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Driving a Superconductor to 
Insulator Transition with Random 
Gauge Fields
H. Q. Nguyen1,2,*, S. M. Hollen1,3,*, J. Shainline1,4, J. M. Xu1,5 & J. M. Valles, Jr.1

Typically the disorder that alters the interference of particle waves to produce Anderson localization is 
potential scattering from randomly placed impurities. Here we show that disorder in the form of 
random gauge fields that act directly on particle phases can also drive localization. We present evidence 
of a superfluid bose glass to insulator transition at a critical level of this gauge field disorder in a nano-
patterned array of amorphous Bi islands. This transition shows signs of metallic transport near the 
critical point characterized by a resistance ~ h

e
1
2 4 2 , indicative of a quantum phase transition. The critical 

disorder depends on interisland coupling in agreement with recent Quantum Monte Carlo simulations. 
We discuss how this disorder tuned SIT differs from the common frustration tuned SIT that also occurs in 
magnetic fields. Its discovery enables new high fidelity comparisons between theoretical and 
experimental studies of disorder effects on quantum critical systems.

A random gauge field adds random increments to the phase of a particle as it traverses a system. It appears as a 
random phase factor in the site to site tunneling integral in tight binding models. For the most familiar random 
gauge field, a random magnetic field with zero mean, the phase shifts take the form ∫= ⋅πA A dlij

q
h i

j2  for a 
charge q moving from i to j in a magnetic vector potential, A. The effects of random gauge fields, also called gauge 
field disorder, have been considered in attempts to describe anomalous transport in the normal state of high tem-
perature superconductors1, graphene2,3, the ν =  1/2 state in two dimensional electron gases4,5, and photons in 
solid state structures6.

Fluctuations in gauge fields influence fermions and bosons distinctly. Magneto-transport experiments on 
rippled graphene suggest that they counteract Anderson localization of fermions2,3,7. Similarly, models show that 
random Chern-Simons gauge fields produce the nearly metallic rather than localized transport associated with 
the ν =  1/2 state4,8. On the other hand, gauge field fluctuations appear to destroy superfluidity and tend to localize 
bosons1. Attempts to explain the normal state transport of high Tc superconductors using resonating valence 
bond models have led investigators to consider how random gauge fields affect bosons in two dimensions1. 
Fluctuations in the gauge field appear to suppress Bose condensation and thus, superfluidity at finite temperatures 
in those treatments of t-J models1.

Multiple groups have manipulated and engineered gauge fields to address new physics5,9–11. A few have applied 
spatially random magnetic fields to two dimensional electron systems5,10,11 to investigate models of the ν =  1/2 
fractional quantum hall state. The motivation to create ever more versatile quantum simulators of many body 
systems has led to methods for producing artificial gauge fields in uncharged systems, such as cold neutral atom 
or quantum optics6,12,13. Particularly germane to the current report, a couple of groups created disordered gauge 
fields in Josephson Junction Arrays (JJA). They fabricated arrays with positional disorder to produce a random 
amount of flux per plaquette in the presence of a transverse field14,15. Their studies focused on the effects of this 
disorder on the classical Berezinski-Kosterlitz-Thouless transition16,17. Here, we employ a similar approach to 
investigate the effects of random gauge fields on the quantum superconductor to insulator transition. We show 
that strengthening a random gauge field weakens a superfluid state and can even drive a low superfluid density 
superconductor into an insulating phase.
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These investigations employ films patterned into arrays that are on the superconducting side of a thickness 
tuned superconductor to insulator transition (Fig. 1b)18. It is helpful to consider their behavior in the light of the 
quantum rotor model that is commonly used to describe the SIT19–22. Its Hamiltonian is given by:

∑ ∑ θ θ= − − − .U n J Acos( )
(1)i

i
ij

i j ij
2

ni, the number operator for Cooper pairs and θj, the phase operator on node j satisfy [ni, θj] =  iδij (see Fig. 1c). 
The first term is an onsite Coulomb energy of strength U that tends to localize Cooper pairs to individual nodes. 
The second term, which sums over nearest neighbors, competes with the first by promoting phase coherence and 
a delocalized superfluid state. The internode coupling J is proportional to the amplitude of the superconducting 
order parameter on the nodes and tunneling coupling between nodes. The argument of the cosine is the gauge 
invariant phase shift, ηij =  θi− θj− Aij, for a boson tunneling directly from island i to island j. In zero magnetic field, 
H =  0, and for perfectly ordered arrays, this model exhibits a superconductor to insulator transition at a critical 
coupling Kc(0) =  (J/U)c =  0.20621,23 below which quantum phase fluctuations drive Cooper pair localization. Now 
consider commensurate magnetic fields for which Σ Aij =  2πn around a plaquette or the number of flux quanta 
per plaquette φ/φ0 is an integer, n20,21. φ0 =  h/2e is the superconducting flux quantum. This model predicts that 
Kc(n) =  Kc(0) provided J and U do not depend on magnetic field.

In a geometrically disordered array, the critical coupling, Kc, grows with commensurate magnetic field 
strength according to simulations of the quantum rotor model21,24. To see how this effect occurs, consider the 
amplitude for a Cooper pair tunneling from site i to j. The associated tunneling probability amplitude is given by 
the superposition of all paths connecting these sites. These paths interfere constructively to give the greatest net 
amplitude when ηij =  2πn, for integer n, along every link in the array. This condition holds for ideal ordered arrays 
at commensurate fields. In arrays with a distribution of unit cell areas (like Fig. 1d), however, it is only possible to 
approximate commensurability by making φ φ = n/ 0  for the average flux per plaquette. At this average condition, 
the Aij vary randomly with a mean of 0 (as in Fig. 1e–h). The random phase shifts induced by this gauge field 
weaken the constructive interference effect described above. The associated reduction in the tunneling probability 
amplitude makes the system more susceptible to phase fluctuations. Kc increases to compensate. This dependence 

Figure 1. Tuning Random Gauge Fields. (a) Schematic sample measurement setup. A uniform magnetic field 
B is applied perpendicular to the sample plane. (b) Scanning electron microscope image of an amorphous Bi 
nano-honeycomb film. The overlaid green network of links defining individual array cells was obtained using  
a triangulation method. (c) Magnified region of (b) showing dots to denote nodes. (d) Distribution of cell areas 
defined by the links between nodes with its Gaussian fit (red line: = = ×mean S 8 103 nm2 and σ =  Δ S = 
0.92 ×  103 nm2). (e–h) Maps of the deviation of the magnetic flux through a cell from the average value, δφ, in 
units of the flux quantum, φ0, for commensurate fields φ φ =/ 00 , 1, 2 and 3. The random variations in δφ imply 
random variations in the line integral of the gauge field Aij along links that grow proportionally with φ φ/ 0.  
(i) Sheet resistance as a function of inverse temperature at commensurate magnetic fields that are well below  
the estimated upper critical magnetic field for this RN =  20 kΩ film. The R(T) at low temperatures evolve from 
superconducting to insulating characteristics with increasing φ φ/ 0 (see text).
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of Kc on random gauge field strength makes it possible to use a series of commensurate fields to tune through a 
SIT. As we describe below, this Random Gauge Field Tuned SIT joins the general class of disorder tuned quantum 
phase transitions19 as an example that is particularly amenable to theoretical analysis.

Results and Discussion
We produced random gauge fields by applying commensurate magnetic fields to films patterned into a geomet-
rically disordered hexagonal array (Fig. 1b). We thermally evaporated Sb and then Bi onto cryogenically cooled 
anodized aluminum oxide substrates with surfaces perforated by a disordered triangular array of holes25. Similarly 
produced nano-honeycomb (NHC) films undergo a localized Cooper pair to superfluid transition with increasing 
deposition18. The nodes (Fig. 1c), which have a relatively larger thickness than the links due to undulations in the 
substrate surface, harbor more Cooper pairs compared to the links connecting them26. The geometric disorder 
of the NHC array is apparent in the distribution of unit cell areas obtained by reconstructing the array with a 
triangulation algorithm (Fig. 1d)25.

We employed our most strongly geometrically disordered arrays for these experiments. This choice enabled us 
to apply strong gauge field disorder at fields, φ φ ≤/ 30 , that were well below the upper critical magnetic field, 
φ φ ≈/ 120

27. In this low field regime the magnetoresistance exhibits a decaying oscillation pattern with minima 
at the commensurate fields25 (see Supplemental Information). Within the quantum rotor picture, the oscillations 
result from the modulation of the cosine term, which leads to a modulation of the average Josephson coupling in 
the array23. The decrease in the oscillation amplitude can be attributed quantitatively to the growth of flux disor-
der with increasing field. Previous experiments14 and simulations28 on disordered square arrays and simulations 
of disordered hexagonal arrays29 show that oscillations disappear when φ φ ≈ . ∆S S/ 0 34/( / )0 . This relation implies 
a maximum of 3 oscillations for the NHC film shown in Fig. 1 for which ∆ = .S S( / ) 0 115, in good agreement with 
the data (see ref. 25 and Supplemental Information). This agreement supports discussing the ensuing phenomena 
in terms of the quantum rotor model with a distribution of plaquette areas and a field independent J. Other poten-
tially confounding field effects on J due to pairbreaking27 or mesoscopic fluctuations30 were minimized by staying 
well below the upper critical magnetic field (see Supplementary Information).

We characterize the strength of the gauge field disorder by the variance in the distribution of Aij, Δ Aij, and an 
associated phase randomization length, Lθ. Δ Aij can be related to the variance in the flux per unit cell31 in the 
strong disorder limit where variations in Aij and the flux per plaquette exert similar effects16. For an array with nL 
links per plaquette and fractional variance in plaquette areas ∆S S/ :

π φ
φ

∆ =
∆A

n
S

S
2

(2)
ij

L 0

The maps in Fig. 1e–h show how this disorder grows from zero with increasing commensurate magnetic field. 
The phase randomization length gives the average distance that a Cooper pair travels before the gauge disorder 
has completely randomized its phase. To calculate it, consider particle trajectories consisting of N steps along 
links of average length a. At each step, there is a random phase shift of average size Δ Aij, so that the distribution 
of the sum of the phase shifts will have a width ∆N Aij. When that width becomes of order π the distribution of 
phases covers most of the unit circle. This maximal phase randomization occurs on length scales of order 
Lθ =  a(π/Δ Aij)2 where a is the lattice constant. Thus, Lθ provides a phase coherence length over which Cooper pair 
constructive interference effects can promote delocalization. At the maximum field employed in these experi-
ments, φ φ =/ 30 , Δ Aij =  0.88 radians and θ L a13  for nL =  6 and ∆ = .S S/ 0 115. It is illuminating to note that 
Lθ/a ≤  nL at φ φ ≥/ 40  where no modulation effects are apparent in the magnetotransport.

Transport measurements in the low temperature limit indicate that Cooper pairs become more localized with 
increasing commensurate magnetic fields (Fig. 1i). At temperature, T = 100 mK, R□ rises monotonically by a 
factor of 15 (Fig. 2a inset). This rise spans the resistance quantum for pairs RQ =  h/(2e)2. RQ normally separates 
conduction by delocalized charge 2e carriers in a metallic or superconducting state from the incoherent tunneling 
between localized states. This separation is evident in Fig. 1i as the coincident change in the temperature depend-
ence of the resistance from dR□/dT <  0 for φ φ =/ 00  to dR□/dT >  0 for φ φ =/ 1, 2, 30 . The R□(T) develop an 
exponential dependence consistent with thermally activated tunneling with an energy barrier that increases with 
φ φ/ 0. We reproduced this evolution of R(T) in a second sample on another substrate.

We attribute this dramatic transformation from superconducting to insulating behavior (cf. Fig. 1i) to the 
influence of gauge field disorder. Ordered arrays do not exhibit this behavior. According to experiment32 and the 
Hamiltonian in Eq. (1)21, a film that superconducts in zero magnetic field, superconducts at all commensurate 
fields. Moreover, this random gauge field tuned transition is distinct from the magnetic field tuned supercon-
ductor to insulator transitions (BSITs) that appear at incommensurate fields25,33. Incommensurate fields have net 
vorticity that frustrates phase ordering to make an array more susceptible to phase fluctuations20. This frustration 
drives the BSITs that have been observed in ordered, micro-fabricated JJAs32,34. Thus, BSITs are frustration driven 
and random gauge field tuned SITs are disorder driven.

The critical gauge field disorder for this SIT depends on the zero field coupling constant, K =  J/U, which varies 
with the normal state sheet resistance. Figure 2a–c shows the R□(T) of three films with different K at commensu-
rate fields. They are on the same NHC substrate (Fig. 1a) so that their random gauge fields have the same magni-
tudes Δ Aij =  (0, 0.29, 0.59, 0.88) for φ φ/ 0 =  (0, 1, 2, and 3), respectively. To estimate the coupling constants, we 
presume that J∝ Tc/RN in accord with the scaling of the coupling energy of a Josephson tunnel junction and that 
the single island charging energy U is fixed by the geometry of the substrate. In Fig. 2, K increases from left to 
right as RN decreases and Tc concomitantly increases. The RN =  20 kΩ film shows a superconducting characteristic 
(i.e. dR□/dT >  0 as T →  0) only for φ φ =/ 00 . It is tuned to an insulating characteristic (i.e. dR□/dT <  0 as T →  0) 
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for φ φ =/ 1, 2, 30 . At φ φ =/ 30  the transport fits an activated temperature dependence with an activation energy 
of 131 mK (see Fig. 1i). With increasing K, the transition from superconducting to insulating behavior moves to 
higher φ φ/ 0 (Fig. 2b,c). In fact, the most disordered gauge field barely tuned the most strongly coupled 16 kΩ film 
into the insulating phase. Altogether, the greater the difference between K and Kc(0), the larger Δ Aij must be to 
drive the SIT.

Condensing these observations into a phase diagram of inverse coupling constant, Kc(0)/K, versus gauge dis-
order, Δ Aij phase diagram (Fig. 3) enables comparison with simulations. Any phase boundary separating super-
conducting and insulating films must have a negative slope implying that the critical coupling for the transition 
increases with gauge field disorder. This behavior agrees well with predictions (solid line in Fig. 3) from Quantum 
Monte Carlo simulations of a (2 +  1)D XY Model Hamiltonian (Equation (1)) on a square array by Kim and 
Stroud21. Those simulations showed that the ground state transforms from a phase ordered, superconducting 
Bose glass to a Mott insulator at a critical coupling that decreases with gauge field disorder. More recent simula-
tions of a hexagonal array using path integral based methods yielded a nearly identical phase boundary29. It is 
important to note that the simulations do not include any magnetic field dependence of J. However, we estimate 

Figure 2. Coupling Dependence of the Random Gauge Field Tuned SIT. (a–c) R□(T) of films with three 
different RN at 4 levels of gauge field disorder as reflected by the average flux per plaquette. The dashed line is an 
estimate of the critical resistance for the transition (see text). φ φ/ 0 =  0, 1, 2, 3, corresponds to ΔAij =  0, 0.29, 
0.59, 0.88, respectively.

Figure 3. Phase Diagram of the Random Gauge Field Tuned SIT. The inverse coupling constant values 
correspond to the four films with [(RN(kΩ), Tc(K)) =  (20.3, 1.1), (19.2, 1.2), (17.5, 1.28), (16.7, 1.34)] where Tc is 
the temperature at which the resistance drops to 80% of its normal state value. They are normalized to the 20 kΩ 
film value. Open circles correspond to films with superconducting characteristics and crosses correspond to 
films with insulating characteristics. The shading qualitatively represents the low temperature dlog (R□)/dT. The 
lines give predictions for the superconductor-insulator phase boundary derived from figure 18 of ref. 21 without 
(solid) and with (dashed) magnetic pair breaking taken into account (see text).
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(see Supplemental Information) that J decreases by the factor φ φ−(1 ( / ) )c2
2  due to the finite size of the dots in 

the NHC films26. Multiplying the ideal array phase boundary line by this factor using an upper critical field of 
φ φ= 12c2 0, produces the dashed line, which deviates from the simulations by no more than 7% at the highest 
field. Altogether, this comparison reveals that the data are consistent with gauge field disorder driving a Bose glass 
to Mott insulator quantum phase transition.

Furthermore, there is evidence of a quantum critical resistance35 at this random gauge field tuned SIT. 
Typically, quantum critical resistances are obtained through magnetic field scaling analyses of R(T) measured at 
a number of closely spaced magnetic fields around the critical magnetic field. This procedure cannot be carried 
out reliably on the R(T) showing this random gauge field tuned transition because they are obtained at widely 
spaced magnetic fields that are set by commensurate field values. Nevertheless, an estimate can be made without 
the scaling analysis. The low temperature tails of the R□(T) in Fig. 2 sweep continuously from a positive to a neg-
ative slope with increasing φ φ/ 0 suggesting that R□(T) becomes temperature independent at a critical amount of 
disorder. Such a metallic flattening is most evident in the R□(T) for RN =  19 kΩ (Fig. 2b), φ φ =/ 10  and RN =  16 kΩ 
(Fig. 2c), φ φ =/ 30 , which appear to asymptote to 3.5 kΩ. While this asymptotic separatrix is consistent with the 
RN =  20 kΩ data (Fig. 2a), none of those R□(T) become level at low T. We conjecture that the metallic behavior 
appears only at a specific coupling constant for each integer φ φ/ 0. The data are consistent with a critical resistance 
Rc ≈  0.5RQ independent of coupling constant. The Quantum Monte Carlo simulations that apply most directly to 
the present experiment predict about a factor of 3 variation in Rc

21 that brackets the experimental value. The pre-
diction that Rc varies with K, however, is inconsistent with the data.

Conclusion
We introduced a method to impose a random gauge field on superconducting thin films near a thickness tuned 
SIT. We observed that the films can be tuned across the SIT by increasing the amplitude of the random gauge 
field in accord with numerical predictions21. Much about this random gauge field tuned transition remains to be 
explored including the response of the insulator to gauge field disorder and the discrepancy between theory and 
experiment on the variation of Rc in the quantum critical transport. The capability to tune coupling and disorder 
independently afforded by the NHC substrate platform will be useful for such studies. In general, experimental 
realizations of purely disorder driven localization transitions like the one presented here are difficult to achieve. 
Theoretically, they have been studied extensively19 using models with potential disorder that give rise to Anderson 
localization driven metal to insulator transitions and phase fluctuation dominated superconductor to insulator 
transitions, for example. The challenge for experiments has been creating systems in which the potential disorder 
can be tuned independently of electron electron interactions. The development of models like that of Kim and 
Stroud21 and others that employ geometrical or bond disorder22,36 and this study present new opportunities for 
isolating disorder’s influence on quantum phase transitions.

Methods
The Anodized Aluminum Oxide substrates with disordered hole arrays were produced by covering a thin sheet 
of aluminum with teflon and anodizing them using standard methods25,37. The films were created by thermally 
evaporating a wetting layer of Sb and a series of Bi layers onto the substrates while they were held at 8 K inside a 
dilution cryostat. Sheet resistances, R□, were measured on a 1 mm2 area of film in situ using standard 4 point low 
frequency techniques (Fig. 1a)18. Perpendicular magnetic fields were applied with a superconducting solenoid.
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