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Abstract

Introduction

An alarmingly high proportion of the Australian adult population does not meet national

physical activity guidelines (57%). This is concerning because physical inactivity is a risk

factor for several chronic diseases. In recent years, an increasing emphasis has been

placed on the potential for transport and urban planning to contribute to increased physical

activity via greater uptake of active transport (walking, cycling and public transport). In this

study, we aimed to estimate the potential health gains and savings in health care costs of an

Australian city achieving its stated travel targets for the use of active transport.

Methods

Additional active transport time was estimated for the hypothetical scenario of Brisbane (1.1

million population 2013) in Australia achieving specified travel targets. A multi-state life table

model was used to estimate the number of health-adjusted life years, life-years, changes in

the burden of diseases and injuries, and the health care costs associated with changes in

physical activity, fine particle (<2.5 μm; PM2.5) exposure, and road trauma attributable to a

shift from motorised travel to active transport. Sensitivity analyses were conducted to test

alternative modelling assumptions.

Results

Over the life course of the Brisbane adult population in 2013 (860,000 persons), 33,000

health-adjusted life years could be gained if the travel targets were achieved by 2026. This

was mainly due to lower risks of physical inactivity-related diseases, with life course reduc-

tions in prevalence and mortality risk in the range of 1.5%-6.0%. Prevalence and mortality of

respiratory diseases increased slightly (�0.27%) due to increased exposure of larger
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numbers of cyclists and pedestrians to fine particles. The burden of road trauma increased

by 30% for mortality and 7% for years lived with disability. We calculated substantial net sav-

ings ($AU183 million, 2013 values) in health care costs.

Conclusion

In cities, such as Brisbane, where over 80% of trips are made by private cars, shifts towards

walking, cycling and public transport would cause substantial net health benefits and sav-

ings in health care costs. However, for such shifts to occur, investments are needed to

ensure safe and convenient travel.

Introduction

The built environment, largely determined by policies in the planning and transport sectors,

contributes greatly to health risk factors including physical inactivity, traffic-related air pollu-

tion and road trauma globally [1, 2].

An emerging body of literature is examining the impacts of built environment initiatives on

health and economic outcomes. Two recent reviews of economic evaluation and health impact

assessments of active transport interventions found that the greatest individual health gains of

active travel policies are achieved by increasing physical activity (PA) levels [3, 4]. For those

who undertake active travel, trade-offs can arise in terms of higher exposure to environmental

hazards, including pollution (air and noise), heat and road injuries [4, 5], but the evidence sug-

gests that PA benefits outweigh these other risks [4, 6, 7].

In Australia, 57% of adults do not meet national PA guidelines [8], and inactivity has been

estimated to result in the annual loss of nearly 124,000 disability-adjusted life years in 2015

(DALYs) [9]. With nearly 80% of adults’ travel for work or education by private cars [10],

encouraging active travel is a feasible strategy for improving population health. Government

and non-government agencies are working towards a shift from private cars towards active

transport [11–15]. For Brisbane, the capital of the State of Queensland and Australia’s third

most populous city, strategic planning at the city and state level aims to achieve a mode share

of 15% for walking, 5% for cycling and 14% for public transport [11, 13]. Quantifying health

outcomes of Brisbane’s transport strategy could support the case for the required investment.

In this study, we quantified health outcomes and health care costs of replacing private car

trips with active transport in Brisbane. A shift from car travel to active transport was based on

the transport targets for South East Queensland [11] and Brisbane [13] We projected the

potential health benefits and health care cost savings of a linear annual increase in active travel

at the expense of private car travel from 2013 to fully achieving the targets in 2026.

Methods

Study area

The Brisbane Local Government Area is located in South East Queensland, Australia. Brisbane

consists of 188 mainland suburbs as well as additional islands and localities in Moreton Bay

[16]. A total of 1,131,191 people lived in Brisbane in 2013, with over 80% of the population

aged over 15 years (median 34.5 years) [17, 18].

Health outcomes of achieving travel targets

PLOS ONE | https://doi.org/10.1371/journal.pone.0184799 October 11, 2017 2 / 21

Research Centre of Excellence. MT and JW

gratefully acknowledged funding from the British

Heart Foundation, Cancer Research UK, Economic

and Social Research Council, Medical Research

Council, the National Institute for Health Research,

and the Wellcome Trust, under the auspices of the

UK Clinical Research Collaboration. The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0184799


Survey data

We used daily travel information collected from the South East Queensland Household Travel

survey [19]. Data were collected from April to September 2009 [20]. Data from the 2012 ver-

sion of the survey were available, but were not used because the survey was incomplete [21].

For the survey, the sampling unit was at the household level, and data were collected on all

individuals (�5 years of age) living in selected households. Information about all trips taken in

a one week period was self-reported via paper-based questionnaire. Households were selected

using a three-stage, variable proportion, clustered sampling of household addresses within

Census Collection Districts (CCDs). CCDs are the second smallest geographical collection

unit for census and population data collection and processing [22]. Sampling regions were

divided into those participating and not participating in the Travel Smart program, a behav-

iour change program that aimed to reduce private car travel by increasing active transport and

share rides and that was being implemented at the time of data collection [11]. The sampling

process consisted of randomly selecting CCDs in each sampling region, followed by a random

selection of 56 dwellings within each CCD, with 42 of them kept in the primary sample and 14

as potential replacements [20]. Field checks took place for the identification of sample loss and

to ensure that at least 42 dwellings per CCD would be included.

In total 4,240 households in Brisbane responded to the survey, representing a response rate

of 52%, 11,191 persons and 32,536 trips [20]. As the sample of selected households may not

have been representative of Brisbane households, population weights were applied to the trip

and person level [20]. Trips that were made by persons aged<17 years; were taken on week-

ends; or did not include walking, cycling, public transport or private car were excluded, leaving

19,385 trips available for analysis. Analyses were conducted using Stata v.13 (StataCorp, College
Station, TX). A trip was defined as a one-way movement from one place to another with a

single purpose (transport or recreational). One trip could include multiple modes [20]. Two

variables were provided in the data set to represent the main mode for a multi-modal trip:

(1) longest-time mode; and (2) priority mode based on hierarchical order for public transport

[20]. The longest-time mode assigned the main mode for a multi-modes trip to the mode used

with the longest time. These variables were highly correlated (r = 0.99). We used the longest-

time mode variable given that no justification was given in the source document for the chosen

hierarchy.

Travel patterns

Of all weekday trips made by Brisbane adults in 2009, 24% were<2km, 24% 2-5km, 33% 6–16

km and 19%>17 km. Our estimates for trips <5 km are higher than those reported for Aus-

tralia as a whole (25% [10]). However, national census data refer to trips for work or full-time

study only, whereas we included all transport trips. Census data stated that for Brisbane, 24%

of trips for work commutes were < 5 km and 22% were 5–10 km [23]. Similarly, in our dataset

21% of work commute trips were <5 km and 23% were 5–10 km. Table 1 depicts the 2009

average number of weekday trips in total and by mode, by age and sex.

Travel targets

Brisbane aims for a travel mode share of 15% for walking and 5% for cycling [13]. Because no

targets were proposed for public transport, we applied the regional (South East Queensland)

target of a 14% share [11]. At the regional level, similar targets were proposed for walking and

cycling, with an overall share of 20% for active transport. We interpreted the targets to apply

only to adults, given that separate targets were proposed at the regional level for trips to school

(made by children) [11]. We assumed that the targets apply to weekday trips, given that this

Health outcomes of achieving travel targets
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was specified at the regional level [11]. We followed the South East Queensland report that

outlined the travel targets [11], and which recommended that trips <5 km can be made by

bicycle. The Queensland Government Department of Transport and Main Roads (TMR) strat-

egy suggests that <1.2 km is a walkable distance, whereas national active transport statements

suggest<2 km [24]. We transferred trips made by car of<2 km to walking and trips between

2–5 km to cycling. We assumed that trips of 5–16 km made by car can be replaced by public

transport. Our assumption of replaceable distances is aligned with past data on average dis-

tance travelled reported by mode of 1 km for walking, 4 km for cycling and 15 km for public

transport [25].

Shifts from car occupant (driver and passenger) to active transport trips per week reflected

the age and sex distributions of transport mode share at baseline. To estimate the distance of

walking and cycling trips that replaced car occupant trips, the mean kilometres travelled was

calculated for each of the three distance categories (<2; 2-<5 km; 5–16 km) separately for

each age and sex group (Table 2). These estimates were used to estimate the health impact of

increasing PA levels. To estimate the health impact of increasing PA levels by shifting car

occupant travel to public transport walking, the mean minutes of public transport walking

was calculated for each of the three distance categories separately for each age and sex group.

Decreases in car occupant kilometres travelled per year were used to estimate the health impact

of exposure to PM2.5 and road trauma.

Quantification of health outcomes and health care costs

Health outcomes and health care costs were estimated over the lifetime of the Brisbane adult

population with 2013 serving as the baseline year. Health outcomes were derived from changes

in average population PA, exposure to annual mean ambient fine particulate matter (PM2.5),

exposure to on-road PM2.5, and road trauma (injuries and fatalities). PM2.5 is a widely-used

proxy for exposure to air pollution during travel [4]. We used a mathematical model based on

the proportional multi-cohort multi-state life table Markov model (MSLT) developed for the

Assessing Cost-Effectiveness in Prevention project (ACE-prevention) [26–29].

We compared health outcomes and costs for a scenario in which age- and sex-specific travel

patterns persist from 2013 to 2026, with a scenario in which proposed travel targets would be

achieved by 2026. Outcomes and costs associated with the travel targets scenario were assumed

to be the result of a gradual increase in active travel. Outcomes were estimated by dividing sta-

tus-quo and scenario populations into 5-year age groups (20–24 to 95 plus) by sex and simulat-

ing each cohort in the MSLT until everyone dies or reaches the age of 100. Health outcomes

included: health-adjusted life years (HALYs), life years, prevalent cases, deaths and years lived

with disability (YLDs). HALYs are estimated as years of life lived adjusted for disease-related

quality of life. Health care costs of included diseases were calculated by dividing total cost of a

disease by the number of incident or prevalent cases for each 5-year age-sex group. For road

Table 1. Mode-specific mean (95% uncertainty interval (UI)) trips per weekday in 2009, by age and sex.

Age (years) and sex Car occupant Walk Bicycle Public Transport Total

17–49, male 2.07 (1.94 to 2.19) 0.22 (0.18 to 0.27) 0.063 (0.038 to 0.087) 0.28 (0.23 to 0.33) 2.71 (2.59 to 2.83)

17–49, female 2.80 (2.66 to 2.95) 0.33 (0.28 to 0.38) 0.018 (0.009 to 0.026) 0.29 (0.25 to 0.33) 3.46 (3.32 to 3.60)

50–74, male 2.51 (2.37 to 2.68) 0.25 (0.19 to 0.31) 0.031 (0.012 to 0.05) 0.13 (0.09 to 0.16) 2.96 (2.79 to 3.13)

50–74, female 2.38 (2.22 to 2.54) 0.27 (0.31 to 0.33) 0.004 (-0.002 to 0.010) 0.18 (0.14 to 0.23) 2.85 (2.70 to 3.02)

75 plus, male 1.81 (1.45 to 2.18) 0.14 (0.06 to 0.22) - 0.09 (0.015 to 0.16) 2.07 (1.72 to 2.42)

75 plus, female 1.17 (0.87–1.45) 0.13 (0.05–0.20) - 0.15 (0.06–0.24) 1.48 (1.18–1.77)

https://doi.org/10.1371/journal.pone.0184799.t001
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injuries we estimated the health care costs per year lived with disability. We present undis-

counted health outcomes [30] and used a 3% annual discount rate for health care costs [31].

We tested the sensitivity of our results to discounting health at 3% and health care costs at 5%

(Table N in S1 File). Ninety-five percent uncertainty intervals were determined for all outcome

measures by Monte Carlo simulation (2,000 iterations), using the Excel add-in tool Ersatz

(Epigear, Version 1.34) [32]. Fig 1 depicts the study’s analytical framework. Input parameters

and uncertainty distributions are presented in Table 3 and S1 File.

Physical activity. The ‘relative risk shift’ method for the calculation of population impact

fractions (PIF) [54] was used to estimate the incidence of physical inactivity-related diseases

due to changes in PA from baseline to the travel targets scenario. The calculation of the PIFs

required data for prevalence of PA and relative risks (RRs) for physical inactivity-related

diseases.

We derived age- and sex-specific baseline PA prevalence estimates. From national survey

data collected for PA surveillance [8], we computed mean minutes spent in the previous week

walking for transport, walking for recreation, doing moderate PA (excluding walking) and

doing vigorous PA. We also created a PA MET-minutes/week score by multiplying the min-

utes spent in each of these PA types by an assigned metabolic equivalent value (MET) from a

PA compendium [43] and summing them. Following Danaei et al. [38], these scores were used

Table 2. Mode share travel targets.

Baseline Travel targets Change in number of weekday trips (% mode)

9% walking 15% walking 291,834 (65%)

1% cycling 5% cycling 196,864 (390%)

8% public transport 14% public transport 291,834 (73%)

82% car occupants 66% car occupants -780,531 (-19%)

Baseline transport mode distribution by age and sex

17–49, male 17–49, female 50–74, male 50–74, female 75 +, male 75 +, female

Walking 26% 41% 14% 15% 1% 2%

Cycling 61% 20% 17% 2% 0% 0%

Public transport 37% 40% 8% 12% 1% 2%

Mean increase in weekday trips from baseline to the travel target scenario, by age and sexa

Persons 475,481 486,670 217,226 226,625 35,807 49,980

Walking 0.8 1.24 0.95 0.99 0.56 0.49

Cycling 1.27 0.4 0.77 0.10 0 0

Public transport 1.15 1.19 0.53 0.76 0.46 0.63

Baseline car trip length for each distance category, by age and sex

< 2km 1.27 1.27 1.17 1.18 1.19 1.19

2–5 km 3.37 3.32 3.34 3.31 3.18 3.04

5–16 km 9.47 8.91 9.57 9.44 8.74 7.31

Baseline mean minutes of walking to get to/from public transport, by age and sex

13.39 13.15 12.58 12.77 10.03 13.31

Decrease in car occupant km driven per year from baseline to the travel target scenario, by age and sexb

Walking 24,880,419 39,893,226 12,584,681 13,781,943 1,240,537 1,531,142

Cycling 105,524,358 33,231,580 29,150,158 3,732,041 - -

Public transport 269,397,592 267,323,368 57,491,462 84,207,133 7,424,688 11,975,262

a. Equals: Change in number of weekday trips*Baseline mode distribution by age and sex/Persons in age and sex group*5 (weekdays).
b. Equals: Travel target scenario mean increase in daily trips by age and sex * Baseline car trip length by distance category by age and sex*Persons in age

and sex group*260 (weekdays in a calendar year).

https://doi.org/10.1371/journal.pone.0184799.t002
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Fig 1. Analytical framework. Achieving the travel targets results in increased cycling, walking and use of public transport at the expense

of private car travel (thick solid lines), which leads to gains in HALYs, gained life years, reduced health care costs, prevented/increased

prevalent cases (diseases) and changes in death rates (thick lines at the bottom of the graph). Averted years lived with disability were

estimated for road trauma. The effect of PA and PM2.5 were modelled via their impact on incidence of diseases (thin lines) and road

trauma via its impacts on disability and mortality (captured by HALYs and YLDs) (interrupted thick lines). The effect of less private car use

was quantified as improvements in ambient PM2.5, which benefits the population as a whole (interrupted thin lines).

https://doi.org/10.1371/journal.pone.0184799.g001
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to categorise participants into highly active (�1,600 MET-minutes)/wk. and�1h/wk of vigor-

ous PA), recommended-level active (600 to<1,600 MET-minutes/wk and either�1 h of vig-

orous PA/wk or�2.5 h of moderate PA/wk), insufficiently active <600 MET-minutes/wk or

<2.5 h/wk of moderate PA) and inactive (0 MET-minutes/wk of moderate or vigorous PA).

Table 3. Proportional multi-state life table Markov model input parameters.

Input parameter Uncertainty/

Parametersa
Source

Baseline and travel target scenario

2013 mortality rates and population numbers N/A Australian Bureau of Statistics [33, 34]

Years live with disability (YLD) (all causes and road

trauma)

N/A Institute of Health Metrics and Evaluation [35]

Incidence and case fatality modelled diseasesb N/A DisMod II [32] from Global Burden of Disease (GBD) 2013 data [36] and

Australian Institute of Health and Welfare (AIHW) data [37] (see S1 File

‘Notes on DisMod II modelling’)

Disability weights modelled diseases N/A Prevalence and years lived with disability from GBD 2013 (see S1 File

‘Disability weights’)

Relative risk, PA Normal (Ln RR)c Danaei et al. [38]

Relative risks, ischaemic heart disease and ischaemic

stroke due to diabetes

Normal (Ln RR)c Asia Pacific Cohort Studies Collaboration [39]

Relative risk, PM2.5 Normal (Ln RR)c World Health Organization [40], Hamra et al. [41]

Mediating effect of diabetes in the causal pathway

between PA and ischemic heart disease and ischemic

stroke

Normal GBDd 2013 study (see ref [42] and page 711)

PA categories Dirichlet National Nutrition and Physical Activity Survey Basic Confidentialised Unit

Record File (CURF) [8]

PA categories derived from MET-minutes Lognormal National Nutrition and Physical Activity Survey Basic Confidentialised Unit

Record File (CURF) [8]

MET-minutes (walking = 3.5, cycling = 6.8, moderate

PA = 5, vigorous PA = 7.5)

N/A Ainsworth et al. [43] for walking and cycling; Australian Bureau of Statistics

[8] for walking, moderate and vigorous PA

Health care costs N/A AIHW [44]: All diseases except COPD [45] were indexed to 2013 using

AIHW-reported health sector indices [46, 47]. Denominators for calculating

per case costs (incidence, prevalence and years lived with disability) [48].

See Tables L and M in S1 File.

Discount rate for health care costs N/A Murray et al. [30] for health; Gold et al. [31] for health care costs

Travel targets scenario

Mode share distribution by age and sex Dirichlet South East Queensland Household Travel survey [19]

Mean distance travelled by car occupants per distance:

categories by age and sex

Lognormal South East Queensland Household Travel survey [19]

Total distance travelled by mode N/A South East Queensland Household Travel survey [19]

PM2.5 concentration N/A Queensland Goverment [49]

Source apportionment to motor vehicles PM2.5 N/A Friend et al. [50], Environmental Protection Agency [51]

Road trauma Gamma Queensland Government Department of Transport and Main Roads [52] for

crash data. Assumed standard deviation of 20% from the mean.

a. Uncertainty distributions around input parameters are presented in S1 File.
b. Breast cancer, colon cancer, tracheal, bronchus and lung cancer, type 2 diabetes, chronic obstructive pulmonary disease, ischemic heart disease and

ischemic stroke.
c. A modified version of the log of the relative risk function was used to avoid a skewed lognormal distribution [53].
d. Global Burden of Disease (GBD).

ABS: Australian Bureau of Statistics; AIHW: Australian Institute of Health and Wellbeing; IHME: Institute of Health Metrics; NNPA: National Nutrition and

Physical Activity survey; PA: physical activity; TMR: Department of Transport and Main Roads; WHO: World Health Organization.

https://doi.org/10.1371/journal.pone.0184799.t003
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The additional minutes walked, cycled and in public transport were summed to create an

expected additional minutes in active transport per week. To estimate the increase in minutes

walked, the expected increase in the number of walking trips per week was multiplied by the

expected reduction in km driven by car (Table 2) and divided by walking speed (Table E in S1

File). The additional minutes cycled per week was estimated in the same way. The additional

minutes per week spent in public transport walking, defined as walking to/from public trans-

port destinations, was estimated as the product of the expected additional public transport

trips in the travel targets scenario and the mean time spent walking per public transport trip at

baseline (Table 2). Last, the expected additional minutes in active transport were multiplied by

marginal MET-rates to derive the scenario mean energy expenditure by age and sex.

RRs were estimated for a four-tier dose-response relationship (inactive, low active, moder-

ately active and highly active) between PA and health outcomes, as done by Danaei et al.

(2009). For modelling the relationship, categorical RRs were converted into continuous func-

tions. Assuming non-linear associations between PA and health outcomes, we fitted log-linear

functions with a power transformation of mean energy expenditure per PA category (inactive,

low active, moderately active and highly active) serving as the independent variable and RRs

reported in the source data serving as the dependent variable (0.5 for type 2 diabetes, ischemic

heart diseases and breast cancer and 0.25 for ischemic stroke and colon cancer) [38]. Next, we

used the estimated parameters (intercept and slope) to estimate RRs for the baseline and travel

targets scenario per PA category. Those in the highly active group had a RR of 1.00 in the

source study, implying no additional benefit from extra PA [38]. Because type 2 diabetes is a

risk factor for cardiovascular disease, estimated RRs incorporated the increased risk of ische-

mic heart disease and ischemic stroke among those with type 2 diabetes. To avoid double

counting we reduced the PIFs for PA with ischemic heart disease (14%) and ischemic stroke

(8%) [42].

PM2.5. Health effects from PM2.5 were estimated at two levels: (1) health effects for the

population from a decrease in exposure attributable to a reduction in private car kilometres

travelled and (2) health effects for the individual from an increase in exposure attributable to

an increase in active travel kilometres travelled. We used information on the exposure-

response relationship for PM2.5 and health, as well as differential exposure to PM2.5 between

the baseline and travel targets scenario. We used RRs from a World Health Organization

meta-analysis study on the long-term health effects of exposure to PM2.5 on cardiovascular

and respiratory disease [40]. We applied the cardiovascular RR to ischemic heart disease and

ischemic stroke. We also incorporated lung cancer using the RR from a meta-analysis by

Hamra et al. [41]. We calculated RRs compared to baseline exposure [7] to modify incidence

rates of PM2.5 related diseases in the MSLT.

Our calculations required data on background PM2.5 concentrations for the baseline and

travel targets scenario. We calculated average background levels of PM2.5 for the Brisbane area

from hourly measurements collected between 2006 to 2014 at six regulatory monitoring sites

located across Brisbane, which all used standard reference methods to measure PM2.5 mass

concentrations (i.e. tapered element oscillating microbalances) [49]. We calculated the arith-

metic mean from all available data excluding sites with less than 75% of the measurements for

a given year. This was to avoid seasonal bias in the estimates. We used source apportionment

data specific to Brisbane to estimate the proportion of PM2.5 emissions attributable to motor

vehicles [50]. Source apportionment data were collected from two sites in Brisbane, one urban

and one suburban, with considerable variation in the proportion of PM2.5 attributable to

motor vehicles (7% and 30%). We took the average and compared our results to other mea-

surements at the national level, with our average of 18% comparing well with national esti-

mates of 17% (see Table 9 in ref [55]). A range of motor vehicles contribute to traffic
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emissions, including passenger vehicles, but source apportionment data for Brisbane were

only available for motor vehicles as a whole, rather than passenger vs. heavy vehicles. We used

data for Queensland to allocate the proportion of motor vehicle emissions to passenger cars

and buses (28% and 10%) [51]. We conducted a sensitivity analysis that assumed that passen-

ger vehicles emit 65% of the motor vehicle-related PM2.5 [56]. We also tested the sensitivity of

our results of using the two extreme source apportionment values.

Motor vehicle-related PM2.5 for the travel targets scenario was reduced in equal proportion

to the reduction in passenger car kilometres travelled per year. The decrease in passenger car

kilometres travelled was estimated using data from the household travel survey [19] as the total

distance replaced by active modes and public transport (Table 2). The distance travelled by bus

was increased proportionally to the increase in bus trips in the travel targets scenario.

To estimate the population-level effect we calculated the difference in exposure as the

difference between PM2.5 concentrations for the baseline and travel targets scenario. Changes

in individual exposure to PM2.5 were estimated by considering mode-specific concentrations

and respiratory ventilation rates. Mode-specific exposure compared to background exposure

and ventilation rates were those used in a recent study by Tainio et al. [7] (cycle = 2 and

walk = 1.1). Cycling can also take place in designated paths for pedestrian and bicyclist traffic.

In Brisbane it is permitted to cycle on sidewalks [57]. We tested the sensitivity of our results to

cycling having the same mode specific exposure to PM2.5 as walking. Weekly inhaled PM2.5

dose was estimated by multiplying the time during a week spent sleeping, in other activities

and in a passenger car (baseline) or walking/cycling/public transport for the travel targets sce-

nario [7]. It was assumed that while not in a passenger car or walking/cycling/public transport,

people are exposed to the background levels of PM2.5.

Road trauma. We used crash data collected by the police and available in the Road Crash

database, maintained by the Department of Transport and Main Roads, to assess road trauma

[52]. We summarised the number of fatalities and road injuries (includes hospitalisation and

medically treated casualties) by victim and striking mode. Our figures are for 2009, to match

available travel data. We estimated a baseline rate (R0) of fatalities and injuries per kilometres

travelled by victim and striking mode based on methods developed in past research [58]

(Equation F in S1 File). We estimated the number of fatalities and injuries under the travel tar-

gets scenario based on the baseline rate and the kilometres travelled per mode (Equation G in

S1 File). To reflect the declining risk of injuries with increasing traffic volume (commonly

referred as “safety-in-numbers effect”) [59], we took the square root of kilometres travelled by

victims and striking modes [60]. We tested the sensitivity of our results to the assumption of a

linear association between road casualties and traffic volume.

We incorporated the health impact of road fatalities in the MSLT by multiplying baseline

mode specific mortality rates (pedestrian, bicyclist, passenger car occupant and motorcyclists)

by a factor reflecting the change in fatalities in the travel targets scenario (road fatalities by

mode travel targets scenario/Road fatalities by mode baseline). The same approach was used

for injuries; however, the impact was evaluated on mode-specific years lived with disability.

S1 File (Section 2.3) provides further information on the calculations and details on the

data sources used for calculating the health effects of exposure to PA, PM2.5 and road trauma.

Table N in S1 File presents a summary of sensitivity scenarios.

Results

To achieve the travel targets, trips by car occupants need to decrease for all distance categories

except for trips >17 km by the same percentage points as increases in active transport modes

(Table 4).
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We assumed that achieving the travel targets would require an increase in weekly walking

and cycling across all age and sex categories. Table 5 depicts the change in weekly trips from

private car travel to active transport by age and sex. Table 6 presents the weekly increase in

minutes walked and cycled by age and sex. These estimates account for baseline travel patterns

by age and sex (Table 2).

Road fatalities and injuries per 100 million kilometres travelled would decrease for all vic-

tim modes affected by the travel targets scenario, except for car occupants, for whom the fatal-

ity and injury rates would be almost identical to those at baseline (Table 7). Assuming a linear

association between kilometres travelled and road trauma (that is, removing the ‘safety in

numbers’ effect) resulted in a less significant reduction in rates (sensitivity scenario).

Background PM2.5 would decrease marginally in the travel targets scenario, with variations

depending on the attribution of PM2.5 to motor vehicles and passenger cars (Table 8).

Table 4. Percentage of trips made by distance travelled and transport mode, for baseline and travel target scenario.

Mode <2km 2-5km 6-16km 17km+

Baseline Target Baseline Target Baseline Target Baseline Target

Car occupant 65% 40% 90% 73% 87% 69% 84% 84%

Walking 34% 59% 4% 4% 0% 0% 0% 0%

Bicycle 1% 1% 1% 18% 1% 1% 0% 0%

Public Transport 0% 0% 5% 5% 12% 30% 16% 16%

https://doi.org/10.1371/journal.pone.0184799.t004

Table 5. Mean trips per week (weekdays only) for baseline and travel targets scenario, by age and sex.

Car occupant Walking Bicycle Public Transport Sum

Age (years) and sex Baseline Target Baseline Target Baseline Target Baseline Target

17–49, male 10.34 7.13 1.12 1.91 0.31 1.58 1.40 2.55 13.17

17–49, female 14.01 11.19 1.64 2.88 0.09 0.48 1.44 2.62 17.18

50–74, male 12.57 10.31 1.23 2.19 0.16 0.93 0.63 1.16 14.59

50–74, female 11.89 10.05 1.33 2.32 0.02 0.12 0.91 1.67 14.15

75 plus, male 9.05 8.04 0.71 1.27 - - 0.45 0.90 10.21

75 plus, female 5.83 4.71 0.64 1.13 - - 0.76 1.39 7.23

https://doi.org/10.1371/journal.pone.0184799.t005

Table 6. Additional mean minutes per week of transport physical activity undertaken in the travel targets scenario compared to the baseline sce-

nario (statu-quo), by age and sex.

Age (years) and sex Additional mean minutes per week of physical activity

Walk for transport Bicycle for transport Public Transport (+ walk)a

17–49, male 13 16 16

17–49, female 21 4 16

50–74, male 15 10 7

50–74, female 16 2 10

75+, male 8 0 5

75+, female 8 0 8

a. Estimated as the additional public transport trips in the travel targets scenario multiplied by the mean minutes walking in a public transport trip estimated

from the household travel survey.

https://doi.org/10.1371/journal.pone.0184799.t006
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Health and health care cost outcomes

Over the life course of the Brisbane adult population in 2013 (860,000 persons), slightly over

32,000 HALYs and 28,000 life years could be gained if the proposed travel targets were

achieved by 2026 (Table 9). We estimated that significant savings ($AU312 million) in health

care costs could be accrued in the travel targets scenario. However, an increase in the number

of life years lived would translate into additional health care costs of $AU129 million. Most of

the health gains would result from improvements in population levels of PA, with exposure to

PM2.5 and road trauma having small negative impacts (Fig 2). The number of prevalent cases

decreased for all modelled diseases except for respiratory diseases (Fig 3 and Table 10). We

estimated a reduction in mortality from ischemic heart disease, colon cancer, breast cancer

and type 2 diabetes. The uncertainty interval for the reduction for ischemic stroke mortality

Table 7. Road trauma rates per 100 million kilometres travelled by transport mode.

Baseline Base casea Sensitivity scenariob

Fatalities Injuries Fatalities Injuries Fatalities Injuries

Pedestrian 1.43 125.59 1.06 90.67 1.44 119.95

Cyclist 2.24 165.04 1.46 106.21 2.18 156.48

Car occupant 0.09 23.67 0.10 24.37 0.09 23.12

Motorcyclist 3.91 153.38 3.84 149.23 3.77 145.28

a. Non-linear association kilometres travelled and road trauma.
b. Linear association kilometres travelled and road trauma.

https://doi.org/10.1371/journal.pone.0184799.t007

Table 8. PM2.5 values baseline and sensitivity scenarios.

Baseline Base

casea
Sensitivity scenarios

Low level apportionment

MVb
High level apportionment

MVc
Passenger cars 65% MV

emissionsd

PM2.5 (μm/m3) 6.964 6.957 6.962 6.940 6.920

Change emissions from

passenger cars (%)

-0.41% -0.15% -0.66% -0.94%

Change emissions from buses (%) 0.31% 0.12% 0.31% 0.31%

Total effect (%) -0.10% -0.04% -0.35% -0.63%

a.17% of PM2.5 attributable to motor vehicles (MV). Of MV emission, 28% corresponds to passenger cars and 10% to buses.
b.7% of PM2.5 attributable to MV. Of MV emission, 28% corresponds to passenger cars and 10% to buses.
c.30% of PM2.5 attributable to MV. Of MV emission, 28% corresponds to passenger cars and 10% to buses.
d. 17% of PM2.5 attributable to MV. Of MV emission, 65% corresponds to passenger cars and 10% to buses.

https://doi.org/10.1371/journal.pone.0184799.t008

Table 9. Health care costs and health outcomes for base case by sex over the life course of the Brisbane adult population (95% uncertainty

interval).

Health-adjusted life years

(thousand)

Life years

(thousand)

Health care costs total

(millions)a
Other health care costs in added LYs total

(millions)

Total 32.6 (19.6 to 46.8) 28.1 (13.1 to 44.0) -$312 (-$463 to -$173) $129 ($49 to $213)

Females 17.6 (9.2 to 26.3) 16.2 (6.2 to 26.8) -$139 (-$221 to -$63) $80 ($22 to $141)

Males 15.0 (9.8 to 20.9) 11.9 (6.8 to 17.8) -$173 (-$246 to -$107) $49 ($26 to $76)

a. Negative values are savings.

https://doi.org/10.1371/journal.pone.0184799.t009
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includes 0. This can be explained by the weak association between PA and ischemic stroke and

the effect of additional cases from added life years and exposure to PM2.5. Our results suggest

that road trauma may lead to a 30% (95% UI 29% to 32%) increase in mortality (593 deaths)

and a 6.6% (95% UI 6.2% to 7.0%) increase in the number of years lived with disability (3,339)

over the life course of the Brisbane adult population. The results are most sensitive to the dis-

count factor applied to health outcomes and the dose-response relationship between road

trauma and kilometres travelled by mode. A higher discount rate for health care costs and

health outcomes implies a lower present value. Assuming a linear association between road

trauma and kilometres travelled, there would be greater negative effects compared to the base

case. S1 File section 4 provides further results from the sensitivity analysis, including for inter-

mediate outcomes.

Discussion

Significant health gains could be made if government targets for reductions in private car

travel and increases in active transport were achieved in Brisbane, Australia. In this study we

estimated the effect of achieving active transport targets by 2026 (5% cycling, 15% walking and

14% public transport). A significant increase in active transport translates into substantial

improvements to population levels of PA, health gains and health care costs savings. Health

benefits from increases in PA are significantly higher than the potential negative effects of

increases in air pollution and road trauma exposure. Our results were the most sensitive to the

choice of discount rate and the shape of the dose-response curve for road trauma and kilo-

metres travelled.

Fig 2. HALYs by risk factor over the life course of the Brisbane adult population (95% uncertainty interval).

https://doi.org/10.1371/journal.pone.0184799.g002
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These results are consistent with those from the limited number of previous studies, which

were conducted in the United States, Spain, Brazil, England and Australia [58, 60–63]. Similar

to our findings, the findings from those studies indicate that the greatest contributions to

health gains from replacing passenger cars kilometres travelled to active transport were due to

improvements in PA. However, it is difficult to make a direct comparison among studies

because of differences in the scenarios analysed, methods applied and the high context speci-

ficity of the research. For example, Maizlish and colleagues [60] modelled the potential health

impact of replacing short car trips with walking and cycling and introducing low-emission

cars in the San Francisco Bay Area in California. The study findings indicate that over 5,000

disability-adjusted life years per million people annually could be averted by replacing

Fig 3. Percent change in disease prevalence and mortality over the life course of the Brisbane adult population (error bars

indicate the 95% uncertainty interval).

https://doi.org/10.1371/journal.pone.0184799.g003

Table 10. Change in prevalent cases and mortality over the life course of the Brisbane adult popula-

tion (95% uncertainty interval).

Disease Prevalent cases Mortality

Ischemic heart disease -44,902 (-61,765 to -28,463) -1,416 (-2,275 to -624)

Ischemic stroke -14,343 (-30,420 to 182) -1,504 (-4,558 to 1,342)

Colon cancer -19,630 (-26,409 to -13,091) -406 (-552 to -265)

Breast cancer (women) -13,184 (-18,815 to -7,763) -158 (-228 to -091)

Type 2 diabetes -90,440 (-130,002 to -51,905) -325 (-474 to -169)

Chronic obstructive pulmonary disease 7,831 (3,881 to 12,026) 130 (049 to 217)

Tracheal, bronchus and lung cancer 356 (192 to 531) 81 (42 to 122)

https://doi.org/10.1371/journal.pone.0184799.t010
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motorised travel with active modes and the introduction of low–emission driving. To our

knowledge, there is only one previous Australian study that assessed the health outcomes of

PA, air pollution and road trauma from a shift towards sustainable alternative transport [61].

Projecting travel patterns in 2030 for the City of Adelaide, the authors found that replacing

40% of motor vehicle kilometres travelled with cycling (10%) and public transport (30%)

would translate into over 7,500 averted DALYs annually for a projected population of 1.4 mil-

lion people (5,357 per million people). We calculated annual values and we found gains of

1,700 HALYs per million people. The studies by Maizlish et al. and Xia et al. used a prediction

modelling framework based on the comparative risk assessment approach (CRA) [30]. As we

explain in the following section, CRA tends to overestimate the change in burden of disease.

Strengths and limitations

To our knowledge, this is the first study to quantify the potential health and health care

cost outcomes of a shift towards active transport using the well-established method of the pro-

portional multi-state life table Markov model (MSLT). The MSLT allows for the long-term

estimation of health and economic outcomes [64]. By using this approach, we were able to

incorporate a gradual shift from private car trips to active modes. Also, the interaction between

multiple diseases is partly accounted for, with proportions of the population being able to be

in more than one disease state [64]. This avoids over-estimating outcomes as a result of sum-

ming health outcomes attributable to each disease individually, though it does not fully

account for the clustering of diseases in a subset of individuals. Another source of overestima-

tion in past studies arises from the use of the CRA approach based on Global Burden of Dis-

ease (GBD) estimates [6]. GBD studies estimate DALYs as the sum of years of life lost (YLL)

and years lost due to disability (YLD) [30]. The mortality rates used in GBD studies to estimate

YLL are for a hypothetical population that has the lowest observed mortality at every age [30],

whereas we used the current mortality rates for the population in question for the life years

lived component. On the other hand, since we did not assume a trend towards lower mortality

rates in future years, our results may be overly cautious. Furthermore, in GBD studies, YLLs

are not adjusted for disability; hence, their use in estimating intervention effects results in

over-estimation, which our life table approach avoids. Another way of seeing this is that esti-

mated changes in morbidity using CRA methods do not allow for the impact of life expectancy

increases on morbidity [65]. While the changes in deaths and prevalence using the MSLT are

in some ways more accurate than those from a CRA approach, it should be noted that that the

average age of death and incident disease will change, and thus, the disease burden will be, on

average, shifted to later in life. Thus, changes in HALYs offer a more appropriate measure of

gain than changes in life course prevalence. Past studies using the CRA approach also found

that health gains were about twice as large when predicting the impact of PA on all-cause mor-

tality compared to on disease specific mortality [58].

Limitations should be highlighted. Our estimates of shifts from private cars to alternative

travel modes in the intervention scenario are compared to a scenario in which travel patterns

by age and sex remain constant over time, and we assume that each group will become more

active in proportion to its current activity level. This assumption could be challenged: when

cycling becomes more common, it also tends to become more equitable [66], and providing

safe and direct cycling routes may encourage more women and older people to commute by

bicycle [67]. More sophisticated methods based on propensity analysis accounting for trip dis-

tance and hilliness, as previously done for cycling in England, could further refine our active

travel estimations [68]. There is also a risk of bias in our baseline travel estimates as the data

collection periods excluded summer months when people may be less likely to use active
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commuting due to the heat. While we used the best available road trauma data for Brisbane,

our use of an overall road trauma risk is a limitation. Past studies indicate differential road

trauma risk by age and sex [69] and also by road type [60]. Because we only used data from

Brisbane, the number of events in some categories was small and may be a result of chance

rather than accurately reflecting risk. Also under-reporting of injuries is common in police

data [70, 71]. Another limitation arises from using self-reported data for physical activity and

travel patterns. Our application of the MSLT assumes that a proportion of the population that

is sufficiently active (�1,600 MET-minutes)/wk. and�1h/wk. of vigorous PA) receives no

benefit from additional PA, which may be an underestimation of health impacts [72]. Another

source of underestimation arises from an incomplete inclusion of diseases. There is growing

evidence suggesting a causal association between PA, lung cancer, endometrial cancer and

dementia [73, 74]. A limitation of this and similar studies [75] results from not knowing the

exact shape of the dose-response curve (e.g. linear, curvilinear, log-normal) for the relationship

between PA and health. Recent studies that have used a continuous exposure to assess the

association between PA and health indicate the greatest benefits at low levels of PA [72, 76].

Another consideration is that the level of ambient air pollution in Brisbane is one of the lowest

observed in the world [77], and relative risks for PM2.5 are based on data from more polluted

locations, resulting in uncertainty at the lowest part of the exposure-response curve [78]. We

incorporated the effect of trends in incidence and case fatality in our model and assumed that

all other model parameters would remain constant. Variations in these parameters could influ-

ence results upward or downward. Migration and natural population growth were not consid-

ered, although our use of a life table approach resulted in the effects of population aging being

included. The strong population growth that would be expected for Brisbane would act to

increase the health gains forecasted in this paper.

Implications

Increasing active transport can help reduce the health and economic burden of low levels of

PA observed in Australia. However, investments in infrastructure and programs to encourage

behavioural change are vital to increase population uptake of active travel. For Brisbane, a

long-term infrastructure plan explicitly addresses public transport as one of the priority invest-

ment strategies [79]. The plan aims to provide transit access within a 15-minute walk to 90%

of the population with reasonably frequent services (15 minutes to main activity centres and

30 minutes to other destinations). In addition, the plans calls for infrastructure projects that

target walking and cycling, as well as programs that support the uptake of active transport (e.g.

cycle safe workshops). An update of the plan is scheduled for 2017, which will allow for the

progress of the proposed investments to be assessed.

Important context-specific variables could negatively impact the uptake of active travel in

Brisbane. For instance, the city sprawls widely, with an estimated population density of

approximately 19 inhabitants per hectare, compared to 246 in Barcelona and 84 in Amsterdam

[80]. In Barcelona, approximately 40% of the mode share is walking while in Amsterdam,

where cycling is a popular mode of transport, 22% of the mode share is cycling [81]. Hence,

efforts by transport department to increase active transport should be supported by land use

planning policies that result in more compact living, to facilitate the provision of public trans-

port and access to destinations within walking/cycling distance [82]. Local plans for Brisbane

for the next 25 years aim to increase population density [83].

While transport and land use planning are moving towards compact living and accessible

transport in Brisbane, some opposition could arise from the community. In Sydney (Austra-

lia’s largest city), local businesses indicated opposition to new cycling infrastructure due to
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concerns over its potential negative impact on commerce, mostly from reduced parking space

[84]. However, after construction parking issues were hardly mentioned in interviews with

business owners, and new business owners indicated that the new cycleway had a positive

influence on their decision to move to the area. Increasing population density has been widely

opposed by local resident groups in Australian cities [85]. However, recent research in Canada

showed that negative attitudes towards compact living could be substantially diminished by

imparting positive messages of the potential public benefits (e.g. improvement in air quality,

reduction of traffic congestion, improvements in walkability) of such developments [86].

Conclusion

Shifting towards active transport is a long-term process that needs investment and continuity

in governments’ strategic planning. In Queensland an updated regional plan was released early

in 2017; however, no specific transport targets were set [83]. The current research indicates

that continuing working towards achieving the proposed mode shares of 5% cycling, 15%

walking and 14% public transport would deliver considerable health and economic gains.

From a societal perspective, all would benefit from improved quality of life and savings in

health care costs.

Even though our results are highly context specific, they support the international evidence

of the health benefits of investing in active transport.
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7. Tainio M, de Nazelle AJ, Götschi T, Kahlmeier S, Rojas-Rueda D, Nieuwenhuijsen MJ, et al. Can air pol-

lution negate the health benefits of cycling and walking? Preventive Medicine. 2016; 87:233–6. http://

dx.doi.org/10.1016/j.ypmed.2016.02.002. PMID: 27156248

8. Australian Health Survey: Physical Activity, 2011–12 [Internet]. 2015 [cited 22 September 2015]. http://

www.abs.gov.au/ausstats/abs@.nsf/Lookup/D4495467B7F7EB01CA257BAC0015F593?

opendocument.

9. GBD Compare Data Visualization [Internet]. 2016 [cited 19 January 2017]. http://vizhub.healthdata.org/

gbd-compare.

10. Environmental Issues: Waste Management, Transport and Motor Vehicle Usage [Internet]. 2012 [cited

15 August 2016]. http://www.abs.gov.au/ausstats/abs@.nsf/mf/4602.0.55.002.

11. Connecting SEQ 2031 –An Integrated Regional Transport Plan for South East Queensland [Internet].

2011. http://www.ppt.asn.au/pubdocs/connecting_seq2031+(1).pdf.

12. Queensland Cycle Strategy 2011–2021 [Internet]. 2015 [cited 2 March 2016]. http://www.tmr.qld.gov.

au/Travel-and-transport/Cycling/Strategy.aspx.

13. Brisbane Active Transport Strategy 2012–2026 [Internet]. 2012 [cited 15 February 2015]. https://www.

brisbane.qld.gov.au/sites/default/files/active_transport_strategy_2012-2026.pdf.

14. Australia: the healthiest country by 2020-National Preventative Health Strategy [Internet]. Common-

wealth of Australia. 2009 [cited 5 November 2016]. http://www.preventativehealth.org.au/internet/

preventativehealth/publishing.nsf/Content/CCD7323311E358BECA2575FD000859E1/$File/nphs-

roadmap.pdf.

15. Australian Local Government Association, Bus Industry Confederation, Cycling Promotion Fund,

National Heart Foundation of Australia, International Association of Public Transport. An Australian

vision for active transport 2010 [cited 2014 15 November]. http://www.heartfoundation.org.au/

SiteCollectionDocuments/Active-Vision-for-Active-Transport-Report.pdf.

16. Brisbane suburbs [Internet]. 2015 [cited 25 February 2016]. http://www.brisbane.qld.gov.au/about-

council/council-information-rates/brisbane-suburbs.

17. Brisbane Community Profiles [Internet]. 2016 [cited 25 February 2016]. http://www.brisbane.qld.gov.au/

about-council/governance-strategy/business-brisbane/business-opportunities/brisbane-community-

profiles.

18. Population by Age and Sex, Regions of Australia [Internet]. 2014 [cited 10 April 2016]. http://www.abs.

gov.au/AUSSTATS/abs@.nsf/DetailsPage/3235.02013?OpenDocument.

Health outcomes of achieving travel targets

PLOS ONE | https://doi.org/10.1371/journal.pone.0184799 October 11, 2017 17 / 21

http://www.who.int/kobe_centre/measuring/urban-global-report/ugr_full_report.pdf?ua=1
https://doi.org/10.1016/S0140-6736(16)30068-X
http://dx.doi.org/10.1016/j.tranpol.2015.10.003
http://dx.doi.org/10.1016/j.ypmed.2015.04.010
http://dx.doi.org/10.1016/j.ypmed.2015.04.010
http://www.ncbi.nlm.nih.gov/pubmed/25900805
https://doi.org/10.1016/j.envint.2011.02.003
http://www.ncbi.nlm.nih.gov/pubmed/21419493
https://doi.org/10.1016/S0140-6736(16)30067-8
http://www.ncbi.nlm.nih.gov/pubmed/27671671
http://dx.doi.org/10.1016/j.ypmed.2016.02.002
http://dx.doi.org/10.1016/j.ypmed.2016.02.002
http://www.ncbi.nlm.nih.gov/pubmed/27156248
http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/D4495467B7F7EB01CA257BAC0015F593?opendocument
http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/D4495467B7F7EB01CA257BAC0015F593?opendocument
http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/D4495467B7F7EB01CA257BAC0015F593?opendocument
http://vizhub.healthdata.org/gbd-compare
http://vizhub.healthdata.org/gbd-compare
http://www.abs.gov.au/ausstats/abs@.nsf/mf/4602.0.55.002
http://www.ppt.asn.au/pubdocs/connecting_seq2031+(1).pdf
http://www.tmr.qld.gov.au/Travel-and-transport/Cycling/Strategy.aspx
http://www.tmr.qld.gov.au/Travel-and-transport/Cycling/Strategy.aspx
https://www.brisbane.qld.gov.au/sites/default/files/active_transport_strategy_2012-2026.pdf
https://www.brisbane.qld.gov.au/sites/default/files/active_transport_strategy_2012-2026.pdf
http://www.preventativehealth.org.au/internet/preventativehealth/publishing.nsf/Content/CCD7323311E358BECA2575FD000859E1/$File/nphs-roadmap.pdf
http://www.preventativehealth.org.au/internet/preventativehealth/publishing.nsf/Content/CCD7323311E358BECA2575FD000859E1/$File/nphs-roadmap.pdf
http://www.preventativehealth.org.au/internet/preventativehealth/publishing.nsf/Content/CCD7323311E358BECA2575FD000859E1/$File/nphs-roadmap.pdf
http://www.heartfoundation.org.au/SiteCollectionDocuments/Active-Vision-for-Active-Transport-Report.pdf
http://www.heartfoundation.org.au/SiteCollectionDocuments/Active-Vision-for-Active-Transport-Report.pdf
http://www.brisbane.qld.gov.au/about-council/council-information-rates/brisbane-suburbs
http://www.brisbane.qld.gov.au/about-council/council-information-rates/brisbane-suburbs
http://www.brisbane.qld.gov.au/about-council/governance-strategy/business-brisbane/business-opportunities/brisbane-community-profiles
http://www.brisbane.qld.gov.au/about-council/governance-strategy/business-brisbane/business-opportunities/brisbane-community-profiles
http://www.brisbane.qld.gov.au/about-council/governance-strategy/business-brisbane/business-opportunities/brisbane-community-profiles
http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3235.02013?OpenDocument
http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3235.02013?OpenDocument
https://doi.org/10.1371/journal.pone.0184799


19. 2009 South East Queensland Household Travel Survey [Internet]. Queensland Goverment,. 2009

[cited 15 December 2015]. https://data.qld.gov.au/dataset/2009-south-east-queensland-household-

travel-survey.

20. Department of Transport and Main Roads (TMR). South-East Queensland Travel Survey 2009-Survey

Procedures and Documentation. 2010;V2.2. Unpublished.

21. 2009–12 South East Queensland Household Travel Survey [Internet]. 2016 [cited 15 November 2016].

https://data.qld.gov.au/en/dataset/2009-12-south-east-queensland-household-travel-survey/resource/

2086c5cd-966e-49e2-ad53-f2a9d789cbab.

22. 2901.0—Census Dictionary, 2006 (Reissue) [Internet]. 2006 [cited 22 December 2016]. http://www.

abs.gov.au/ausstats/abs@.nsf/0/413876F3BAE9CC70CA25720A000C428B?opendocument.

23. Australia’s commuting distance: cities and regions [Internet]. Bureau of Infrastructure, Transport and

Regional Economics,. 2015 [cited 16 October 2016]. https://bitre.gov.au/publications/2015/files/is_073.

pdf.

24. Walking, Riding and Access to Public Transport-Suporting Active Travel in Australian Communities

[Internet]. 2013. https://infrastructure.gov.au/infrastructure/pab/active_transport/files/infra1874_mcu_

active_travel_report_final.pdf.

25. Queensland Household Travel Survey summary reports [Internet]. Queensland Goverment. 2016 [cited

16 December 2016]. http://www.tmr.qld.gov.au/Community-and-environment/Research-and-

education/Queensland-Household-Travel-Survey-summary-reports.aspx.

26. Barendregt JJ, Van Oortmarssen GJ, Van Hout BA, Van Den Bosch JM. Coping with multiple morbidity

in a life table. Math Popul Stud. 1998; 7(1):29–49. https://doi.org/10.1080/08898489809525445 PMID:

12321476

27. Barendregt JJ, Oortmarssen vGJ, Murray CJ, Vos T. A generic model for the assessment of disease

epidemiology: the computational basis of DisMod II. Popul Health Metr. 2003; 1(1):4-. https://doi.org/10.

1186/1478-7954-1-4 PMID: 12773212

28. Cobiac LJ, Vos T, Barendregt JJ. Cost-effectiveness of interventions to promote physical activity: a

modelling study. Plos Med. 2009; 6(7):e1000110–e. https://doi.org/10.1371/journal.pmed.1000110

PMID: 19597537.

29. Vos T, Carter R, Barendregt JJ, C. M, Veerman J, Magnus A, et al. Assessing Cost-Effectiveness in

Prevention (ACE-Prevention): Final Report. University of Queensland, Brisbane and Deakin University,

Melbourne: 2010.

30. Murray CJL, Ezzati M, Flaxman AD, Lim S, Lozano R, Michaud C, et al. GBD 2010: design, definitions,

and metrics. The Lancet. 2012; 380(9859):2063–6. https://doi.org/10.1016/S0140-6736(12)61899-6

31. Gold MR. Cost-effectiveness in health and medicine. New York: Oxford University Press; 1996.

32. Barendregt JJ. EpiGear International 2012 [cited 2015 1 Mar]. http://www.epigear.com/index_files/

prevent.html.

33. Deaths, Australia, 2015 [Internet]. Australia Bureau of Statistics. 2016 [cited 15 October 2016]. http://

www.abs.gov.au/ausstats/abs@.nsf/mf/3302.0.

34. Estimated Resident Population By Single Year of Age Australia [Internet]. 2016 [cited 10 October

2016]. http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3101.0Dec%202015?

OpenDocument.

35. GBD Compare [Internet]. IHME, University of Washington. 2015 [cited 15 July 2016]. https://vizhub.

healthdata.org/gbd-compare/.

36. Global Burden of Disease (GBD) [Internet]. 2015 [cited 25 July 2016]. http://www.healthdata.org/gbd.

37. Australian Cancer Incidence and Mortality (ACIM) books [Internet]. 2016 [cited 4 August 2016]. http://

www.aihw.gov.au/acim-books.

38. Danaei G, Ding EL, Mozaffarian D, Taylor B, Rehm J, Murray CJL, et al. The preventable causes of

death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors.

PLoS Med. 2009; 6(4):e1000058. https://doi.org/10.1371/journal.pmed.1000058 PMID: 19399161

39. Asia Pacific Cohort Studies Collaboration. The Effects of Diabetes on the Risks of Major Cardiovascular

Diseases and Death in the Asia-Pacific Region. Diabetes Care. 2003; 26(2):360–6. https://doi.org/10.

2337/diacare.26.2.360 PMID: 12547863

40. World Health Organization. WHO Expert Meeting: Methods and tools for assessing the health risks of

air pollution at local, national and international level. Copenhagen: WHO Regional Office for Europe,

2014.

41. Hamra GB, Guha N, Cohen A, Laden F, Raaschou-Nielsen O, Samet J, et al. Outdoor particulate matter

exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect. 2014;

122:906–11. https://doi.org/10.1289/ehp.1408092 PMID: 24911630

Health outcomes of achieving travel targets

PLOS ONE | https://doi.org/10.1371/journal.pone.0184799 October 11, 2017 18 / 21

https://data.qld.gov.au/dataset/2009-south-east-queensland-household-travel-survey
https://data.qld.gov.au/dataset/2009-south-east-queensland-household-travel-survey
https://data.qld.gov.au/en/dataset/2009-12-south-east-queensland-household-travel-survey/resource/2086c5cd-966e-49e2-ad53-f2a9d789cbab
https://data.qld.gov.au/en/dataset/2009-12-south-east-queensland-household-travel-survey/resource/2086c5cd-966e-49e2-ad53-f2a9d789cbab
http://www.abs.gov.au/ausstats/abs@.nsf/0/413876F3BAE9CC70CA25720A000C428B?opendocument
http://www.abs.gov.au/ausstats/abs@.nsf/0/413876F3BAE9CC70CA25720A000C428B?opendocument
https://bitre.gov.au/publications/2015/files/is_073.pdf
https://bitre.gov.au/publications/2015/files/is_073.pdf
https://infrastructure.gov.au/infrastructure/pab/active_transport/files/infra1874_mcu_active_travel_report_final.pdf
https://infrastructure.gov.au/infrastructure/pab/active_transport/files/infra1874_mcu_active_travel_report_final.pdf
http://www.tmr.qld.gov.au/Community-and-environment/Research-and-education/Queensland-Household-Travel-Survey-summary-reports.aspx
http://www.tmr.qld.gov.au/Community-and-environment/Research-and-education/Queensland-Household-Travel-Survey-summary-reports.aspx
https://doi.org/10.1080/08898489809525445
http://www.ncbi.nlm.nih.gov/pubmed/12321476
https://doi.org/10.1186/1478-7954-1-4
https://doi.org/10.1186/1478-7954-1-4
http://www.ncbi.nlm.nih.gov/pubmed/12773212
https://doi.org/10.1371/journal.pmed.1000110
http://www.ncbi.nlm.nih.gov/pubmed/19597537
https://doi.org/10.1016/S0140-6736(12)61899-6
http://www.epigear.com/index_files/prevent.html
http://www.epigear.com/index_files/prevent.html
http://www.abs.gov.au/ausstats/abs@.nsf/mf/3302.0
http://www.abs.gov.au/ausstats/abs@.nsf/mf/3302.0
http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3101.0Dec%202015?OpenDocument
http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3101.0Dec%202015?OpenDocument
https://vizhub.healthdata.org/gbd-compare/
https://vizhub.healthdata.org/gbd-compare/
http://www.healthdata.org/gbd
http://www.aihw.gov.au/acim-books
http://www.aihw.gov.au/acim-books
https://doi.org/10.1371/journal.pmed.1000058
http://www.ncbi.nlm.nih.gov/pubmed/19399161
https://doi.org/10.2337/diacare.26.2.360
https://doi.org/10.2337/diacare.26.2.360
http://www.ncbi.nlm.nih.gov/pubmed/12547863
https://doi.org/10.1289/ehp.1408092
http://www.ncbi.nlm.nih.gov/pubmed/24911630
https://doi.org/10.1371/journal.pone.0184799


42. GBD 2013 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of

79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 coun-

tries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. The Lancet.

2015; 386(10010):2287–323. https://doi.org/10.1016/S0140-6736(15)00128-2 PMID: 26364544

43. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr., Tudor-Locke C, et al. 2011 com-

pendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;

43(8):1575–81. Epub 2011/06/18. https://doi.org/10.1249/MSS.0b013e31821ece12 PMID: 21681120.

44. Australian Institute of Health and Welfare. Disease costs and impact study data. Australian Institute of

Health and Welfare, 2001.

45. How much is spent on COPD? [Internet]. 2016 [cited 12 October 2016]. http://www.aihw.gov.au/copd/

expenditure/.

46. Australian Institute of Health and Welfare. Health expenditure Australia 2009–2010. Canberra: 2011

Health and welfare expenditure series no. 46. Cat. no. HWE 55.

47. Australian Institute of Health and Welfare. Health expenditure Australia 2013–14. Canberra: 2015 Cat.

no. HWE 63.

48. Global Burden of Disease Study 2015 (GBD 2015) Results [Internet]. 2016 [cited 19 October 2016].

http://ghdx.healthdata.org/gbd-results-tool.

49. Air Quality Monitoring [Internet]. Queensland Goverment,. 2015 [cited 10 August 2016]. https://data.qld.

gov.au/dataset?q=air+quality.

50. Friend AJ, Ayoko GA, Stelcer E, Cohen D. Source apportionment of PM at two receptor sites in Bris-

bane, Australia. Environmental Chemistry. 2011; 8(6):569–80. https://doi.org/10.1071/EN11056

51. Air Emissions Inventory-South East Queensland Region [Internet]. Queensland Goverment,. 2004.

http://s3.amazonaws.com/zanran_storage/www.epa.qld.gov.au/ContentPages/15521293.pdf.

52. Crash data from Queensland roads [Internet]. Queensland Goverment 2014 [cited 1 September 2016].

https://data.qld.gov.au/dataset/crash-data-from-queensland-roads.

53. Barendregt JJ. The effect size in uncertainty analysis. Value in health: the journal of the International

Society for Pharmacoeconomics and Outcomes Research. 2010; 13(4):388–91. Epub 2010/07/28.

https://doi.org/10.1111/j.1524-4733.2009.00686.x PMID: 20659273.

54. Barendregt JJ, Veerman JL. Categorical versus continuous risk factors and the calculation of potential

impact fractions. J Epidemiol Community Health. 2010; 64(3):209–12. https://doi.org/10.1136/jech.

2009.090274 PMID: 19692711

55. Australian Motor Vehicle Emission Inventory for the National Pollutant Inventory (NPI) [Internet]. 2014.

http://www.npi.gov.au/resource/australian-motor-vehicle-emission-inventory-national-pollutant-

inventory-npi.

56. Kristensson A, Johansson C, Westerholm R, Swietlicki E, Gidhagen L, Wideqvist U, et al. Real-world

traffic emission factors of gases and particles measured in a road tunnel in Stockholm, Sweden. Atmo-

spheric Environment. 2004; 38(5):657–73. http://dx.doi.org/10.1016/j.atmosenv.2003.10.030.

57. Bicycle road rules and safety [Internet]. 2016 [cited 28 September 2016]. https://www.qld.gov.au/

transport/safety/rules/wheeled-devices/bicycle/#riding.

58. Woodcock J, Givoni M, Morgan AS. Health impact modelling of active travel visions for England and

Wales using an Integrated Transport and Health Impact Modelling Tool (ITHIM). PLoS One. 2013; 8(1):

e51462. https://doi.org/10.1371/journal.pone.0051462 PMID: 23326315

59. Elvik R, Bjørnskau T. Safety-in-numbers: A systematic review and meta-analysis of evidence. Safety

Science. 2017; 92:274–82. http://dx.doi.org/10.1016/j.ssci.2015.07.017.

60. Maizlish N, Woodcock J, Co S, Ostro B, Fanai A, Fairley D. Health Cobenefits and Transportation-

Related Reductions in Greenhouse Gas Emissions in the San Francisco Bay Area. American Journal of

Public Health. 2013; 103(4):703–9. https://doi.org/10.2105/AJPH.2012.300939 PMID: 23409903

61. Xia T, Nitschke M, Zhang Y, Shah P, Crabb S, Hansen A. Traffic-related air pollution and health co-ben-

efits of alternative transport in Adelaide, South Australia. Environ Int. 2015; 74:281–90. https://doi.org/

10.1016/j.envint.2014.10.004 PMID: 25454245
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