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Reporter pathway analysis from 
transcriptome data: Metabolite-
centric versus Reaction-centric 
approach
Tunahan Çakır

A systems-based investigation of the effect of perturbations on metabolic machinery is crucial to 
elucidate the mechanism behind perturbations. One way to investigate the perturbation-induced 
changes within the cell metabolism is to focus on pathway-level effects. In this study, three different 
perturbation types (genetic, environmental and disease-based) are analyzed to compute a list of 
reporter pathways, metabolic pathways which are significantly affected from a perturbation. The 
most common omics data type, transcriptome, is used as an input to the bioinformatic analysis. 
The pathways are scored by two alternative approaches: by averaging the changes in the expression 
levels of the genes controlling the associated reactions (reaction-centric), and by averaging the 
changes in the associated metabolites which were scored based on the associated genes (metabolite-
centric). The analysis reveals the superiority of the novel metabolite-centric approach over the 
commonly used reaction-centric approach since it is based on metabolites which better represent the 
cross-talk among different pathways, enabling a more global and realistic cataloguing of network-
wide perturbation effects.

Pathways are functional units which perform certain cellular tasks. A practical way to grasp the effect 
of a perturbation on molecular mechanisms, whether it is environmental, genetic or disease-based, is to 
check how it affects hundreds of cellular pathways. The availability of omics data facilitates the documen-
tation of the perturbation-induced changes in the cell via the pathways constituting its cellular networks. 
Metabolic pathways are one of the most appealing pathway types in this sense since metabolism is the 
engine that runs the cellular factory. Several computational methods emerged, for example, to integrate 
transcriptome data and metabolic networks to catalogue how the pathways respond to a perturbation1–4.

The most common pathway-oriented approach to bridge mRNA-level changes and observed pheno-
types is pathway enrichment, which statistically analyze the enrichment of associated pathways for a set 
of genes found to be significantly affected from the perturbation, without considering the magnitudes of 
individual changes observed for the gene transcripts5. However, it is also crucial to consider the informa-
tion on the connectivity and the magnitude of the significance of change for such differentially expressed 
genes. More importantly, genes not differentially expressed should also be accounted since they can 
exhibit significant coordinated changes when considered together6. Therefore, metabolic networks can 
be used as a scaffold to map the differential expression information of all genes such that pathway-level 
perturbation effects are presented by utilizing network connectivity7,8. Organism-specific metabolic net-
work information for such an analysis can be obtained from popular pathway databases such as KEGG9, 
BioCyc10 and Reactome11, or it is available via curated genome-scale metabolic models12.

Here I present a new approach to catalogue metabolic pathway-level perturbation effects based on 
transcriptome data. Approaches in the literature for the determination of perturbed metabolic pathways 
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are reaction-centric, i.e. pathways are scored based on the expression levels of the genes controlling 
the associated reactions. A metabolite-centric approach which takes into account all the reactions 
which consume or produce the metabolites of the pathway is needed to better represent the effects 
of a perturbation on network-level. A novel metabolite-centric scoring algorithm is employed to inte-
grate organism-specific metabolic networks with the statistical changes on the genes which control the 
reactions functioning in the network, and it is compared to the more straightforward reaction-centric 
algorithm. The algorithm builds on the reporter metabolite approach commonly used in the analysis of 
transcriptome-associated regulations in metabolic networks7. The metabolite-centric reporter pathway 
analysis (RPAm) is shown to outperform the reaction-centric scoring of pathways (RPAr) in terms of 
reporting perturbation-associated underlying mechanisms.

Results and Discussion
Reporter pathways for a Genetic Perturbation. GDH1 is known to encode NADPH-dependent 
conversion of 2-ketoglutarate to glutamate in the yeast S. cerevisiae. A deletion was introduced to this 
gene to perturb the cofactor balance within the yeast cells13. The resulting strain had defects in ammonia 
assimilation, and had decreased glycerol production and increased ethanol production. The correspond-
ing transcriptome data was later analyzed based on differential statistical analysis, however the analysis 
of a small subset of data that cover only genes controlling cofactor-associated enzymes, not the genome-
wide analysis, revealed results which can be biologically linked to the source of perturbation14. Later, 
reporter metabolite analysis of the same data enabled a noticeably better deduction of the mechanism of 
the genetic perturbation7. They have identified few metabolites involved in the pentose phosphate path-
way as reporters, which is reasonable since this pathway is a source of NADPH. This showed the power 
of the approaches which take into account network connectivity and do not make a priori selection on 
the genes based on their significance.

Here, I analyze the same dataset by the reporter pathway approach. Reporter pathways were calcu-
lated based on the two alternative approaches, RPAr and RPAm, and also by PADOG. In addition to the 
NADPH imbalance, the deletion also results in an NADH imbalance in the cell since the deleted reaction 
is replaced by an NADH-dependent route by the cell. Therefore, pathways linked to NADPH and NADH 
are expected to be perturbed. The RPAm results revealed 35 significant pathways affected from the per-
turbation (Table 1). Among those are mainly pentose phosphate pathway, pathways of branched-chain 
amino acids (leucine, isoleucine and valine), glycolysis/gluconeogenesis, TCA cycle and NADPH/NADH 
interconversion pathways, all directly related to the source of perturbation. The deletion of GDH1 gene 
forces the NADH-dependent route to be active, leading to the changes in all these NADH or NADPH 
dependent pathways. A study on the metabolome analysis of a similar strain with GDH1 deletion and 
GDH2 overexpression reports statistically significant changes on the branched chain amino acids valine, 
leucine and isoleucine, as well as on lysine15. Several related pathways were predicted to be significantly 
dysregulated in the RPAm analysis. RPAm could identify a significant change in the direct source of per-
turbation, 2-ketoglutarate dehydrogenase complex, successfully. RPAr, on the other hand, could not cap-
ture the significant change in this pathway. Moreover, glycolytic pathway, lysine biosynthesis and other 
pathways which are linked to the perturbation were not identified in the RPAr analysis. In a study report-
ing a mutant S. cerevisiae strain with enhanced NADPH demand, the change in glycerol production was 
explained by a change in folate cycle16. RPAm reports significant changes in folate cycle related pathways 
in parallel to this hypothesis, which could not be attained by RPAr. Pentose phosphate pathway, for exam-
ple, was ranked as top fourth pathway in RPAm analysis whereas it was the 13th most significant pathway 
in RPAr analysis. Besides, non-oxidative pentose phosphate pathway was only identified by RPAm.

PADOG results were fairly stringent, leading to only few significant pathways: TCA cycle and leucine 
biosynthesis. The pathways pentose phosphate pathway and 2-ketoglutarate dehydrogenase complex were 
identified among the top five affected pathways, albeit with a p-value of 0.04. As mentioned in the meth-
ods section, for all calculations, the most significant gene was first mapped to the corresponding reaction 
if the reaction is associated with multiple genes. PADOG calculations were also repeated by using all 
genes associated with a pathway without making this initial mapping. Interestingly, assigned significance 
levels for TCA cycle and pentose phosphate pathways were 0.11 and 0.32 this time, respectively.

The results show the power of metabolite-centered reporter pathway analysis since the approach led 
to the identification of a number of significantly affected pathways all relevant to the genetic perturba-
tion, which was hardly identified in the initial analysis of the dataset14, and revealed to some extent in 
the original paper introducing the reporter metabolite analysis7. Reporter metabolite analysis identifies 
metabolites around which most significant transcriptional changes occur. RPAm, on the other hand, 
relying upon the strength of reporter metabolite analysis, takes it into a new level since it is easier to 
interpret the scores of pathway activity information than metabolite scores.

Reporter Pathways for an Environmental Perturbation. A commonly studied environmental 
perturbation in yeast S. cerevisiae is based on the availability of oxygen. Aerobic and anaerobic cultures 
have been analyzed in transcriptome level to enlighten underlying mechanisms17. RPAm and RPAr anal-
yses both led to the identification of aerobic respiration (electron transport chain), one of the major 
related pathways directly related to the source of perturbation (Table 2). A major distinctive characteris-
tics of this environmental perturbation is the activation of electron transport chain in aerobic conditions. 
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Another commonly identified pathway, glycolysis, is in line with the findings that glycolytic fluxes were 
several folds higher18 and the concentrations of major glycolytic metabolites changed in anaerobic con-
dition19. There is also an increase reported in the mRNA levels of gluconeogenesis specific genes, FBP1 
and PCK1 in aerobiosis19, in accordance with the detection of this pathway as reporter by both RPAm 
and RPAr.

The increase in glycolytic flux necessitates a decrease in the pentose phosphate pathway flux since they 
are competing branches in the metabolic network. This was reported at flux level20, at proteome level21, 
and also at mRNA level19,22. The metabolites of the pathway also exhibited changes between aerobic and 
anaerobic conditions19. As obvious, the activity of TCA cycle is minimal in anaerobic chemostat cultures 
since the flux is directed towards mostly ethanol whereas a fully active TCA cycle is observed in aerobic 
chemostat cultures since there is no byproduct formation. The pathway also showed alterations in the 

Pathway

Number of 
metabolite 
neighbors

p-value 
(RPAm)

Number 
of reaction 
neighbors

p-value 
(RPAr)

superpathway of leucine, valine, and isoleucine biosynthesis 24 3.44E-06 6 1.75E-02

superpathway NAD/NADP - NADH/NADPH interconversion 19 8.36E-06 5 4.62E-03

leucine biosynthesis 12 9.95E-06 3 8.27E-03

pentose phosphate pathway 14 2.98E-05 6 4.36E-02

glyoxylate cycle 13 3.23E-05 5 3.67E-02

TCA cycle, aerobic respiration 23 4.70E-05 9 8.84E-03

NAD/NADP-NADH/NADPH cytosolic interconversion 15 9.41E-05 4 7.27E-03

threonine degradation 9 2.08E-04 3 2.04E-02

dolichyl-diphosphooligosaccharide biosynthesis 23 3.08E-04 11 0.07

gluconeogenesis 21 5.11E-04 11 0.11

citrulline biosynthesis 23 6.11E-04 7 0.44

valine degradation 10 6.20E-04 3 4.15E-02

superpathway of heme biosynthesis 18 8.31E-04 8 0.11

chitin biosynthesis 33 8.82E-04 14 1.91E-02

isoleucine degradation II 10 1.06E-03 3 4.15E-02

isoleucine degradation 10 1.06E-03 3 4.15E-02

pentose phosphate pathway (non-oxidative branch) 7 1.39E-03 4 0.15

tetrapyrrole biosynthesis II 11 1.47E-03 4 0.24

tetrapyrrole biosynthesis 11 1.47E-03 4 0.24

isoleucine biosynthesis 13 1.52E-03 4 0.20

glycolysis III (glucokinase) 18 1.79E-03 10 0.10

superpathway of serine and glycine biosynthesis I 14 2.00E-03 4 0.33

glycolysis 17 2.47E-03 9 0.16

2-ketoglutarate dehydrogenase complex 10 2.48E-03 3 0.13

homocysteine and cysteine interconversion 8 2.58E-03 3 0.16

folate transformations 20 2.65E-03 7 0.13

leucine degradation III 10 3.73E-03 3 0.09

leucine degradation 10 3.73E-03 3 0.09

NAD/NADP-NADH/NADPH mitochondrial interconversion 12 4.01E-03 3 1.75E-02

serine biosynthesis from 3-phosphoglycerate 11 5.15E-03 3 0.47

octanoyl-ACP biosynthesis (mitochondria) 20 5.31E-03 6 0.39

superpathway of allantoin degradation in yeast 13 5.36E-03 4 0.10

valine biosynthesis 12 5.53E-03 4 0.20

lysine biosynthesis 22 7.47E-03 6 0.34

folate interconversions 22 7.58E-03 8 0.23

Table 1.  Significantly perturbed pathways for GDH1 deletion in S. cerevisiae. Pathways with 
RMAm p-value lower than 0.01 are listed. RPAr p-values greater than 0.05 are given in bold for a better 
demonstration of pathways not captured by RPAr.



www.nature.com/scientificreports/

4Scientific RepoRts | 5:14563 | DOi: 10.1038/srep14563

metabolome level19. The dysregulation of TCA cycle and pentose phosphate pathway in response to 
oxygen availability was only captured by RPAm (Table 2).

Several fatty-acid degradation pathways appear in Table  2, including heptadecenoyl-CoA and 
octadecadienoyl-CoA degradation and oleate oxidation. Fatty acid oxidation is known to be downregu-
lated at anaerobiosis22. On the other hand, in anaerobic conditions, the yeast needs to be supplemented 
by oleate and sterols since the synthesis of these biomolecules are oxygen-dependent23,24. Therefore an 
alteration is expected in the related pathways from aerobiosis to anaerobiosis, explaining the identifi-
cation of oleate oxidation and zymmosterol biosynthesis as reporter pathways (Table 2). In addition to 
sterol and fatty acid biosynthesis, heme biosynthesis pathway is also oxygen dependent25,26. The presence 
of heme activates the transcription factor Hap1p (heme activated protein) which is responsible for the 
expression of a set of genes involved in respiration25,27. This mechanism was pointed out by both RPAm 
and RPAr since heme biosynthesis was in the list. Another identified pathway, known also as kynurenine 
pathway, is the degradation of tryptophan by the use of oxygen to synthesize the nicotinic acid moiety 
NAD+ . Since the synthesis is oxygen-dependent, the yeast cells are nicotinate auxotroph in anaerobic 
conditions. Therefore, nicotinate must be supplied to the anaerobic growth media28. This behavior is 
captured by RPAm by reporting a change associated with the upper part of kynurenine pathway till 
2-amino-3-carboxymuconate semialdehyde. PADOG identified three pathways for the cut-off level of 
0.01, all belonging to fatty acid degradation. Heme biosynthesis was captured at a lower significance level 
(0.03). Other related pathways such as glycolysis, respiration and TCA cycle were predicted to be not 
affected by PADOG from the oxygen availability.

Reporter Pathways for a Disease Perturbation. Finally the two alternative approaches were 
applied to Alzheimer’s disease dataset29. The metabolite-centric reporter pathway analysis of this dataset 

Pathway

Number of 
metabolite 
neighbors

p-value 
(RPAm)

Number 
of reaction 
neighbors

p-value 
(RPAr)

10-trans-heptadecenoyl-CoA degradation (reductase-dependent) 19 6.02E-08 5 1.06E-03

10-cis-heptadecenoyl-CoA degradation 19 9.89E-08 5 1.06E-03

9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dep.) 18 2.97E-07 4 2.09E-03

aerobic respiration (cytochrome c) 13 1.69E-05 4 8.71E-03

aerobic respiration (linear view) 13 1.69E-05 4 8.71E-03

fatty acid oxidation (non-cyclic) 18 5.23E-05 5 6.59E-04

fatty acid beta-oxidation (peroxisome) 16 1.31E-04 4 5.03E-03

tryptophan degradation VIII (to tryptophol) 10 1.96E-04 3 2.56E-03

gluconeogenesis 21 2.38E-04 11 2.71E-03

glycolysis III (glucokinase) 18 3.47E-04 10 3.83E-03

glycolysis 17 4.39E-04 9 8.73E-03

glyoxylate cycle 13 6.54E-04 5 7.01E-03

sphingolipid biosynthesis 24 8.04E-04 8 2.60E-02

ethylene biosynthesis 12 1.10E-03 3 4.79E-02

oleate beta-oxidation (reductase-dependent) 7 1.16E-03 3 1.69E-02

superpathway phosphatidate biosynthesis (yeast) 12 2.04E-03 4 0.19

superpathway of leucine, valine, and isoleucine biosynthesis 24 2.40E-03 6 0.12

superpathway NAD/NADP - NADH/NADPH interconversion 19 3.17E-03 6 0.08

zymosterol biosynthesis 22 3.89E-03 5 0.07

phenylalanine degradation 12 4.00E-03 4 3.52E-03

heme biosynthesis 11 4.13E-03 4 1.59E-03

pentose phosphate pathway 14 5.25E-03 6 0.38

TCA cycle, aerobic respiration 23 5.38E-03 9 0.07

chitin degradation to ethanol 20 6.78E-03 6 8.63E-03

NAD/NADP-NADH/NADPH cytosolic interconversion 15 7.98E-03 4 0.23

tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde 13 8.19E-03 5 1.25E-02

Table 2.  Significantly perturbed pathways for aerobic-anaerobic change in S. cerevisiae. Pathways with 
RMAm p-value lower than 0.01 are listed. RPAr p-values greater than 0.05 are given in bold for a better 
demonstration of pathways not captured by RPAr.
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was already reported before30 based on iMS570 brain metabolic model and the related manual pathway 
assignments, and it revealed a number of disease-related pathways which were verified from the liter-
ature data. Here, I analyze the dataset for BioCyc-based human metabolic network and with also the 
reaction-centric reporter pathway analysis to allow a comparison (Table 3).

Results for RPAm include a number of lipid related pathways: triacylglycerol, CDB-diacylglycerol, 
phosphatidylcholine, 3-phosphoinositide, sphingosine and myo-inositol metabolisms. Significantly less 
phosphoinositides and significantly elevated myo-inositol levels were reported in Alzheimer’s disease31,32. 
TCA cycle is a reporter pathway based on RPAm, but RPAr fails to capture the perturbation of this 
pathway in Alzheimer’s disease. It was reported that a number of mitochondrial enzymes that function 
in TCA cycle exhibits changes during the disease33–35. Similarly, the perturbation in melatonin degrada-
tion pathway is only successfully identified by RPAm. It is known that melatonin levels are reduced in 
Alzheimer’s disease patients, and melatonin can be used as a biomarker for the early stages of the dis-
ease36,37. Mevalonate pathway is the precursor of cholesterol biosynthesis, and cholesterol metabolism is 
known to be affected in Alzheimer’s disease38. The pathway is only identified by RPAm analysis. Another 
pathway identified by RPAm, heparan sulphate biosynthesis, is in agreement with the literature since hep-
aran sulphate proteoglycans are known to be linked to the pathogenesis of the disease39–41. Biosynthesis 
of retinol, a form of Vitamin A, was identified as a reporter pathway by RPAm, in accordance with the role 
of retinoids in late onset alzheimer’s disease42. The synthesis of N-acetylneuraminate, the most common 
sialic acid found in mammalian cells, is predicted to be affected during the disease (Table 3). Sialic acids 
are involved in the structure of glycosphingolipids, forming gangliosides. Gangliosides are known to be 
directly involved in Alzheimer’s disease contributing to the pathological conditions observed during the 
disease43,44. Sialic acids are also involved in the structure of O-glycans45, a related pathway of which was 
identified in the reporter list.

In general, RPAr gives only two pathways with p-value lower than 0.01 whereas it is 20 pathways for 
RPAm. PADOG, on the other hand, did not give any significantly perturbed pathway for the selected 
significance cut-off of 0.01. However, it identified glutathione redox reactions and reactive oxygen species 
degradation in the top five significant pathways (p-values of 0.02 and 0.03 respectively). These pathways 
did not appear in the reporter pathway analyses. It is known that reactive oxygen species are indicative 
of oxidative stress in the cell, and neurodegenerative diseases are associated with oxidative stress46,47. The 

Pathway

Number of 
metabolite 
neighbors

p-value 
(RPAm)

Number 
of reaction 
neighbors

p-value 
(RPAr)

triacylglycerol biosynthesis 10 1.58E-06 4 5.10E-03

terminal O-glycans residues modification 19 1.97E-05 7 2.38E-02

pyrimidine deoxyribonucleotides de novo biosynthesis 19 7.20E-05 5 0.06

CDP-diacylglycerol biosynthesis 12 8.87E-05 4 0.09

phosphatidylcholine biosynthesis 11 1.59E-04 3 0.19

D-myo-inositol (1,4,5)-trisphosphate biosynthesis 12 1.79E-04 4 4.38E-02

pyrimidine deoxyribonucleotides biosynthesis from CTP 17 2.51E-04 5 0.06

chondroitin sulfate biosynthesis (late stages) 12 4.66E-04 4 6.82E-03

retinol biosynthesis 15 2.00E-03 6 0.08

3-phosphoinositide biosynthesis 15 2.15E-03 7 2.74E-02

phospholipases 11 2.17E-03 4 0.15

gluconeogenesis 29 2.78E-03 12 0.17

TCA cycle 31 3.53E-03 8 0.13

CMP-N-acetylneuraminate biosynthesis I (eukaryotes) 16 5.16E-03 4 0.17

melatonin degradation I 15 6.81E-03 3 0.23

sphingosine and sphingosine-1-phosphate metabolism 9 6.99E-03 3 3.74E-02

mevalonate pathway 17 7.20E-03 7 0.26

4-hydroxyproline degradation 14 9.04E-03 3 0.05

D-myo-inositol-5-phosphate metabolism 8 9.35E-03 3 0.36

heparan sulfate biosynthesis (late stages) 22 9.54E-03 9 0.10

Table 3.  Significantly perturbed pathways for Alzheimer’s disease. Pathways with RMAm p-value lower 
than 0.01 are listed. RPAr p-values greater than 0.05 are given in bold for a better demonstration of pathways 
not captured by RPAr.
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success of PADOG to capture these pathways, albeit at a lower significance level, could be attributed to 
its moderated t-statistics based significance algorithm.

Analysis of Up/Down Pathway Regulation. In the reporter pathway analysis, the up/down regu-
lation of the associated gene transcripts are not distinguished. I have modified RPAm analysis such that 
significantly upregulated and downregulated pathways are also identified. Such an analysis can be com-
bined with the identified significant pathways to reveal the capacity of RPAm to predict the directionality 
of regulation. Due to the nature of the algorithm, in the up (/down) regulation analysis only up (/down) 
regulated genes linked to a metabolite are used to calculate a reporter metabolite score48. Since this leads 
to an information loss in the network connectivity, the results of such analysis must always be comple-
mented with the results from the original analysis, as cautioned in an earlier study48.

RPAm results for only up-regulated genes and for only down-regulated genes reveal that a high major-
ity of the identified pathways for the genetic perturbation (Table 1) are significantly down-regulated. This 
is in line with the observation reported by the authors who generated the transcriptome data. They state 
that genes linked to NADPH-dependent reactions are commonly downregulated in the deletion strain14. 
For the environmental perturbation, the analysis identifies pathways for heme biosynthesis, glycolysis 
and zymosterol biosynthesis as upregulated in anaerobic conditions. High glycolytic pathway fluxes were 
reported in anaerobic conditions18. On the other hand, since zymosterol is used as a supplement in 
anaerobic conditions, no intracellular biosynthesis would be expected in these conditions. Such a contra-
diction is also available for the directionality of heme biosynthesis. The analysis identifies aerobic respi-
ration pathways as downregulated in anaerobic condition as expected. Fatty acid oxidation pathway and 
the degradation of heptadecenoyl-CoA and oxtadecadienoyl-CoA are all predicted to be downregulated 
as reported in literature22. For the Alzheimer’s disease, the verification of the directionality predictions 
for the pathways is more challenging due to the molecular complexity of the perturbation. TCA Cycle 
was predicted to be down-regulated in the directionality analysis. However, some of the enzymes of the 
cycle were reported to be significantly increased in the disease whereas some others decreased while the 
rest showed no change. Melatonin degradation pathway was predicted to be up-regulated, in agreement 
with the reduced melatonin levels in the disease36. On the other hand, the calculated direction for retinol 
biosynthesis is upregulation whereas it is known that retinol levels diminish in Alzheimer’s disease42. In 
summary, the directionality-incorporated version of RPAm can correctly predict some of the pathway 
regulations whereas contradictory results with the literature data were also obtained.

Conclusions
In summary, a new metabolite-centric reporter pathway analysis was suggested as alternative to the 
reaction-centric approach on which a number of methods appeared recently in the literature. The power 
of metabolite-centric approach lies on the fact that all reactions consuming or producing the metabo-
lites of a pathway are considered in the calculation of the pathway activity although usually such reac-
tions are catalogued as members of other pathways, and not accounted for, in the classical approach. 
The direct effect of such reactions on the pathway activity is obvious although this has been mainly 
neglected in the pathway activity calculations. The power of metabolite-centric approach was demon-
strated on three different types of perturbation; a genetic perturbation in the yeast S. cerevisiae due to 
the deletion of GDH1 gene encoding NADPH-dependent glutamate synthesis, an environmental pertur-
bation in the yeast due to the availability of oxygen, and a disease-based perturbation due to Alzheimer’s 
disease. The reaction-centered analysis leads to fewer significant pathways in general compared to the 
metabolite-centered analysis, presenting the ability to identify the network-wide effect of perturbations 
of the latter. Many pathways, which were captured by RPAm and known to be directly related to the 
phenotype of the discussed perturbations could not be identified by RPAr. Considering the reported 
power of approaches which are based on network connectivity, the success of metabolite-centric pathway 
identification lies on the fact that it brings the consideration of the connectivity by the reaction-centric 
approaches to a new level.

There are, on the other hand, a few issues to be considered for the metabolite-centric scoring approach. 
The tendency of the approach to report noticeably more significant pathways compared to RPAr may lead 
to the inclusion of pathways not specific for the studied perturbation. The risk of non-specific pathways 
can be compensated by employing a lower cut-of for the RPAm results (eg. 0.005 rather than 0.01). 
A more stringent cut-off of 0.005 can still capture pathways which cannot be captured by RPAr for a 
significance level of 0.01. This includes myo-inositol, retinol and TCA cycle pathways for Alzheimer’s 
disease and pentose-phosphate, 2-ketoglutarate dehydrogenase complex and glycolysis pathways for the 
GDH1-based genetic perturbation. One should note that RPAm and RPAr results have different rankings 
for different pathways. That is, what RPAm does is more than merely decreasing the cut-off. For example, 
mevalonate pathway, ranked as 17th most significant pathway for Alzheimer’s disease based on RPAm, 
ranks as 41th pathway for RPAr. One reason behind the change in rankings in addition to the inclusion 
of inter-pathway reactions is the implicit assignment of an increased weight on branch points by RPAm. 
The score of a gene is accounted multiple times in the metabolite-centered scoring especially if the 
metabolites of the pathway are on branch points. Although this may seem a disadvantage of the approach 
at first sight, the increased weight is in agreement with the fact that the branch points act as important 
regulatory spots in metabolism49,50, and RPAm better reflects this phenomenon.
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Methods
Metabolic Networks and Transcriptome Data. Metabolic networks for human and the yeast 
Saccharomyces cerevisiae were downloaded from BioCyc database10 in January 2015. Human metabolic 
network included 2237 metabolites and 2036 unique reactions controlled by 2521 genes while the yeast 
metabolic network covered 861 metabolites and 851 unique reactions controlled by 693 genes. The down-
loaded data also include the corresponding pathway information for each reaction. The pathways with at 
least three associated reactions were reported in the results. In total, there are 133 pathways for human, 
and 158 pathways for the yeast meeting this criteria. The networks were downloaded using SmartTables 
functionality of the BioCyc website, and parsed in MATLAB 2013a for further analysis.

Three different transcriptomic datasets were analyzed: the genetic perturbation in the yeast via the 
deletion of NADPH-dependent GDH1 gene grown in anaerobic chemostat cultures14, the environmental 
perturbation from aerobic to anaerobic condition in glucose-grown chemostat cultures of the yeast17, 
and the disease perturbation in human brain due to Alzheimer’s disease29. The corresponding datasets 
were downloaded from Gene Expression Omnibus (GSE26927, GSE4807) or obtained from the authors.

Reporter Pathway Analysis. Reporter pathway analyses were performed using the online BIOMET 
Toolbox server51. Specifically, the Reporter Features tool under the online tools were used. The three input 
files, p-value data file, interaction network file, and network nodes-data association file, were created in 
MATLAB in the requested format for each specific simulation. In the metabolite-centric reporter path-
way analysis (RPAm), a metabolite-score must be computed first. This scoring method, termed reporter 
metabolite analysis, was used in a number of research covering microorganisms7,52 and health problems 
such as liver diseases, obesity, autism53–55. Different versions of the approach also appeared48,56. For the 
reporter metabolite analysis, the transriptome-data based p-values were calculated by using two-sample 
t-test via MATLAB’s ttest2 function. The metabolic networks downloaded from BioCyc include the infor-
mation on reaction-gene association. In the analyses, the genes are linked to the corresponding con-
trolled reactions at first as follows: when a reaction is associated with multiple genes, the one with the 
minimum p-value was considered8. Then, each metabolite in the metabolic network of interest is scored 
via BIOMET Toolbox server based on the neighbor genes (reactions).

∑=
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1metabolite

i

k

i
1

Here, Zi is the Z-score of gene i obtained from the corresponding p-value by using the inverse normal 
cumulative distribution, and k is the number of neighbor genes to the metabolite. The averaging of the 
mRNA-level changes in the form of Z-scores shows the average effect of perturbation on metabolites7,8. 
The calculated Z-scores are corrected by the toolbox for the background distribution by using the mean 
(μk) and standard deviation (σk) of the aggregated Z scores of many sets of randomly selected k genes 
from the metabolic network.

μ

σ
=

−

( )
Z

Z
2metabolite

corrected metabolite k

k

Metabolites with significant Z-scores are called reporter metabolites, hence the analysis is termed 
reporter metabolite analysis7. Afterwards, each pathway is scored based on the involved metabolites, 
which were linked to the differential transcriptome data via the reporter metabolite analysis (Fig. 1). The 
metabolite-centric scoring of pathways (RPAm) follows a similar equation to eqn. (1).

∑=
( )=

Z
n

Z1
3pathway

m

metabolite

n

metabolite
1

Here, n is the number of metabolites associated with the pathway. The output is a set of significantly 
affected metabolic pathways. The alternative reaction-centric reporter pathway analysis (RPAr) is directly 
based on the involved reactions in a pathway, which are linked to transcriptome data via the genes con-
trolling the reactions. Pathways are scored via the p-values (Z-scores) of the genes associated with each 
involved reaction in this case, following Eqn. (4) and (5) (Fig. 1).

= ( )Z Z 4reaction i

∑=
( )=

Z
p

Z1
5pathway

r

reaction

p

reaction
1

Here, Zi is the score of gene i, and p is the number of reactions associated with the pathway. Note that 
both Zpathway

r  and Zpathway
m  scores were corrected for the background distribution as shown in Eqn. (2). A 

significance level of 0.01 was used as cut-off in the analysis of the results to identify reporter pathways. 
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Benjamini-Hochberg corrected p-values for a cut-off of 0.05 roughly corresponds to the same significant 
pathways for RPAm. The metabolite-centric approach allows the elucidation of the global effect of the 
perturbation on cellular parts since this scoring considers the fact that a metabolite is consumed or 
produced by a number of reactions which are traditionally listed under different pathways. Such an 
analysis bridges different cellular processes and also reflects cross-talks between pathways.

Pathway Analysis with Down-weighting of Overlapping Genes (PADOG).  PADOG57 was used 
to compare the results of the RPAm and RPAr analyses. PADOG was chosen since it was shown to be 
one of the best performers among more than 15 alternative gene-set based algorithms4. The key point 
in PADOG is it down-weights the weight of a gene in a pathway if it is involved in multiple pathways, 
prioritizing the effect of pathway-specific genes in the scoring. Pathway scores are calculated by first 
calculating Bayesian-model based moderated t-scores for the genes58, and then computing the average 
of weighted sum of the absolute moderated t-scores of the genes in a pathway. A permutation-based test 
is used afterwards to assign p-values to the pathways. The related calculations were performed in the R 
environment, by using the PADOG package.
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