 5'-GCCTTGAGGGAGAAGACC-3’; FOXP3 w/o Ex2 FW:
5'-CAGCTGCAGCTCTCAACGGTG-3'; FOXP3 w/o Ex2 REV:5'-GCCTTGAGGGAGAAGACC-3).

The amplification protocols of each couple of primers were tested before the analysis, shown below, and their
specificity was confirmed in all assays by single peak performances of PCR products in melt curve analysis.

The amplification protocol for the total FOXP3 expression was 5min 95°C, (10sec. 95°C, 20sec. 60°C, 10sec.
72°C) x 45, and the amplification protocol for the FOXP3 with Ex2 and FOXP3 w/o Ex2 expressions was 5min
95°C, (10sec. 95°C, 20sec. 56 °C, 10sec. 72°C). The gene expression was normalized to the expression of GADPH.
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