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Abstract: Genes that influence the growth of Pacific abalone (Haliotis discus hannai) may improve
the productivity of the aquaculture industry. Previous research demonstrated that the differential
expression of a gene encoding a C-type lectin domain-containing protein (CTLD) was associated
with a faster growth in Pacific abalone. We analyzed this gene and identified an open reading frame
that consisted of 145 amino acids. The sequence showed a significant homology to other genes that
encode CTLDs in the genus Haliotis. Expression profiling analysis at different developmental stages
and from various tissues showed that the gene was first expressed at approximately 50 days after
fertilization (shell length of 2.47± 0.13 mm). In adult Pacific abalone, the gene was strongly expressed
in the epipodium, gill, and mantle. Recombinant Pacific abalone CTLD purified from Escherichia coli
exhibited antimicrobial activity against several Gram-positive bacteria (Bacillus subtilis, Streptococcus
iniae, and Lactococcus garvieae) and Gram-negative bacteria (Vibrio alginolyticus and Vibrio harveyi). We
also performed bacterial agglutination assays in the presence of Ca2+, as well as bacterial binding
assays in the presence of the detergent dodecyl maltoside. Incubation with E. coli and B. subtilis cells
suggested that the CTLD stimulated Ca2+-dependent bacterial agglutination. Our results suggest
that this novel Pacific abalone CTLD is important for the pathogen recognition in the gastropod host
defense mechanism.

Keywords: antimicrobial activity; bacterial binding assay; C-type lectin; Pacific abalone; perlucin

1. Introduction

The Pacific abalone Haliotis discus hannai is one of the most commercially valuable
shellfish species in northeast Asia [1]. Various methods have been implemented to improve
its productivity and foster its beneficial traits; these methods include selective breeding,
hybridization, and transcriptomic approaches [2–6]. Researchers have also screened for
faster growth in Pacific abalone to reduce the time necessary for the shellfish to reach a
marketable size. In a previous study, we screened differentially expressed genes associated
with faster growth in Pacific abalone and identified three genes involved in immune-related
responses [5,6].

The immune system plays a critical role in its protection against pathogens. Most
organisms have two types of protection systems: an innate immunity, which provides a
general response to pathogens, and an adaptive immunity, which elicits a more specialized
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response. Mollusks do not have an adaptive immune system; they rely on the innate
immune system for their protection from invading pathogens [7]. In mollusks, defense
responses are activated when the non-self patterns found on microbes (e.g., fungi and
viruses) are recognized [8]. These pathogen-associated molecular patterns (PAMPs) include
lipopolysaccharides, peptidoglycans, and mannans that are conserved in Gram-negative
and Gram-positive pathogens and fungi. Previous research has indicated that these car-
bohydrate PAMPs are recognized by a class of proteins that includes the C-type lectin
superfamily proteins, which are widely distributed among invertebrates, vertebrates, and
plants [9,10].

C-type lectins and C-type lectin domain-containing proteins (CTLDs) in invertebrates
recognize PAMPs in invading pathogens; upon pathogen recognition, C-type lectins and
CTLDs stimulate innate immune system responses that include agglutination, opsoniza-
tion, and antibacterial activity [11,12]. CTLDs generally have at least one carbohydrate-
recognition domain that consists of approximately 110–130 amino acid residues [13]. The
carbohydrate-recognition domains often have two or three conserved disulfide bonds that
stabilize a double-loop structure [14]. CTLDs from various invertebrates (e.g., crustaceans,
shellfish, and gastropods) reportedly have PAMP-binding characteristics and antimicrobial
activity. Recombinant C-type lectins from several crustaceans function as antimicrobial pro-
teins by binding to invading microbes and stimulating agglutination [15–17]. In addition, a
recombinant CTLD from bay scallophas shown a high binding affinity for lipopolysaccha-
rides; this affinity was significantly decreased upon the addition of mannose and galactose,
suggesting that the CTLD mediates the opsonization of invading microbes [18].

In this study, we characterized a gene encoding a CTLD from Pacific abalone (AbCTLD)
and investigated its possible functions. We deduced the full-length amino acid sequence
from the amplified genomic sequence; the cDNA was used to predict the protein structure
and create a phylogenetic tree. Expression profiling analysis showed that this gene was
initially expressed 50 days after fertilization, mainly in tissues exposed to the aquatic
environment. In addition, we tested the antibacterial activity of recombinant AbCTLD
(rAbCTLD) produced in Escherichia coli against potentially pathogenic aquatic microbes
in vitro.

2. Results
2.1. Sequence Analysis of the Gene Encoding AbCTLD

Previous research demonstrated that the differential expression of the gene encoding
AbCTLD was associated with a faster growth in Pacific abalone [5]. The structure of this
gene was determined by comparing DNA sequences that had been amplified from genomic
DNA and cDNA templates. The AbCTLD nucleotide sequence has been deposited in the
GenBank database (accession number OK414015). The AbCTLD gene has three exons with
lengths of 118 bp, 93 bp, and 224 bp (Figure 1). A polyadenylation signal (aataaa) and two
introns (474 bp and 606 bp long) were also identified with GT/AG splice sequences at the
exon–intron junctions.

The sequence of the gene encoding AbCTLD has an open reading frame of 435 bp,
which encodes a protein consisting of 145 amino acids. The translated sequence has
a theoretical molecular weight of 17.3 kDa and an isoelectric point of 8.44. No signal
peptide sequence or propeptide cleavage sites were identified. The amino acid sequence
of AbCTLD was 64.9% and 52.5%, which is similar to perlucins from Haliotis laevigata
(UniProt P82596) and Haliotis discus discus (GenBank ABO26594.1), respectively; it was
only 39.2% similar to a CTLD from Poecilia reticulata (Guppy, UniProt A0A3P9N573). A
multiple sequence alignment showed that six of the seven cysteine residues from AbCTLD
were conserved in other proteins, such as perlucins and CTLDs from other mollusks and
teleosts (Figure 2A). QPD and WND carbohydrate-recognition-domain motifs were also
identified. The predicted carbohydrate-recognition domain (SMART accession number
SM00034) covered amino acid residues 14 to 142 with an E-value of 2.77 × 10–27.
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acids, and polyadenylation signal (aataaa) are shown in bold. 
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Figure 1. Structure and sequence of a gene encoding a C-type lectin domain-containing protein
(CTLD) from Pacific abalone (AbCTLD). (A) The gene encoding AbCTLD consists of three exons
(underlined) with lengths of 118 bp, 93 bp, and 224 bp. (B) The coding regions, corresponding amino
acids, and polyadenylation signal (aataaa) are shown in bold.

A phylogenetic tree was constructed using 21 CTLD/perlucin protein sequences from
mollusks, teleosts, and mice (Figure 2B). AbCTLD clustered with perlucin and CTLDs
from mollusks, whereas the homologous CTLD sequences from teleosts clustered into a
different clade. Phylogenetic data showed that AbCTLD clustered with perlucins from
Lingula unguis, H. laevigata, and H. diversicolor. Collectin and a CTLD from mice, which are
only distantly related to perlucins and CTLDs from mollusks, were used as an outgroup to
construct the phylogenetic tree.
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Figure 2. Analysis of the AbCTLD amino acid sequence. (A) Multiple alignment of the amino
acid sequences of Pacific abalone C-type lectin (AbCTLD) and CTLDs in other mollusks and fish.
Particular characteristics of the C-type lectin domains, including two predicted alpha helices and
six conserved cysteine residues, are indicated. The aligned amino acid sequences are in greenlip
abalone Haliotis laevigata perlucin (HlPer, P82596), guppy Poecilia reticulata (PrCTLD, A0A3P9N573),
Pacific oyster Crossostrea gigas perlucin (CgPer, K1QRE6), Fairy cichlid Neolamprologus brichardi CTLD
(NbCTLD, A0A3Q4MIS0), Haliotis discus discus perlucin 1 (HddPer1, ABO26590.1), and Mediterranean
mussel Mytilus galloprovincialis CTL2 (MgCTL2, AJQ21493.1). Conserved amino acids are highlighted.
(B) Construction of a neighbor-joining tree, based on the amino acid sequences of CTLDs from
mollusks and teleosts. Mouse CTLD sequences were included as outgroups; bootstrap values are
indicated for each node.

2.2. Structure Modeling and Ligand Prediction

Protein structure modeling based on the structure of Homo sapiens C-type mannose
receptor 2 (PDB c5ao6A, UniProt Q9UBG0) predicted that AbCTLD has two alpha helices,
α1 (FAEASAYCCY) and α2 (KDEDDFLRSY; Figure 3A). The modeling suggested that six
of the seven AbCTLD cysteine residues would form three disulfide bridges (Cys14–Cys25,
Cys42–Cys141, Cys114–Cys131) to stabilize the protein structure. There was a predicted
binding site for Ca2+ at residues Asp80, Asn107, Glu112, and His113 (template 1k9jA, C-score
0.15). There was a predicted site for mannose interaction at residues Glu112, Ala129, Asp128,
Asn127, Asp106, and Gln104 (template 3pakA, C-score 0.44; Figure 3B).
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Figure 3. Three-dimensional structure of the AbCTLD protein. (A) Six conserved cysteine residues
are shown in the three-dimensional structure of AbCTLD. (B) A ligand prediction algorithm was
used to identify the binding sites of Ca2+ (C-score: 0.15) and Man (mannose, C-score: 0.44).

2.3. Developmental and Tissue-Specific Expression Pattern of AbCTLD

To analyze the expression of AbCTLD across the Pacific abalone’s development, sam-
ples were collected from early developmental stages including unfertilized eggs, the
four-cell stage, and the morula, trochophore, veliger, and post-larval stages (5 days post-
fertilization (dpf)); samples were also collected from spat at 50, 100, and 150 dpf. A reverse
transcription (RT)-polymerase chain reaction (PCR) analysis was performed on cDNA
synthesized from identical quantities of the total RNA extracted from larvae (eggs to
postlarvae) and the whole juvenile abalone spat (at 50, 100 and 150 dpf), using primers
corresponding to the AbCTLD gene. The results indicated that AbCTLD transcripts were
first expressed approximately 50 dpf and substantially expressed in spat at 100 and 150 dpf
(Figure 4A). An analysis of the tissue-specific mRNA expression in adult abalone by quanti-
tative real-time (qRT)-PCR showed that AbCTLD transcripts were highly expressed in the
epipodium, gill, and mantle (Figure 4B).

2.4. Purification of His6-Tagged rAbCTLD

rAbCTLD with a C-terminal His6 tag was induced using isopropyl β-D-1-
thiogalactopyranoside (IPTG) and expressed in E. coli BL21 cells (Figure 5). A slow in-
duction of the protein over 3 h with 0.1 mM IPTG was optimal; a small increase in the
protein induction occurred with the supplementation of an additional 1 mM IPTG. The
predicted molecular weight of the induced protein was 18.3 kDa. There were an additional
eight amino acids at the C-terminus, including two amino acids (Leu and Glu) that had
been added during the inclusion of an XhoI restriction site and His6-tag. rAbCTLD was
purified from E. coli lysates using affinity chromatography with an immobilized metal
ion, then harvested with 500 mM imidazole. The purified rAbCTLD was dialyzed in
100 mM Tris-HCl (pH 8.0) and further purified by reversed-phase high-performance liquid
chromatography (RP-HPLC; Figure 6). Fractions corresponding to the peaks collected at
43.0–43.5 min showed proteins of the expected size (approximately 18.3 kDa) by SDS-PAGE
as well as by mass spectrometry. While the result suggests AbCTLD has a monomeric
structure, a possible involvement of the dimeric structure was not completely excluded, as
a peak corresponding to its molecular weight was also detected by a mass spectrometry.
These fractions were first assayed for antibacterial activity against Bacillus subtilis.
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Figure 4. AbCTLD expression analysis of distinct developmental stages and tissues in Pacific abalone.
(A) Reverse transcription (RT)-polymerase chain reaction (PCR)-based detection of AbCTLD expres-
sion throughout abalone development. The early stages of development included unfertilized eggs
(Egg), the four-cell stage (4c), and the morula (Mo), trochophore (Tr), veliger (Ve), and post-larval
stages (PL, meaning 5 days post-fertilization (dpf)), as well as juvenile abalone spat at 50 (n = 4), 100
(n = 8), and 150 (n = 8) dpf. (B) Tissue-specific abundances of AbCTLD mRNA transcripts in Pacific
abalone were also analyzed by quantitative real-time-PCR using cDNA from total RNA samples that
had been isolated from various tissues (e.g., epipodium (Ep), gill (Gi), mantle (Mn), gonads (Gn),
hepatopancreas (Hp), and hepatocytes (Hc)) in 2-year-old Pacific abalone (n = 5). Bars and error bars
represent the means and standard deviations of triplicate measurements. Different letters above each
bar indicate statistically significant difference (p < 0.05).

2.5. Antibacterial Activity of AbCTLD

The antibacterial activity of rAbCTLD was measured using an ultrasensitive radial
diffusion assay. The antibacterial activities of 15 µg, 5 µg, and 1 µg of rAbCTLD were
tested against Gram-positive (B. subtilis, Streptococcus iniae, and Lactococcus garvieae) and
Gram-negative (Vibrio alginolyticus and Vibrio harveyi) bacteria (Figure 7). The antibacterial
activity against E. coli was also found to be similar to that of other Gram-negative bacteria
(data not shown). The greatest antibacterial activity was exhibited by 15 µg of rAbCTLD
(inhibition zone diameter 7.97 ± 0.009 mm). This level of antibacterial activity was similar
to the activity of 1 µg of ampicillin, which had a greater antibacterial efficacy in terms of its
unit weight (Figure 7B). However, the molecular weight of rAbCTLD was 46-fold greater
than the molecular weight of ampicillin (371.4). Therefore, rAbCTLD had a three-fold
greater antibacterial efficacy per molecule than ampicillin.
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Figure 5. Purification of recombinant AbCTLD (rAbCTLD) expressed in Escherichia coli. (A) A
schematic representation of the pET–AbCTLD expression vector derived from pET44a(+). The cloning
sites, promoter, and His6-tag fusion site are indicated. (B) Sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (12% acrylamide gel) of E. coli BL21 cell lysates after induction with 0.1 mM isopropyl
β-D-1-thiogalactopyranoside (IPTG) at 20 ◦C for 0, 1, 3, and 6 h. Lane C shows lysate from BL21 cells
as a negative control. Lane M contains molecular weight markers; the arrow indicates the expected
size of rAbCTLD. (C) rAbCTLD was purified on a nickel column under denaturing conditions with
2 M urea. Cell lysate (L), flow through (FT), and wash fractions were loaded onto a 12% acrylamide
gel; rAbCTLD was identified in eluted fractions 1 and 2.
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Figure 6. Purification of rAbCTLD using reversed-phase high-performance liquid chromatography
(RP-HPLC). (A) Eluted fractions were evaluated using an ultraviolet light detector at 220 nm, 254 nm,
and 280 nm. The fraction indicated by an arrow was lyophilized and dissolved in 100 mM Tris
(pH 8.0). The antibacterial activity of this fraction against Bacillus subtilis is shown in the figure inset.
(B) Immunoblotting analysis of purified rAbCTLD detected using anti-His6 tag antibodies.
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Gram-negative strains—Vibrio alginolyticus (D) and Vibrio harveyi (E). Equal volumes of solutions
containing 100 mM Tris but without rAbCTLD, and 1 µg of ampicillin were used as negative and
positive controls, respectively.

2.6. Bacterial Agglutination Stimulated by rAbCTLD

The purified rAbCTLD was tested to determine whether it could stimulate the bac-
terial agglutination of E. coli (BL21) cells expressing green fluorescent protein (GFP) or
B. subtilis cells labeled with 4′,6-diamidino-2-phenylindole (DAPI). The bacterial cells were
incubated with various concentrations of Ca2+ up to 10 mM. No bacterial agglutination was
observed in the reaction mixtures containing 10 mM Ca2+ plus Tris-buffered saline (TBS) or
10 mM Ca2+ plus bovine serum albumin (BSA), in the absence of rAbCTLD (Figure 8A,B).
In contrast, a bacterial agglutination of both B. subtilis and E. coli was observed in the
mixtures containing 10 mM Ca2+ in the presence of rAbCTLD (Figure 8F). Some bacte-
rial agglutination was observed in the mixtures containing 1 mM Ca2+ in the presence of
rAbCTLD, although the size of the cell clump was smaller than that of the clump formed
in the presence of 10 mM Ca2+. No distinguishable agglutination was observed in the
mixtures containing 0.1 mM Ca2+ in the presence of rAbCTLD (Figure 8D). These results
clearly indicate that rAbCTLD stimulated bacterial agglutination in a Ca2+-concentration-
dependent manner.

We tested whether rAbCTLD could bind to bacterial cells using a centrifugation assay
in which the supernatant containing the unbound protein was separated from the pellet
containing bacteria bound to rAbCTLD. Although most of rAbCTLD was present in the
fraction containing precipitated bacterial cells after centrifugation, the purified rAbCTLD
tended to self-precipitate under our experimental conditions (data not shown). Therefore,
to confirm the specific binding of the recombinant protein to the bacterial cells using
an assay based on centrifugation, we inhibited the rAbCTLD self-precipitation by using
dodecyl maltoside, which is widely utilized for membrane protein solubilization. We found
that rAbCTLD was detected in the supernatant but did not precipitate, indicating that
dodecyl maltoside adequately solubilized the purified rAbCTLD in the absence of bacteria
(Figure 9). In contrast, most of the rAbCTLD was detected in the pellet containing bacterial
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cells upon the addition of either Gram-negative E. coli or Gram-positive B. subtilis. These
results show that rAbCTLD bound to bacterial cells.
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Figure 8. Fluorescence microscopy shows that bacterial agglutination was stimulated by rAbCTLD
in both E. coli BL21 and B. subtilis cells in a Ca2+-dependent manner. Bacterial agglutination tests
were performed on E. coli BL21–GFP (upper panel) and B. subtilis (lower panel) cells incubated with
or without purified rAbCTLD (0.18 µg) in the presence of various concentrations of Ca2+. Bacterial
cells were incubated with 10 mM Ca2+ (A), or bovine serum albumin (BSA) plus 10 mM Ca2+ (B) in
the absence of rAbCTLD. Bacterial cells were incubated with 0 mM (C), 0.1 mM (D), 1 mM (E), or
10 mM (F) of Ca2+ in the presence of rAbCTLD. (scale bar: 10 µm).
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Figure 9. Bacterial binding analysis of rAbCTLD resuspended in 0.05% dodecyl maltoside. Bacterial
binding analysis was performed on purified rAbCTLD together with E. coli or B. subtilis. Precipitates
were separated by centrifugation, and purified recombinant proteins were dissolved in 0.05% dodecyl
maltoside, then incubated with E. coli or B. subtilis as indicated. Tris-buffered saline (TBS) replaced
bacterial cells in the control samples (TBS). The levels of rAbCTLD in the whole reaction mixture
(W), supernatant (S), and pellet (P) were compared by immunoblotting analysis using an anti-His
tag antibody.

3. Discussion

The C-type lectins are a superfamily of proteins that are involved in regulating a
diverse range of physiological functions, including innate and adaptive antimicrobial
immune responses [19]. The superfamily of proteins that contain at least one C-type
lectin domain is large and diverse; these proteins recognize a broad range of ligands
including PAMPs [20]. A differentially expressed gene that influenced growth in Pacific
abalone exhibited sequence similarity to the C-type lectin domains at residues 14 to 142 [5].
Seven cysteine residues were identified in the deduced amino acid sequence, including six
highly conserved cysteine residues that may form disulfide bonds to stabilize the CTLD
structure [21,22]. In addition, the presence of two alpha helices was deduced from three-
dimensional protein structure modeling. Therefore, the protein was classified as a Pacific
abalone CTLD.

The sugar-binding sites of CTLDs from various invertebrates vary in sequence. Al-
though the QPD and EPN motifs that bind galactose and mannose are frequently present
in CTLDs, variations in other sequence motifs (e.g., EPD, EPQ, QPT, and QPG) are com-
mon [16,23–27]. WND is another key sugar-binding motif that occurs in various inverte-
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brate CTLDs [28]. In AbCTLD from H. discus hannai, the putative sugar-binding motifs
were QPD (amino acids 104–106) and WND (amino acids 126–128), which are conserved
in perlucins and CTLDs from other abalone and teleosts. These motifs may mediate the
binding of AbCTLD to carbohydrate moieties on the surfaces of invading microbes. The
Asn127 residue in the WND motif may function as a Ca2+-binding site. Furthermore, the
AbCTLD amino acid sequence was similar (64.9%) to the amino acid sequence of perlucin
from H. laevigata (UniProt P82596), which contains QPD and WND motifs. This perlucin
exhibited binding affinities with both galactose and mannose [29].

The high mortality rate of abalone spat is a major factor that limits the productivity
of the abalone aquaculture industry [30]. Various approaches have been used to address
this problem, including the selection of faster-growing strains with increased immunity.
Genes involved in immunoprotection are important for host cells’ protection from envi-
ronmental stress and pathogen infection. Among these, the gene encoding AbCTLD was
associated with a faster growth and antimicrobial activity. The expression of AbCTLD
was particularly high in the mantle, which connects the inner surface of the shell with the
visceral mass, and the epipodium, which is located on the dorsal foot. These tissues are
frequently exposed to the aquatic environment. Therefore, AbCTLD may be important
for their protection against pathogens. During the early developmental egg to post-larval
(5 dpf) stage, AbCTLD expression was low. The highest levels of AbCTLD gene expres-
sion occurred at 100 to 150 dpf, indicating that the CTLD may provide protection from
pathogens as early as 100 dpf. Time course studies in several species have shown that
CTLD expression is upregulated in various tissues in response to PAMPs or injection with
bacteria [31–34]. In addition, the expression of CTLDs in the gill and mantle of manila clam
was significantly upregulated in response to lipopolysaccharides or the injection of Vibrio
tapetis bacteria [35,36]. Therefore, the high level of expression of CTLDs observed in diverse
species, from invertebrates to mammals, may be involved in the Ca2+-dependent innate
immunity against invading pathogens.

rAbCTLD exhibits antimicrobial activity against pathogens (e.g., S. iniae, L. garvieae,
V. alginolyticus, and V. harveyi) that cause serious diseases in aquatic animals [37–40]. Al-
though they exhibited low sequence similarities to AbCTLD, other abalone CTLDs demon-
strated increasing expression in response to their infection with Vibrio; moreover, recom-
binant CTLDs mediated the pathogen agglutination by binding to mannose [41–43]. In
this study, we identified a novel gene encoding a CTLD in H. discus hannai (AbCTLD) and
analyzed its expression pattern in various tissues and across developmental stages.

We found that rAbCTLD had an antibacterial activity, stimulated bacterial agglutina-
tion, and functioned in the innate immunity by binding to carbohydrate moieties. CTLDs
functioned in innate immune responses by acting as pattern recognition receptors, binding
to the carbohydrate moieties of glycoproteins on microbes, and inducing the bacterial
agglutination in a Ca2+-dependent manner [44–46]. E. coli expression studies showed that
recombinant CTLDs from mollusks, such as H. discus hannai [42,43], scallop [12], and razor
clam [47], can stimulate bacterial agglutination. Our rAbCTLD stimulated the bacterial
agglutination in a Ca2+-dependent manner; this may enable Pacific abalone to eliminate
invading pathogens. We used a ligand prediction algorithm to identify four residues (Asp80,
Asn107, Glu112, and His113) that may form a Ca2+ binding site, which could subsequently
influence the carbohydrate-binding activity in AbCTLD.

4. Materials and Methods
4.1. Cloning the AbCTLD Gene

We extracted genomic DNA (gDNA) from 100 mg of Pacific abalone mantle tissue
using the procedure established by Asahida et al. [48]. The AbCTLD gene was amplified
using primers listed in Table 1. PCR products were extracted using a gel extraction kit
and ligated into the pTOP TA V2 vector (Enzynomics, Daejeon, Korea). We transformed
E. coli DH5α cells and extracted the plasmid using the method established by Sambrook
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and Russell [49]. Purified TA plasmid was sequenced using the M13F-20 and M13R
universal primers.

Table 1. List of primers used to identify and analyze AbCTLD.

Purpose Primer Sequence (5′-3′)

Identification of AbCTLD gene structure in genomic DNA

5UTR-F GGC TTA CAA TGT TGT GAA CTT CTG

Par-R2 GTA CGC GTG ACA CGG AGC AT

Par-F2 AGC GCT TAC TGT TGC TAC ATG G

3UTR-R CAA CAC TAA ACC ATG TTT CAG
TCG G

Cloning of full-length AbCTLD into pET expression vector
FullF-NdeI CAT ATG GTG CGT GAT TTT TTT GTG

GAT TC

FullR-XhoI CTC GAG GAT TTC CTT TTC GCA AAT
GAA GTG

RT-PCR of AbCTLD
AbCTLD-F CCT CTT GGG TTT ATG CAG CAC

AbCTLD-R CGG ACT GTC TCA TTT CCA GAC

RT-PCR of RPL3
(Housekeeping gene)

RPL3-F TGT CAC CAT CCT TGA GGC AC

RPL3-R CAG GAA CAG GCT TCT CCA GG

qRT-PCR of AbCTLD
qAbCTLD-F GGT GCC ACT GAT CTG AAC CT

qAbCTLD-R AGG ACC GTC TCA TTT CCA GA

qRT-PCR of RPL3
(Housekeeping gene)

qRPL3-F AGT CCT TCC CTA AGG ATG ACA AG

qRPL3-R GCC TCC ACA ACT TCC TTC TTA TT

4.2. Phylogenetic Tree and Bioinformatic Analysis

The AbCTLD gene sequence was obtained by amplification using both gDNA and
cDNA templates. The deduced amino acid sequence was used for phylogenetic tree
construction along with amino acid sequences from other CTLDs, perlucins, and collectins
that were in the GenBank and UniProt databases (Table S1). A phylogenetic tree was
constructed using the neighbor-joining method; pairwise distances were estimated using
the Jones–Taylor–Thornton matrix model. All positions containing gaps and missing data
were eliminated by pairwise deletion with 1000 replications of bootstrap testing using
Molecular Evolutionary Genetics Analysis software (version 5, Tokyo, Japan) [50].

The translated amino acid sequence of AbCTLD and the related sequences obtained
from UniProt and the National Center for Biotechnology Information database were aligned
by BioEdit Sequence Alignment Editor and Vector NTI suite 8 (INFORMAX, Bethesda, MD,
USA). These sequences were compared with the sequences of HlPer (H. laevigata perlucin,
P82596), HddPer1 (H. discus discus perlucin 1, ABO26590.1), PrCTLD (P. reticulata (Guppy)
C-type lectin domain-containing protein, A0A3P9N573), NbCTLD (Neolamprologus brichardi
(Fairy cichlid) C-type lectin domain-containing protein, A0A3Q4MIS0), MgCTL2 (Mytilus
galloprovincialis C-type lectin 2, AJQ21493.1), and CgPer (Crassostrea gigas (Pacific oyster])
perlucin, K1QRE6). A three-dimensional protein model of AbCTLD was constructed using
Vector NTI Suite 8 and Phyre2 (http://www.sbg.bio.ic.ac.uk/phyre2, 30 September 2019);
the theoretical molecular weight and isoelectronic point of the amino acid sequence were
calculated using the Compute pI/Mw tool (https://web.expasy.org/compute_pi/, 30
September 2019) [51]. The SMART tool (http://smart.embl-heidelberg.de, 1 October 2019)
and COACH tool (https://zhanglab.ccmb.med.umich.edu/COACH/, 2 October 2019)
software applications were used to predict domains and ligand binding sites [52].

http://www.sbg.bio.ic.ac.uk/phyre2
https://web.expasy.org/compute_pi/
http://smart.embl-heidelberg.de
https://zhanglab.ccmb.med.umich.edu/COACH/


Int. J. Mol. Sci. 2022, 23, 698 12 of 16

4.3. Analysis of AbCTLD Gene Expression across Pacific Abalone Development

To analyze the expression profile of the gene encoding AbCTLD, abalone samples
were collected at 18 ◦C water temperature from early developmental stages including
unfertilized eggs, the four-cell stage, the morula, trochophore, veliger, and post-larval
stage (5 dpf) at the Institute of Ocean and Fisheries Technology (Jeollanam-do, Republic of
Korea), together with juvenile abalone collected at 50, 100, and 150 dpf (shell lengths of
2.47 ± 0.13 mm, 8.14 ± 1.87 mm, and 13.28 ± 3.31 mm, respectively). Whole abalone tissue,
except for muscle, was used for RNA extraction and cDNA synthesis in accordance with
a previously described protocol [53]. Ribosomal protein L3 (RPL3) was used as a reference
gene, as in our previous study [5]. All primers used in this study are listed in Table 1.
RT-PCR consisted of an initial denaturation step at 95 ◦C for 3 min, followed by 30 cycles of
95 ◦C denaturation for 30 s, 60 ◦C annealing for 30 s, and 72 ◦C amplification for 30 s. The
final extension step was carried out at 72 ◦C for 5 min; amplified products were visualized
by 1.5% agarose gel electrophoresis.

4.4. Analysis of AbCTLD Gene Expression in Adult Abalone Tissue

To analyze the tissue-specific expression pattern of AbCTLD mRNA, qRT-PCR analysis
was carried out using cDNA from the epipodium, gill, mantle, gonads, hepatopancreas, and
hemocytes of adult Pacific abalone (n = 5; age = 36 months; shell length = 87.52 ± 2.47 mm;
weight = 77.28 ± 4.32 g). The specific primers used in qRT-PCR were designed using RPL3
(reference gene, GenBank KP698943.1). Primer efficiencies for qRT-PCR were tested using
the standard curve method (qRPL3-F/R 136 bp, r2 = 0.9996, E = 96.14%; qAbCTLD-F/R
133 bp, r2 = 0.9956, E = 99.53%). The PCR conditions consisted of a preheating step at
50 ◦C for 2 min, an activation step at 95 ◦C for 10 min, and 40 cycles of amplification as
follows: 95 ◦C for 15 s, 60 ◦C for 30 s, and 72 ◦C for 30 s. We used a PikoReal™ Real-Time
PCR system (Thermo Scientific, Waltham, MA, USA) and SYBR green-based Maxima SYBR
Green/ROX quantitative PCR Master Mix (Thermo Scientific). The relative expression of
each gene was calculated using the 2–∆∆CT formula [54]. Statistical analysis of qRT-PCR
data was performed with one-way analysis of variance and Duncan’s multiple range test
using SPSS software (ver. 18; IBM-SPSS, Chicago, IL, USA); p-values < 0.05 were considered
statistically significant [55].

4.5. Purification of AbCTLD

The full length AbCTLD gene was amplified from a cDNA template that had been
synthesized from ganglion total RNA, with additional restriction sites for NdeI and XhoI.
The purified PCR product was first cloned into the TA vector (pTOP TA V2; Enzynomics),
then subcloned into the pET-44a(+) expression vector (Novagen, Madison, WI, USA). The
recombinant vector containing a full-length AbCTLD gene with a C-terminal His6-tag was
transformed into E. coli BL21 codon plus RP cells (Stratagene, La Jolla, CA, USA). rAbCTLD
expression was induced using various concentrations (0.1–1 mM) of IPTG at 20 ◦C for
4 h in lysogeny broth, supplemented with chloramphenicol (34 µg/mL) and ampicillin
(100 µg/mL). Proteins were separated on a 12% polyacrylamide gel, then transferred to
a membrane for immunoblotting; a His6-tag monoclonal antibody (Invitrogen, Carlsbad,
CA, USA) and anti-mouse IgG-horseradish peroxidase (Bio-Rad, Hercules, CA, USA) were
used to detect His6-tagged rAbCTLD. Immunoblotting results were visualized using an
ImageQuant LAS 500 system (GE Healthcare, Buckinghamshire, UK).

For recombinant protein purification, transformed E. coli BL21 cells were treated with
0.1 mM IPTG at 20 ◦C for 3 h, then harvested by centrifugation at 10,000× g for 10 min.
The cells were lysed by freezing, thawing, and sonication (2 min, 20% amplitude for 2 s) in
1× lysis-equilibration-wash buffer (50 mM NaH2PO4, 300 mM NaCl, pH 8.0) containing
8 M urea. Next, 10 mM CaCl2 and 2 mM dithiothreitol were added; the lysate was incubated
at room temperature for 30 min, then centrifuged at 10,000× g for 30 min. The supernatant
was diluted by adding three volumes of 1× lysis-equilibration-wash buffer, then subjected
to affinity purification. The rAbCTLD protein fused to a His6-tag was purified with 2 M
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urea on a Protino® Ni-TED nickel column (MACHEREY-NAGEL, Düren, Germany) under
denaturing conditions in accordance with the manufacturer’s instructions. Recombinant
proteins were eluted using lysis-equilibration-wash buffer containing 500 mM imidazole
and 2 M urea. Stepwise dialysis was performed against lysis-equilibration-wash buffer
containing 1 M and 0.5 M urea in the presence of 100 mM Tris (pH 8.0) and using a 3.5 kDa
MWCO dialysis membrane (Spectra/Por® membrane; Thermo Scientific). Purified proteins
were separated using RP-HPLC with a linear gradient of 5–80% acetonitrile and 0.1%
trifluoroacetic acid on a Capcell Pak C18 column (Shiseido, Tokyo, Japan). Samples were
eluted at a flow rate of 1 mL/min and monitored using an ultraviolet light detector at
220 nm, 254 nm, and 280 nm. The collected fractions were lyophilized and dissolved in
100 mM Tris (pH 8.0).

4.6. Antibacterial Assays

The antibacterial activity of rAbCTLD purified by RP-HPLC was tested using the
following bacterial strains: B. subtilis (KCTC1021), S. iniae (BS9), L. garvieae (ATCC 43921),
V. alginolyticus (KCTC 2928), and V. harveyi (ATCC 14126). Antibacterial activity was
measured using an ultrasensitive radial diffusion assay [56]. Bacterial strains were cultured
in tryptic soy broth (TSB) and lysogeny broth (for S. iniae) at 37 ◦C with shaking (150 rpm).
Bacterial culture adjusted to 0.06 of OD600 (approximately 84% transmittance) was plated
with 9.5 mL of radial diffusion assay buffer containing agarose. Identical volumes (5 µL)
of ampicillin and 100 mM Tris (pH 8.0) were used as positive and negative controls,
respectively.

4.7. Bacterial Agglutination Assays

Purified rAbCTLD was tested to determine whether it could stimulate the aggluti-
nation of E. coli BL21–GFP (Gram-negative) or B. subtilis (Gram-positive) cells. Bacterial
cells were harvested from growth culture and resuspended in TBS at an OD600 of 0.6.
Equal volumes of bacterial resuspension cultures were mixed with purified rAbCTLD and
incubated at 28 ◦C for 1 h in the presence of final concentrations of 10 mM, 1 mM, 0.1 mM,
or 0 mM Ca2+. An identical quantity of bovine serum albumin was used as a negative
control. Fluorescence microscopy was used to visualize the B. subtilis cells after they had
been stained with DAPI (10 µg/mL) for 3 min at room temperature in the dark.

4.8. Bacterial Binding Assays

Binding of rAbCTLD to Gram-negative (E. coli BL21–GFP) and Gram-positive (B. subtilis)
bacteria was tested by solubilizing rAbCTLD in dodecyl maltoside. In total, 0.2 µg of
rAbCTLD was solubilized in 0.05% dodecyl maltoside and mixed with a bacterial suspen-
sion culture in TSB at an OD600 of 0.6. The solubilized rAbCTLD was mixed with 360 µL
of bacterial culture and incubated at room temperature for 30 min with gentle shaking.
TBS was used as a negative control. Samples were centrifuged at 3000× g for 1 min. Im-
munoblotting with an anti-His tag antibody was used to analyze each supernatant and
pellet fraction.

5. Conclusions

We identified AbCTLD, a novel C-type lectin gene in Pacific abalone. The predicted
protein sequence contained QPD and WND motifs that have important roles in carbohy-
drate recognition, together with six cysteine residues that are conserved in C-type lectins
found in other mollusks and in fish. Ligand prediction analyses also identified Ca2+ and
mannose binding sites. The AbCTLD gene was first expressed approximately 50 days after
fertilization; in adult abalone, it was strongly expressed in tissues that are exposed to the
external environment, such as the epipodium, gill, and mantle. We expressed His6-tagged
rAbCTLD in E. coli and showed that the recombinant protein exhibited antibacterial prop-
erties and stimulated bacterial agglutination. Therefore, AbCTLD had an important role in
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the invertebrate immune response by recognizing carbohydrate moieties on the surfaces of
pathogens; it stimulated bacterial agglutination in a Ca2+-dependent manner.
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