
Frontiers in Immunology | www.frontiersin.

Edited by:
Hai-Jing Zhong,

Jinan University, China

Reviewed by:
Yanqiang Li,

Boston Children’s Hospital and
Harvard Medical School, United States

Arunasree M. Kalle,
University of Hyderabad, India

*Correspondence:
Jiangjiang Qin

jqin@ucas.ac.cn
Weidong Zhang

wdzhangy@hotmail.com

†These authors contributed
equally to this work

Specialty section:
This article was submitted to

Inflammation,
a section of the journal

Frontiers in Immunology

Received: 19 August 2021
Accepted: 04 October 2021
Published: 20 October 2021

Citation:
Tian S, Fu L, Zhang J, Xu J, Yuan L,

Qin J and Zhang W (2021)
Identification of a DNA Methylation-

Driven Genes-Based Prognostic
Model and Drug Targets in Breast

Cancer: In silico Screening of
Therapeutic Compounds

and in vitro Characterization.
Front. Immunol. 12:761326.

doi: 10.3389/fimmu.2021.761326

ORIGINAL RESEARCH
published: 20 October 2021

doi: 10.3389/fimmu.2021.761326
Identification of a DNA Methylation-
Driven Genes-Based Prognostic
Model and Drug Targets in Breast
Cancer: In silico Screening of
Therapeutic Compounds and
in vitro Characterization
Saisai Tian1†, Lu Fu1†, Jinbo Zhang1,2†, Jia Xu3, Li Yuan4, Jiangjiang Qin4,5*
and Weidong Zhang1,6*

1 School of Pharmacy, Second Military Medical University, Shanghai, China, 2 Department of Pharmacy, Tianjin Rehabilitation
Center of Joint Logistics Support Force, Tianjin, China, 3 School of Pharmacy, Henan University, Kaifeng, China,
4 Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China,
5 Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China, 6 Innovation Center of
Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese
Medicine, Shanghai, China

DNAmethylation is a vital epigenetic change that regulates gene transcription and helps to
keep the genome stable. The deregulation hallmark of human cancer is often defined by
aberrant DNA methylation which is critical for tumor formation and controls the expression
of several tumor-associated genes. In various cancers, methylation changes such as
tumor suppressor gene hypermethylation and oncogene hypomethylation are critical in
tumor occurrences, especially in breast cancer. Detecting DNA methylation-driven genes
and understanding the molecular features of such genes could thus help to enhance our
understanding of pathogenesis and molecular mechanisms of breast cancer, facilitating
the development of precision medicine and drug discovery. In the present study, we
retrospectively analyzed over one thousand breast cancer patients and established a
robust prognostic signature based on DNA methylation-driven genes. Then, we
calculated immune cells abundance in each patient and lower immune activity existed
in high-risk patients. The expression of leukocyte antigen (HLA) family genes and immune
checkpoints genes were consistent with the above results. In addition, more mutated
genes were observed in the high-risk group. Furthermore, a in silico screening of
druggable targets and compounds from CTRP and PRISM databases was performed,
resulting in the identification of five target genes (HMMR, CCNB1, CDC25C, AURKA, and
CENPE) and five agents (oligomycin A, panobinostat, (+)-JQ1, voxtalisib, and arcyriaflavin
A), which might have therapeutic potential in treating high-risk breast cancer patients.
Further in vitro evaluation confirmed that (+)-JQ1 had the best cancer cell selectivity and
org October 2021 | Volume 12 | Article 7613261
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exerted its anti-breast cancer activity through CENPE. In conclusion, our study provided
new insights into personalized prognostication and may inspire the integration of risk
stratification and precision therapy.
Keywords: breast cancer, drug targets, DNA methylation, personalized prognostication, precision therapy
INTRODUCTION

Breast cancer (BRCA) is a female malignancy with the highest
incidence worldwide, accounting for up to 11.7% of all cancer
cases. (1). At the molecular level, breast cancer is a heterogeneous
illness and could be categorized into four subtypes, namely,
lumina A (cavity surface A), lumina B (cavity surface B), triple-
negative & HER-2 positive breast cancer (2). In addition to
systemic treatments including chemotherapy, endocrine therapy
(hormone therapy), targeted therapy, and immunotherapy,
surgical resection is the primary option for treating breast
cancer. Early-staged, non-metastatic breast cancer is often
curable. However, under currently available therapies, a full
recovery of patients from advanced breast cancer with distant
organ metastases is challenging (3). Thus, early detection,
diagnosis, and effective therapies are necessary for improving the
survival of breast cancer patients. Prognosis prediction of breast
cancer has been exhaustively investigated over the past decade,
and future therapy strategies will be more concerned with
individualization and personalized medicine (4, 5).

Epigenetic changes are genetic changes that alter DNA
methylation, gene expression, histone acetylation, and noncoding
DNA (6). DNAmethylation is a vital epigenetic change, and the site
of DNA methylation is the addition of a methyl group to the 5’ site
of a CpG (“cytosine preceding a guanosine”) (7). Methylation
changes such as tumor suppressor gene hypermethylation and
oncogene hypomethylation have critical occurrences in various
cancers (8). In recent research, DNA methylation affects the
prognosis of breast cancer dependent on molecular subtypes (9,
10), and is associated with the chemoresistance of breast cancer
patients to standard therapy in clinical practice (11). Therefore,
detecting DNA methylation-driven genes and examining their
association with treatment outcomes could help predict the risk of
breast cancer patients (12), finally leading to a more specialized
clinical treatment. It was revealed that the identification of DNA
methylation-driven genes is instrumental in understanding the
process of cancer initiation (13), maintenance, and development
(14). Recent studies have established a prognosis model on the basis
of Bayesian network classification and applied it in classifying the
test set into DNA methylation subgroups (15). More importantly,
previous research have mostly concentrated on either gene or
methylation expression data, without any integrated analyses. In
addition, it is less often to tailor specialized management for high-
risk patients with breast cancer. The development of treatment
interventions is hampered by a lack of complete knowledge of the
molecular as well as cellular processes that drive breast cancer.

To address the above challenges, for the first time, the present
study identified DNA methylation-driven genes through
integrating the transcriptomic as well as DNA methylation
org 2
profiles of breast cancer. By using the random forest as a
classifier, we further performed feature selection on DNA
methylation-driven genes, designed a prediction model, and
predicted potential therapeutic targets and agents for high-risk
patients. We found that unique DNA methylation classifications
may describe the heterogeneity of earlier breast cancer molecular
subgroups and assist in the development of tailored remedies for
new disease subtypes. Furthermore, five therapeutic target genes
(HMMR, CCNB1, CDC25C, AURKA, and CENPE) and five
drugs (oligomycin A, panobinostat, (+)-JQ1, voxtalisib, and
arcyriaflavin A) were identified for those high-risk breast cancer
patients, with the potential to improve current population-based
therapeutic strategies in breast cancer management. Further in
vitro experiment using high-risk prognostic sensitive drugs under
different breast cancer cells showed that upregulated expression of
the high-risk related gene CENPE was positively related with the
sensitivity of breast cancer cells to (+)-JQ1. Our findings indicated
that the methylation-driven gene-based model was reliable and
can offer a novel approach for predicting and treating clinically
high-risk patients and aid in improving BRCA molecular
diagnostics and tailored treatments.
MATERIALS AND METHODS

Patients and Samples
The mRNA raw count profiles of the TCGA-BRCA project and
relevant clinical information were downloaded from the GDC
data portal (https://portal.gdc.cancer.gov). A total of 1097 breast
cancer patient samples with corresponding clinical information
were available in TCGA. In addition, 888 DNA methylation
profiles (Methylation450k, 790 tumor samples, and 98 non-
tumor samples) of breast cancer patients were acquired from
the UCSC Xena website (http://xena.ucsc.edu). Among 790
TCGA breast cancer DNA methylation samples, 785 samples
included both RNA-sequencing data and paired DNA
methylation data. In this paper, the gene methylation value
was defined as the average DNA methylation value of all CpG
sites in the promoters (transcription start sites (TSS) 1500 and
TSS200) of a gene. An independent cohort (GSE86166
microarray dataset) with gene expression profiles of 366 breast
cancer samples was downloaded from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo).

Data Pre-Processing for DNA Methylation
Profiles and Gene Expression Profiles
The methylation level of each probe was represented by the b value
ranging from 0 (unmethylated) to 1 (fully-methylated). To simplify
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the DNA methylation data, probes with missing data in more than
50% of the samples were removed. The remaining probes with NAs
were imputed by the K-nearest neighbor (KNN) imputation
procedure. For raw count data from TCGA, the Ensembl IDs
were transformed to gene symbols, and protein‐coding genes were
selected. Next, we computed the transcripts per million (TPM)
values, which showed a greater similarity to those generated from
microarray analysis and higher comparability among samples.
Then, TPM values were normalized using the log2(TPM+1)
formula. For the GEO datasets, we normalized the expression
datasets by Robust Multiarray Average with the R package “affy”
(16). For multiple probes mapped to one gene, the mean value of
expression was taken.

Differentially Methylated Sites
and Gene Analysis
In this study, the methylation analysis following chip analysis
methylation pipeline (ChAMP) was performed with the required
R package “IlluminaHumanMethylation450-kanno.ilmn12.hg19”
as annotation (17, 18). Methylation b matrix was first filtered and
imputed and then normalized through the embedded BMIQ
method with the champ.filter function was applied to filter
methylation probes with default parameters. The b value was
normalized by the champ.norm function. Differentially
methylated sites (DMSs) were detected by champ.DMP
function. A probe was identified as a hypermethylated probe if
the probe methylation level was greater than 0.3 in the tumor
group but less than 0.2 in the normal group with an adjusted P
value less than 0.05, and vice versa for hypomethylated probes.
Furthermore, differentially methylated genes (DMGs) were
determined according to probe location in corresponding genes.
The average DNA methylation value for all CpG sites in the
promoters (transcription start sites (TSS) 1500 and TSS200) of a
gene was defined as the DNA methylation value for that gene.

Comprehensive Analysis of Gene
Expression and DNA Methylation
The MethylMix package in R was used to analyze integrated
DNA methylation data of 785 breast cancer samples, 98 non-
tumor samples, and paired gene expression data to identify DNA
methylation events that significantly affect the expression of
corresponding genes and to show that the gene was a DNA
methylation-driven gene (19). For the MethylMix analysis, the
correlation between the methylation data and paired gene
expression data of DMGs in 785 breast cancer samples was
determined to identify DNA methylation events that led to
changes in gene expression, and only genes that met the
correlation filter were recruited into further analysis. We also
used a b mixture model to define a methylation state across a
large number of patients, precluding the need for an arbitrary
threshold. DNA methylation states between the 785 breast
cancer samples and 98 corresponding non-tumor samples and
was compared by conducting a Wilcoxon rank sum test. In this
paper, significant q values of 0.05 calculated using P-value
multiple testing correction with false discovery rate (FDR), and
other parameters were set as default parameters.
Frontiers in Immunology | www.frontiersin.org 3
Generation and Validation of the
Predictive Model
By using the random forest as a classifier, further feature selection
was performed on DNA methylation-driven genes (20).
Multivariate cox regression analyses were further conducted to
evaluate relationships between the expression of the DNA
methylation-driven genes and breast cancer prognosis and to
detect the independent DNA methylation-driven genes
significantly associated with the cancer prognosis. A risk score
prediction model based on DNA methylation-driven genes was
established through a linear combination of the expression levels
of independent DNA methylation-driven genes using coefficients
from multivariate Cox regression as weights. Breast cancer
patients were stratified into low-risk and high-risk groups by the
prediction model, with the optimal risk score as the cutoff point.
Survival differences between high-risk patients and low-risk
patients were evaluated by Kaplan-Meier survival plots and then
compared by log-rank test. The GSE86166 dataset from the GEO
database was used to validate the prognostic model. Whether the
predictive power of the predictive model was independent of other
clinical features of breast cancer patients was analyzed by
univariate and multivariate Cox regression analyses.

Analysis of Tumor Immune Signatures
In this paper, we calculated the tumor immune signatures from
the following two aspects. Firstly, the levels of infiltrating
immune and stromal cells were calculated by CIBERSORT
(21), TIMER (22), MCP-counter (23), and quanTIseq (24)
algorithms. Secondly, the expression of the leukocyte antigen
(HLA) family genes and immune checkpoints genes also
was calculated.

Analysis of the Tumor Mutation Status
The information of somatic mutations in TCGA samples was
downloaded from Genomic Data Commons Data Portal (https://
portal.gdc.cancer.gov/). Concerning different mutation types,
non-synonymous mutation variants and synonymous mutation
variants are analyzed respectively in this paper. Differential
mutated genes between the low- and high-risk groups were
identified and the interaction effects of mutated genes also
were analyzed by maftools package (25). In our analysis, only
genes mutating more than 10 times in at least one group
were considered.

Cancer Cell Line Data
Expression profile data of human cancer cell lines were obtained
from the Broad Institute Cancer Cell Line Encyclopedia (CCLE)
project (https://portals.broadinstitute.org/ccle/) (26). The
CERES scores of genome-scale CRISPR knockout screening of
18,333 genes in 739 cell lines were acquired from the dependency
map (DepMap) portal (https://depmap.org/portal/) (27, 28).
CERES score measures the dependency of the gene of interest
in a specific cancer cell line, with a lower score indicating a higher
possibility of the essentiality of the gene in cell growth and
survival of the given cancer cell line. Drug sensitivity data of
cancer cell lines were obtained from the Cancer Therapeutics
October 2021 | Volume 12 | Article 761326
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Response Portal (https://portals.broadinstitute.org/ctrp) and
PRISM Repurposing dataset (https://depmap.org/portal/prism/)
(29, 30). The CTRP contains the sensitivity data of 481
compounds from over 835 cancer cell lines, and the PRISM
contains the sensitivity data of 1497 compounds over from 480
cancer cell lines. Both two datasets provide area under the dose-
response curve (AUC, area under the curve) values as a
measurement of drug sensitivity, with a lower AUC indicating
a higher sensitivity to treatment. In this study, compounds with
more than 20% of missing data and cell lines derived from
hematopoietic and lymphoid tissue were excluded. The KNN
imputation was applied to impute the missing AUC values.
Molecular data in CCLE were used for subsequent CTRP and
PRISM analyses, as the cancer cell lines in both datasets were
obtained from the CCLE project.

Cell Lines and Drug Compounds
Human breast cancer cell line MDA-MB-231 and non-malignant
breast epithelial cell line MCF10A were kind gifts from the
Cancer Hospital of the University of Chinese Academy of
Sciences (Zhejiang Cancer Hospital, Hangzhou China). The
human breast cancer cell line MCF7 was purchased from
American Type Culture Collection (ATCC). All the cell lines
were maintained in RPIM 1640 medium (Gibco, CA, USA)
supplemented with 10% fetal bovine serum (FBS, BI, Israel),
100 unit/mL penicillin, and 100 mg/mL streptomycin in a 5%
CO2, 37°C incubator. Oligomycin A (Lot#: S147806),
panobinostat (Lot#:120036), (+)-JQ1 (Lot#:S711013), voxtalisib
(Lot#:120367), and arcyriaflavin A (Lot#:E0817) were
commercially purchased from Selleck (USA).

Cell Viability Assay
Cell counting kit-8 assay (CCK-8, Beyotime, China) was
performed to detect the sensitivity of the breast cancer cell
lines to the drugs (31). In short, when the cells were in good
condition and growing exponentially, the culture medium was
discarded and the cells were washed with PBS and incubated
with trypsin for 3 minutes. The reaction was then terminated
with the serum-containing culture medium to prepare cell
suspension. Cells (1×104 cells/well) were inoculated into 96-
well plates, cultivated overnight to adhere to the wall. All five
compounds were dissolved in DMSO at various concentrations
and added to the 96-well plates for 24 h. CCK-8 assay was
performed to determine cell viability according to the
instructions and to assess the sensitivity of breast cells to the
drugs. The IC50 values were calculated by GraphPad Prism 8.

Quantitative Real-Time Polymerase
Chain Reaction
The mRNA expression levels of methylated-gene CENPE in the
MCF10A, MDA-MB-231, and MCF7 cell lines were examined.
The primer sequence used for PCR is F: 5’-GATTCTGCCAT
ACAAGGCTACAA -3 ’ , R : 5 ’ -TGCCCTGGGTAT
AACTCCCAA -3’. Briefly, the total RNA samples were
obtained from all three cell lines using RNAiso Plus (lot# 9108,
Takara, Japan) according to the manufacturer’s instruction. 5×
Prime Script TM RT Master Mix (Perfect Real Time, lot#
Frontiers in Immunology | www.frontiersin.org 4
AJ21979A, Takara, Japan) was used to reverse-transcribe 20 uL
RNA into the cDNA. The relative gene expression was quantified
by the Universal SYBR Green Master (lot# 50837000, Roche,
Switzerland). The Applied Biosystems (USA) was used for PCR
amplification. The data were calculated with the 2-△△Ct.

Flow Cytometry
When cells increased exponentially and had normal cell
morphology, PBS was used washed and trypsin digestion.
Next, cell suspensions were seed in 12-well plates. Cell state
was observed and incubated with various concentrations of drug
solution. Cultivated 24h, single-cell suspensions were prepared
and incubated with APC Annexin V apoptosis Detection Kit
with 7-AAD (lot#: 640930, BioLegnd, USA) for 15min, followed
by flow cytometry analysis (32).

Statistical Analysis
R software was used for statistical analysis of all the data. Survival
analysis was performed using the R package survival, and Kaplan-
Meier plots and log-rank tests were conducted to assess the
difference in overall survival (OS) between the two groups (33).
GSEA (gene set enrichment analysis) was performed using the
package clusterProfiler in R (34). The Chi-square test was used to
verify the association between categorical clinical information and
defined groups. TheWilcoxon test (Mann–Whitney test) was used
for continuous data. For all statistical analyses, a P value less than
0.05 was considered statistically significant.
RESULTS

Identification of DNA Methylation-Driven
Genes in Breast Cancer
The workflow of this study is shown in Figure S1. Under the
previously mentioned thresholds, we detected a total of 2415
upregulated CpG sites and 134 downregulated sites. The detailed
differentially methylated CpG sites are shown in Supplementary
Table S1. The circle plot of differentially methylated sites is
shown in Figure 1A and the top 100 sites heatmap is shown in
Figure 1B. These differentially methylated sites were mapped
onto corresponding genes. A gene was defined as differentially
methylated if there is a differentially methylated CpG site on its
promoter. After integrating the mRNA expression of genes, we
finally obtained 1135 differentially methylated genes (DMGs,
Supplementary Table S2).

As DNA methylation-driven genes play an important role in
the initiation and progression of breast cancer, we further
identified the DNA methylation-driven genes in this disease.
Firstly, the DNAmethylation and gene expression data of DMGs
(DNA methylation data of 785 breast cancer samples and 98
non-tumor samples and the paired gene expression data of 785
breast cancer samples) were selected for further analysis. Then,
using the MethylMix package, 194 DNA methylation-driven
genes in total were screened (Supplementary Table S3). To
examine the relationship between methylation-driven genes and
the prognosis of breast cancer, the univariate cox proportional
October 2021 | Volume 12 | Article 761326
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hazard regression analysis was performed and identified 28
statistically significant (P < 0.05) genes and the Kaplan-Meier
survival analysis detected 33 statistically significant (P < 0.05)
genes (Supplementary Tables S4-5). Finally, 17 intersect genes
were obtained for further analysis (Figure 1C). The feature
selection was conducted by recursive feature elimination (RFE)
with a random forest as the classifier and a 10-fold cross-
validation method in R package caret (35). We obtained an
accuracy of 0.854 with 13 DNA methylation-driven genes
(Figure 1D). These 13 DNA methylation-driven genes were
AKR1E2, LIMD2, STAC2, SLC7A4, MAP4K1, PLAT, CXCL1,
NACAD, RBP1, SFRP1, TOX, OSR1, and UBA7. The correlation
analysis showed that the expression of these DNA methylation-
driven genes had a significantly negative correlation with the
level of DNA methylation (Figures S2A–M), showing a negative
regulatory relationship between DNA methylation and
gene expression.

Generation and Validation of the
Prognostic Model Based on DNA
Methylation-Driven Genes
By using recursive feature elimination (RFE) with the random forest
as a classifier and a 10-fold cross-validation method in R package
caret, we obtained 13 DNAmethylation-driven genes. A prognostic
model was established with the regression coefficient from a
Frontiers in Immunology | www.frontiersin.org 5
multivariate Cox proportional hazard model. The risk score was
calculated according to the formula: 0.1944 × AKR1E2 expression
level + 0.0335 × SFRP1 expression - 0.0930 × LIMD2 expression -
0.0644 × STAC2 expression - 0.0965 × SLC7A4 expression level -
0.0042 × MAP4K1 expression level - 0.0932 × PLAT expression
level - 0.1366 × CXCL1 expression - 0.0340 × NACAD expression -
0.0644 × RBP1 expression -0.1161 × TOX expression -0.0767 ×
OSR1 expression -0.1658 × UBA7 expression. The risk score was
normalized to 0 to 1. The breast cancer patients were stratified
into high-risk and low-risk groups according to the optimum
cutoff point. The high-risk patients showed markedly worse OS
than those with low risk (Figure 2A). The predictive
performance of the prognostic model was further evaluated
using 366 breast cancer samples with OS time and survival
status in the validation dataset (GSE86166). The patients in the
validation dataset were classified into low-risk and high-risk
groups utilizing the earlier mentioned formula based on the
optimal cutoff value. Consistent with the above findings, in the
validation set patients in the high-risk group showed a markedly
shorter median OS than those in the high-risk group
(Figure 2B). To investigate whether the prognostic model was
independent of the clinicopathological features, the univariate
and multivariate Cox regression analyses were performed on
the TCGA dataset. The results of univariate Cox regression
demonstrated that the risk score was significantly associated
A B

DC

FIGURE 1 | DNA methylation character in gene promoters. (A) Circos analysis of the hyper- and hypo DMSs between tumor and normal groups. The outer layer
represents CpG sites heatmap. Red color represents CpG sites are hyper-methylated. Blue color represents CpG islands are hypo-methylated. The middle layer
represents density plot of hyper-methylated CpG site. The inner layer represents density plot of hypo-methylated CpG site. (B) Heatmap of top50 hyper- and hypo
DMSs. (C) Venn diagram of two methods. (D) Relation between classification accuracy and selected genes via recursive feature elimination algorithm.
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with OS (high-risk of death group vs. low-risk of death group,
HR =2.883, 95% CI 2.087-3.983, P < 0.01, Figure 2C).
Additionally, in multivariable Cox regression, the risk score
also showed a significant relationship with OS (high-risk of
death group v.s. low-risk of death group, HR = 2.921, 95% CI
2.080-4.102, P < 0.01, Figure 2D). The same analysis was
performed on the validation dataset with similar results
(Figures 2E-F). These results indicated that the prognostic
ability of the prognostic model was independent of other
clinical features.

Identification of Potential Drug Targets
and Biological Processes for High Risk
Score Breast Cancer
Transcriptome-based gene set enrichment analysis (GSEA) was
conducted to determine the pathways and biological processes
involved in breast cancer patients with different risks. We found
that “Cytokine-cytokine receptor interaction”, “Chemokine
signaling pathway”, “PI3K-Akt signaling pathway”, “JAK-
STAT signaling pathway”, “Th17 cell differentiation”, and “NF-
kappa B signaling pathway” were significantly enriched (P <
0.05) (Figure 3A and Table 1). In addition, the GO enrichment
results showed that many biological processes associated with
immunity were enriched (Figure 3B and Table 2), which was
consistent with the KEGG results. These results indicated that
the DNA methylation-driven genes-based risk score could
Frontiers in Immunology | www.frontiersin.org 6
influence these pathways and predict the survival of breast
cancer patients.

Proteins presenting a high positive correlation with risk score
might have potential therapeutic effects on high-risk patients.
However, most of the human proteins lack obvious active sites to
which small molecule compounds can bind or have been found
in cells where are inaccessible for biological agents. With the
purpose of identifying potentially druggable therapeutic targets
for high-risk patients, we collected data of 2249 drug targets of
4484 compounds and conducted a two-step analysis for
screening candidate targets (36) (Supplementary Table S6).
Firstly, the correlation coefficient between the expression of
druggable proteins and the risk score was calculated, and 17
protein targets were found to have a correlation coefficient higher
than 0.30 (P < 0.05) in the TCGA dataset. Similarly, 29 protein
targets were identified from GSE86166 and ten genes, including
HMMR, CCNB1, CDK1, CCNA2, CDC25C, P4HA1, PAICS,
AURKA, CENPE, and RAD51 were identified in both datasets
mentioned above. Finally, the correlation analysis between the
CERES score and the risk score based on breast cancer cell lines
was conducted. Notably, CDK1, CCNA2, P4HA1, PAICS, and
RAD51 showed a CERES score higher than zero in most breast
cancer cell lines, indicating that they might not be essential to
breast cancer. The remaining five genes HMMR, CCNB1,
CDC25C, AURKA, and CENPE were considered to be
potential therapeutic targets, and inhibiting the functions of
A B

D

E F

C

FIGURE 2 | The risk score performance in the TCGA and GEO datasets. (A) The survival plot of OS in TCGA. (B) The survival plot of OS in GSE86166. (C)
Univariate Cox regression analyses of the risk score and clinicopathological parameters in TCGA. (D) Multivariate Cox regression analyses of the risk score and
clinicopathological parameters in TCGA. (E) Univariate Cox regression analyses of the risk score and clinicopathological parameters in GSE86166. (F) Multivariate
Cox regression analyses of the risk score and clinicopathological parameters in GSE86166.
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these genes in high-risk patients could potentially achieve a
favorable treatment efficacy (Figure 3C). The correlation
figures of these five genes in TCGA and GSE86166 datasets are
shown in Figures 3D-M.

The Relationship Between Risk Score and
BRCA Immune Signature
In this research, using CIBERSORT, TIMER, MCP-counter, and
quanTIseq algorithms, the abundance of infiltrating immune
Frontiers in Immunology | www.frontiersin.org 7
cells between two groups was calculated and the results
demonstrated that most of the immune and stromal cells
decreased in the high-risk group (Figure 4A). We also
calculated the estimate score, immune score, stromal score and
tumor purity by using estimate package for each sample.
According to the result, we found that estimate scores,
immune scores and stromal scores were significantly lower in
high-risk patients, while tumor purity was higher (Figure 4B).
We further investigated gene expression of the 35 immune
A B D

E F G

I

H

J K L

M

C

FIGURE 3 | Identification of risk score-related biological processes and drug targets. (A) The enriched KEGG gene sets. (B) The enriched biological process gene
sets. (C) Venn diagram of three datasets. (D–H) The relationship between gene expression and risk score of AURKA, CCNB1, CDC25C, CENPE, and HMMR genes
in TCGA dataset. (I–M) The relationship between gene expression and risk score of AURKA, CCNB1, CDC25C, CENPE, and HMMR genes in GSE86166 dataset.
TABLE 1 | The enriched KEGG pathways associated with the signature.

ID Description Set size Enrichment score NES pvalue

hsa04060 Cytokine-cytokine receptor interaction 293 -0.709 -1.842 0.000
hsa04062 Chemokine signaling pathway 190 -0.662 -1.702 0.000
hsa04151 PI3K-Akt signaling pathway 352 -0.572 -1.494 0.000
hsa04630 JAK-STAT signaling pathway 162 -0.654 -1.680 0.000
hsa04659 Th17 cell differentiation 105 -0.706 -1.796 0.000
hsa04064 NF-kappa B signaling pathway 102 -0.699 -1.776 0.000
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FIGURE 4 | The correlation between risk score and expression of the immune checkpoints/HLA family genes. (A) Landscape of immune and stromal cell infiltrations
in the low- and high-risk patients. (B) Association between estimate score, immune score, stromal score, tumor purity, and risk score and their distribution in the
low- and high-risk groups. (C) Analyses for the expression of immune checkpoints genes in different groups. (D) Analyses for the expression of HLA family genes in
different groups. (E) Correlation analysis for risk score and expression of immune checkpoints. (F) Correlation analysis for risk score and expression of HLA family
genes. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant.
TABLE 2 | The enriched biological process associated with the signature.

ID Description Set size Enrichment score NES pvalue

GO:0002250 Adaptive immune response 411 -0.722 -1.893 0.000
GO:0002449 Lymphocyte mediated immunity pathway 253 -0.672 -1.751 0.000
GO:0002237 Response to molecule of bacterial origin 339 -0.643 -1.686 0.000
GO:0002285 Lymphocyte activation involved in immune response 183 -0.649 -1.681 0.000
GO:0002253 Activation of immune response 441 -0.624 -1.638 0.000
GO:0002429 Immune response-activating cell surface receptor signaling pathway 357 -0.614 -1.611 0.000
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checkpoints and 19 HLA family genes between the high-and low-
risk patients. According to the Wilcoxon test, 32 immune
checkpoints and all HLA family genes were significantly
modulated in the high-risk group (Figures 4C-D). In addition,
our analysis also showed that the risk score had a strong negative
correlation with the expression of 18 immune checkpoints and
16 HLA genes, including TNFRSF14, CD40LG, CD27, TMIGD2,
HLA-DPB1, and HLA-E (Figures 4E-F).

Mutation Status in BRCA Patients in the
High- and the Low-Risk Groups
In this paper, we downloaded somatic mutations from the TCGA
database to investigate risk score-related mechanisms in BRCA.
In the mutant frequency level, we found that more somatic
mutations were observed in the high-risk group, including non-
synonymous and synonymous mutations (Figure 5A). The
Frontiers in Immunology | www.frontiersin.org 9
waterfall plots of mutation in all samples were shown in
Figure 5B. Meanwhile, differential mutant genes also were
calculated and 23 genes mutated more frequently in BRCA
patients in the high-risk group, such as TP53, CDH9, RYR3,
DYNC2H1, and TMEM132D (Figure 5C). However, only 9
genes mutated more frequently in BRCA patients in the low-
risk group. Moreover, these differential mutant genes also show
significant co-occurring or mutually exclusive mutation patterns
(Figure 5D), which could shed lights on therapeutic strategies
for breast cancer patients.

Estimation of Drug Response in
Clinical Samples
The CTRP and PRISM datasets, which contain the gene expression
profiles and drug sensitivity profiles of hundreds of cancer cell lines
can be utilized to construct the prediction model of drug response.
A

B

DC

FIGURE 5 | The relationship between risk score and BRCA immune signature. (A) Association between all mutation counts, synonymous mutation counts, non-
synonymous mutation counts and risk score and their distribution in the low- and the high-risk groups. (B) Landscape of mutation status in all samples. (C) Forest plot of
genes mutating differentially in patients of different groups. (D) Interaction effect of genes mutating differentially in different groups. *P < 0.05; **P < 0.01; ***P < 0.001.
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We excluded compounds with NAs from more than 20% of the
samples and cell lines derived from hematopoietic and lymphoid
tissues. 680 cancer cell lines with 354 compounds in the CTRP
dataset and 480 cancer cell lines with 1285 compounds in the
PRISM dataset were recruited into the subsequent analysis. The
pRRophetic package that had a built-in ridge regression model was
used to predict the drug response of clinical samples based on their
expression profiles, and an estimated AUC value of each
compound in each clinical sample was obtained (36).

Two different approaches were adopted to identify the
candidate with higher drug sensitivity in high-risk patients.
The analyses were performed using CTRP- and PRISM-
derived drug response data, respectively. First, differential drug
response analyses between high-risk score (top decile) and low-
risk score (bottom decile) groups were conducted to identify
compounds with lower estimated AUC values in the high-risk
score group (log2FC > 0.10). Next, Spearman correlation
analysis between AUC value and the high-risk score was used
to select compounds with a negative correlation coefficient
(Spearman’s r < -0.30 for CTRP or -0.35 for PRISM). The
analyses detected two CTRP-derived compounds (oligomycin
A and panobinostat) and three PRISM-derived compounds
((+)-JQ1, voxtalisib, and arcyriaflavin A). All these compounds
showed lower estimated AUC values in the high-risk group and a
negative correlation with risk score (Figures 6A, B). Therefore,
these compounds may have therapeutic effects on high-risk
breast cancer patients.
Frontiers in Immunology | www.frontiersin.org 10
Upregulated Expression of CENPE in
Breast Cancer Cells
We identified five potential target genes HMMR, CCNB1,
CDC25C, AURKA, and CENPE for patients with high-risk
scores. Among them, the CENPE gene encodes a centromere
binding protein and mitotic kinesin, which has been
demonstrated as a promising target for cancer drug
development (37). We further examined the mRNA expression
level of CENPE in breast epithelial cell line MCF10A and breast
cancer cell lines MDA-MB-231 and MCF7. The results showed
that CENPE was significantly elevated in breast cancer cell
lines (Figure 7A).
In vitro Anti-Breast Cancer Activity
of Selected Drugs
To explore the sensitivity of breast cancer cells to the selected
drugs, we examined the effects of all five compounds on the
viability of MCF10A, MCF7, and MDA-MB-231 cell lines. The
results showed that only (+)-JQ1 had selective cytotoxicity for
breast cancer cells (Figures 7B–E and Figure S3). (+)-JQ1
showed comparable cytotoxicity in MCF7 and MDA-MB-231
cell lines, with IC50 values of 13.57 mM and 13.72 mM,
respectively. However, MCF10A cells (IC50 = 30.74 mM) were
much less sensitive to (+)-JQ1 than MCF7 and MDA-MB-231
cell lines. We further examined the effects of (+)-JQ1 on breast
cancer cell apoptosis. The results showed that with the increased
A

B

FIGURE 6 | Identification of candidate drugs with higher drug sensitivity in high risk score patients. (A) The results of Spearman’s correlation analysis and differential
drug response analysis of two CTRP-derived compounds. (B) The results of Spearman’s correlation analysis and differential drug response analysis of three PRISM-
derived compounds. Note that lower values on the y-axis of box plots imply greater drug sensitivity. The statistical significance of pairwise comparisons is annotated
with symbols in which *** represent P ≤ 0.001.
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concentration of (+)-JQ1, the compound induced apoptosis in
both breast cancer cell lines (Figure 7F). Taken together, our
results indicated that (+)-JQ1 might exert its anti-breast cancer
activity through CENPE.
DISCUSSION

As one of the most common malignant cancers, breast cancer
imposes serious health problems on women all over the world
(38, 39). Considerable efforts have been devoted to the
improvement of breast cancer treatment, but its mortality rate
remains high and patients often develop resistance to chemical
therapy (40). Recent studies have shown that breast cancer is
accompanied by genetic changes and epigenetic abnormalities,
and DNA methylation is the most common epigenetic change
(41, 42). Therefore, it is necessary to identify the role of DNA
methylation-driven genes in the diagnosis of breast cancer for
improving the prognosis and treatment of breast cancer.

RNAseq and microarray technologies have provided
opportunities for the discovery of new genes involved in the
epigenetic modulation of breast cancer (43). TCGA data have
Frontiers in Immunology | www.frontiersin.org 11
demonstrated the significant diversity of genetic alterations in
human cancer (44), but not all abnormalities will exert a
biological effect on breast cancer or stimulate its development. It
is also necessary to distinguish between epigenetic changes
promoting malignant phenotype and alterations of “passenger”
genes without any biological effect (45). Therefore, a model-based
instrument (MethylMix) has been used to identify DNA
methylation-driven genes that affect their expression. In the
present study, we used a ChAMP pipeline to detect DNA
methylation-driven sites and identified DMGs, according to the
probe location in corresponding genes. Subsequently, the
MethylMix package in R was applied for analyzing integrated
data to identify DNA methylation-driven genes. We obtained 13
DNAmethylation-driven genes using recursive feature elimination
with the random forest as a classifier and a 10-fold cross-validation
method in R package caret. Then, multivariate Cox regression
analysis was conducted to generate a prognostic model system
based on these DNA methylation-driven genes. The model
successfully stratified patients with breast cancer into high-risk
and low-risk groups. Specifically, our model showed a high
performance in predicting the survival of high-risk patients, who
had significant differences in OS. We also verified the robustness of
A B
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FIGURE 7 | Biological verification of the association between methylation-driven genes and potential compounds. (A) The mRNA expression levels of CENPE in
different cell lines. (B) The effects of (+)-JQ1 on the viability of MCF10A cells. (C) The effects of (+)-JQ1 on the viability of MCF7 cells. (D) The effects of (+)-JQ1 on
the viability of MDA-MB-231 cells. (E) The IC50 values of selected compounds in different cell lines. (F) The effects of (+)-JQ1 on apoptosis in MCF7 and MDA-MB-
231 cell lines. *P < 0.05; **P < 0.01; ****P < 0.0001.
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the model in the GEO dataset, which showed that the model had
high performance. To assess the independence of the prognostic
model in predicting OS, univariate and multivariate cox regression
analyses were conducted, and the results indicated an independent
correlation of the prognostic with the OS of breast cancer patients.
Overall, these results suggested the prognostic significance of the
DNA methylation-driven genes-based model in predicting the OS
of breast cancer patients and the model was independent of other
clinical features.

The GSEA method was performed on the gene set from GO
term and KEGG pathway and the values demonstrated that the
DNA methylation-driven genes-based risk score could influence
immune-related pathways, including “Cytokine-cytokine
receptor interaction”, “Chemokine signaling pathway”, “PI3K-
Akt signaling pathway”, “JAK-STAT signaling pathway”, “Th17
cell differentiation”, and “NF-kappa B signaling pathway”. Using
four immune infiltration algorithms and estimate algorithm, we
calculated the abundance of infiltrating immune cells in each
patient and we found that the high-risk group presented higher
tumor purity, lower levels of immune and stromal cell
infiltration, lower immunogenicity than patients in the low-risk
group. These results suggested that high-risk tended to present
an immune-suppressed status. Lower immune activities, such as
lower immune cell infiltration and downregulation of HLA-I and
HLA-II expressions existed in the high-risk group, which may be
associated with the downregulation of checkpoints. Maftools
analysis also showed higher somatic mutation status in the
high-risk group. More evidence showed that tumor mutational
burden (TMB) has been a biomarker of immunotherapy
response and patients can benefit from immunotherapy if they
have higher TMB (46, 47). In this research, we found that
patients in the high-risk group had higher tumor mutational
counts. However, as discussed above, patients in the low-risk
group presented a higher immune activity, suggesting that high
TMB did not necessarily predict high immunogenicity. Further
analysis showed that the mutation status may be the major
reason for the high TMB in the high-risk group. Strikingly, the
higher frequency of co-mutations was observed in differential
mutant genes, indicating that co-occurrence mutation may lead
to an unknown change in different group patients.

Risk score as a biomarker is also used for precision oncology to
guide the targeted treatment. Based on the druggable targets from
6125 compounds, five potential therapeutic targets (AURKA,
CCNB1, CDC25C, HMMR, and CENPE) were identified, and
five agents (oligomycin A, panobinostat, (+)-JQ1, voxtalisib, and
arcyriaflavin A) were screened from CTRP- and PRISM-derived
drug response data for high-risk breast cancer patients.

Aurora kinase A (AURKA) as a regulator of asymmetric
satellite cell divisions, is a tumor suppressor with a high
frequency of inactivating mutations in many cancers and the
AURKA-CDC25C axis is a novel target for treating colorectal
cancer (48). Advanced study found that methylation of AURKA by
the histone methyltransferase multiple myeloma SET domain
protein reduces p53 stability and regulates cell proliferation and
apoptosis in multiple tumor cells (49). CCNB1 (also named
CYCB1) is widely used as a marker for cell proliferation (50). It
Frontiers in Immunology | www.frontiersin.org 12
also promotes DNA repair when cells suffer from DNA damage
(51). Besides, CCNB1 decreases proliferation and S-phase cell
proportion and increases apoptosis, senescence, and G0/G1-
phase cell proportion in cancer (50). In hepatocellular carcinoma,
translation of CCNB1 could promote proliferation, metastasis, and
sorafenib resistance, Conversely, methylated CCNB1 may help
reduce cancer invasion (52). CDC25C is a key protein for G2/M
transition and mitotic entry (53) and determines cell survival (54).
Therefore, the degradation of the CDC25C protein delays cell
progression (55). Although there are no studies on CDC25C
methylation, previous study showed that CpG methylation of
CDC25C upstream gene, disheveled binding antagonist of beta
catenin 2 (DACT2), sensitized nasopharyngeal cancer cells to
paclitaxel and 5-FU toxicity by suppressing b-catenin/CDC25C
signaling, which indicates the methylation of CDC25C may obtain
the same effect (56). HMMR gene locates human chromosome
5q33.2-qter and encodes a cell-surface receptor for hyaluronan
(RHAMM) that mediates motility in many cell types (57).
However, hyaluronan not only mediates motility receptor
(HMMR) but also encodes evolutionarily conserved homeostasis,
mitosis, and meiosis regulator (58, 59). For example, the mutation
or loss of HMMR in animals induces neurodevelopmental defects
(60). HMMR intersects the process of the cell cycle that stops
cancer metastasis (59). Moreover, the expression of HMMR is
associated with the progression of cancer, such as RHAMM, and
has been suggested as a prognostic factor and a potential
therapeutic target for pancreatic ductal adenocarcinoma (PDAC)
and pancreatic neuroendocrine (PNET) (61). Methylation level of
HMMR strongly related to Head and Neck Squamous Cell
Carcinoma (62).

CENPE is a centromere binding protein and mitotic kinesin
(63). In previous research, CENPE was inhibited by several
compounds that have entered Phase I and Phase II clinical
trials and raised the possibility of the range of kinesin-based
drug targets (64). Recent study found that CENPE expression is
associated with its DNA methylation status in esophageal
adenocarcinoma (65). In this study, we examined the
relationship between CENPE expression and the anti-breast
cancer activity of the selected compounds. First, we observed
that CENPE mRNA expression level is significantly higher in
breast cancer cell lines than that in normal breast epithelial cells.
We also found that one of the compounds (+)-JQ1 selectively
inhibited breast cancer cell viability while it did not show
significant cytotoxicity against normal breast epithelial cells,
suggesting that the expression of CENPE may enhance the
sensitivity of breast cancer cells to (+)-JQ1. We also observed
that (+)-JQ1 induced apoptosis in both breast cancer cell lines in
a concentration-dependent manner, which further confirmed the
significant anti-breast cancer activity of the compound.

The in vitro experiments were performed for evaluating these
high-risk prognostic sensitive drugs, and it was found that the
upregulated expression of high-risk related gene CENPE was
accompanied by an increased sensitivity of breast cancer cells to
(+)-JQ1, indicating that the methylation-driven model was
successfully established. The high-risk model was reliable and
can provide a new perspective for the prediction and treatment
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of clinically high-risk patients with breast cancer. However, some
limitations in the present analyses should be equally noted. Firstly,
the number of cohorts with both RNA-seq and DNA methylation
data available was limited. Secondly, the conclusion was only
drawn from in silico analysis, while the well-designed prospective
population-based studies should be conducted for further
verification. Finally, the results of drug target prediction and
therapeutic agent prediction failed to support each other.
Moreover, future experimental and clinical validations are
necessary to better promote the clinical application of our findings.
CONCLUSIONS

In conclusion, this study developed a novel gene model
consisting of thirteen DNA methylation-driven genes and
validated that the model system was strongly predictive of
breast cancer prognosis. Our findings supported that genes
regulated by DNA methylation were likely related to the
treatment outcomes of cancer. The risk score model showed an
important clinical significance in both low- and high-risk
patients. For patients with low-risk scores, clinicians can adopt
a low-toxicity therapy strategy to avoid ineffective over-
treatment, while these patients can experience a better quality
of life with a satisfactory prognosis. For those with high-risk
scores, our study provided potential therapeutically effective
targets and agents. Overall, the findings of this study offer new
insights into personalized management of breast cancer
prognosis and contribute to integrating personalized prognosis
prediction with precision therapy.
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Supplementary Figure 1 | Schematic diagram of the study design.

Supplementary Figure 2 | Regression analysis between gene expression and
DNA methylation of thirteen DNA methylation-driven genes in the TCGA dataset.
(A–M) The relationship between gene expression and DNA methylation of AKR1E2,
LIMD2, STAC2, SLC7A4, MAP4K1, PLAT, CXCL1, NACAD, RBP1, SFRP1, TOX,
OSR1, and UBA7 genes.

Supplementary Figure 3 | The effects of selected compounds on the viability of
breast epithelial cells and breast cancer cells. (A) The effects of oligomycinA,
voxtalisib, panobinostat, and arcyriaflarin-a on the viability of MCF10A cells. (B) The
effects of oligomycin A, voxtalisib, panobinostat, and arcyriaflavin A on the viability of
MCF7 cells. (C) The effects of oligomycin A, voxtalisib, panobinostat, and
arcyriaflavin A on the viability of MDA-MB-231 cells.
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26. Ghandi M, Huang FW, Jané-Valbuena J, Kryukov GV, Lo CC, McDonald ER,
et al. Next-Generation Characterization of the Cancer Cell Line Encyclopedia.
JN (2019) 569(7757):503–8. doi: 10.1038/s41586-019-1186-3

27. Farria AT, Mustachio LM, Akdemir ZHC, Dent SY. GCN5 HAT Inhibition
Reduces Human Burkitt Lymphoma Cell Survival Through Reduction of
MYC Target Gene Expression and Impeding BCR Signaling Pathways. JO
(2019) 10(56):5847. doi: 10.18632/oncotarget.27226

28. Pruett-Miller SM. Cancer Screens: Better Together. JTCj (2020) 3(1):12–4. doi:
10.1089/crispr.2020.29084.spm

29. Cheah JH, Bridger HS, Shamji AF, Schreiber SL, Clemons PA. Cancer
Therapeutics Response Portal: A CTD² Network Resource for Mining
Candidate Cancer Dependencies. Available at: https://ocg.cancer.gov/e-
newsletter-issue/issue-11/cancertherapeutics-response-portal-ctd%C2%B2-
network [Accessed June 15, 2018].

30. Beijersbergen RL. Old Drugs With New Tricks. JNC (2020) 1(2):153–5. doi:
10.1038/s43018-020-0024-8

31. Yuan L, Mo SW, Xu ZY, Lv H, Xu JL, Guo KB, et al. P-MEK Expression
Predicts Prognosis of Patients With Adenocarcinoma of Esophagogastric
Junction (AEG) and Plays a Role in Anti-AEG Efficacy of Huaier.
Pharmacol Res (2021) 165:105411. doi: 10.1016/j.phrs.2020.105411

32. Wang W, Yang J, Liao YY, Cheng G, Chen J, Cheng XD, et al. Cytotoxic
Nitrogenated Azaphilones From the Deep-Sea-Derived Fungus Chaetomium
Globosum MP4-S01-7. J Nat Prod (2020) 83(4):1157–66. doi: 10.1021/
acs.jnatprod.9b01165

33. Therneau TM, Lumley T. Package ‘Survival’. JRTD (2015) 128(10):28–33.
34. Yu G, Wang L-G, Han Y, He Q-Y. Clusterprofiler: An R Package for

Comparing Biological Themes Among Gene Clusters. JOajoib (2012) 16
(5):284–7. doi: 10.1089/omi.2011.0118
Frontiers in Immunology | www.frontiersin.org 14
35. Kuhn M. Building Predictive Models in R Using the Caret Package. JJSS
(2008) 28(5):1–26. doi: 10.18637/jss.v028.i05

36. Yang C, Huang X, Li Y, Chen J, Lv Y, Dai S. Prognosis and Personalized
Treatment Prediction in TP53-Mutant Hepatocellular Carcinoma: An in
Silico Strategy Towards Precision Oncology. JBib (2021) 22(3):bbaa164. doi:
10.1093/bib/bbaa164

37. Rath O, Kozielski F. Kinesins and Cancer. Nat Rev Cancer (2012) 12(8):527–
39. doi: 10.1038/nrc3310

38. Benson JR, Jatoi I. The Global Breast Cancer Burden. JFo (2012) 8(6):697–702.
doi: 10.2217/fon.12.61

39. Khalili N, Farajzadegan Z, Mokarian F, Bahrami F. Coping Strategies, Quality
of Life and Pain in Women With Breast Cancer. JIjon Res m (2013) 18(2):105.

40. Lin S-X, Chen J, Mazumdar M, Poirier D, Wang C, Azzi A, et al. Molecular
Therapy of Breast Cancer: Progress and Future Directions. JNRE (2010) 6
(9):485. doi: 10.1038/nrendo.2010.92

41. Hon GC, Hawkins RD, Caballero OL, Lo C, Lister R, Pelizzola M, et al. Global
DNA Hypomethylation Coupled to Repressive Chromatin Domain
Formation and Gene Silencing in Breast Cancer. JGr (2012) 22(2):246–58.
doi: 10.1101/gr.125872.111

42. Yang X, Yan L, Davidson NE. DNA Methylation in Breast Cancer. JE-rc
(2001) 8(2):115–27. doi: 10.1677/erc.0.0080115

43. Costa V, Aprile M, Esposito R, Ciccodicola A. RNA-Seq and Human Complex
Diseases: Recent Accomplishments and Future Perspectives. JEJoHG (2013)
21(2):134–42. doi: 10.1038/ejhg.2012.129

44. Pavlopoulou A, Spandidos DA, Michalopoulos I. Human Cancer Databases.
JOr (2015) 33(1):3–18. doi: 10.3892/or.2014.3579

45. Long J, Chen P, Lin J, Bai Y, Yang X, Bian J, et al. DNA Methylation-Driven
Genes for Constructing Diagnostic, Prognostic, and Recurrence Models for
Hepatocellular Carcinoma. JT (2019) 9(24):7251. doi: 10.7150/thno.31155

46. Hellmann MD, Ciuleanu T-E, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette
C, et al. Nivolumab Plus Ipilimumab in Lung Cancer With a High Tumor
Mutational Burden. JNEJoM (2018) 378(22):2093–104. doi: 10.1056/
NEJMoa1801946

47. Hellmann MD, Callahan MK, Awad MM, Calvo E, Ascierto PA, Atmaca A,
et al. Tumor Mutational Burden and Efficacy of Nivolumab Monotherapy and
in Combination With Ipilimumab in Small-Cell Lung Cancer. JCc (2018) 33
(5):853–861. e854. doi: 10.1016/j.ccell.2018.04.001

48. Wang YX, Feige P, Brun CE, Hekmatnejad B, Dumont NA, Renaud J-M, et al.
EGFR-Aurka Signaling Rescues Polarity and Regeneration Defects in
Dystrophin-Deficient Muscle Stem Cells by Increasing Asymmetric
Divisions. JCsc (2019) 24(3):419–432. e416. doi: 10.1016/j.stem.2019.01.002

49. Park JW, Chae Y-C, Kim J-Y, Oh H, Seo S-B. Methylation of Aurora Kinase A
by MMSET Reduces P53 Stability and Regulates Cell Proliferation and
Apoptosis. JO (2018) 37(48):6212–24. doi: 10.1038/s41388-018-0393-y

50. Zhang H, Zhang X, Li X, Meng WB, Bai ZT, Rui SZ, et al. Effect of CCNB1
Silencing on Cell Cycle, Senescence, and Apoptosis Through the P53 Signaling
Pathway in Pancreatic Cancer. JJocp (2019) 234(1):619–31. doi: 10.1002/jcp.26816

51. Schnittger A, De Veylder L. The Dual Face of Cyclin B1. JTips (2018) 23
(6):475–8. doi: 10.1016/j.tplants.2018.03.015

52. Xia P, Zhang H, Xu K, Jiang X, Gao M, Wang G, et al. MYC-Targeted WDR4
Promotes Proliferation, Metastasis, and Sorafenib Resistance by Inducing
CCNB1 Translation in Hepatocellular Carcinoma. JCD Dis (2021) 12(7):1–14.
doi: 10.1038/s41419-021-03973-5

53. Wu C, Lyu J, Yang EJ, Liu Y, Zhang B, Shim JS. Targeting AURKA-CDC25C
Axis to Induce Synthetic Lethality in ARID1A-Deficient Colorectal Cancer
Cells. JNc (2018) 9(1):1–14. doi: 10.1038/s41467-018-05694-4

54. Cho Y, Park J, Park BC, Kim JH, Jeong DG, Park SG, et al. Cell Cycle-
Dependent Cdc25C Phosphatase Determines Cell Survival by Regulating
Apoptosis Signal-Regulating Kinase 1. JCD Differentiation (2015) 22
(10):1605–17. doi: 10.1038/cdd.2015.2

55. Giono LE, Resnick-Silverman L, Carvajal LA, St Clair S, Manfredi J. Mdm2
Promotes Cdc25C Protein Degradation and Delays Cell Cycle Progression
Through the G2/M Phase. JJO (2017) 36(49):6762–73. doi: 10.1038/onc.2017.254

56. Zhang Y, Fan J, Fan Y, Li L, He X, Xiang Q, et al. The New 6q27 Tumor
Suppressor DACT2, Frequently Silenced by CpG Methylation, Sensitizes
Nasopharyngeal Cancer Cells to Paclitaxel and 5-FU Toxicity via b-
Catenin/Cdc25c Signaling and G2/M Arrest. JCe (2018) 10(1):1–12. doi:
10.1186/s13148-018-0459-2
October 2021 | Volume 12 | Article 761326

https://doi.org/10.1186/s13059-014-0579-8
https://doi.org/10.1186/s12967-019-2065-2
https://doi.org/10.1186/s12967-019-2065-2
https://doi.org/10.1186/s12935-020-01345-1
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1093/bioinformatics/btx513
https://doi.org/10.1093/bioinformatics/btv020
https://doi.org/10.18632/aging.102814
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1158/0008-5472.CAN-17-0307
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1101/223180
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1038/s41586-019-1186-3
https://doi.org/10.18632/oncotarget.27226
https://doi.org/10.1089/crispr.2020.29084.spm
https://ocg.cancer.gov/e-newsletter-issue/issue-11/cancertherapeutics-response-portal-ctd%C2%B2-network
https://ocg.cancer.gov/e-newsletter-issue/issue-11/cancertherapeutics-response-portal-ctd%C2%B2-network
https://ocg.cancer.gov/e-newsletter-issue/issue-11/cancertherapeutics-response-portal-ctd%C2%B2-network
https://doi.org/10.1038/s43018-020-0024-8
https://doi.org/10.1016/j.phrs.2020.105411
https://doi.org/10.1021/acs.jnatprod.9b01165
https://doi.org/10.1021/acs.jnatprod.9b01165
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1093/bib/bbaa164
https://doi.org/10.1038/nrc3310
https://doi.org/10.2217/fon.12.61
https://doi.org/10.1038/nrendo.2010.92
https://doi.org/10.1101/gr.125872.111
https://doi.org/10.1677/erc.0.0080115
https://doi.org/10.1038/ejhg.2012.129
https://doi.org/10.3892/or.2014.3579
https://doi.org/10.7150/thno.31155
https://doi.org/10.1056/NEJMoa1801946
https://doi.org/10.1056/NEJMoa1801946
https://doi.org/10.1016/j.ccell.2018.04.001
https://doi.org/10.1016/j.stem.2019.01.002
https://doi.org/10.1038/s41388-018-0393-y
https://doi.org/10.1002/jcp.26816
https://doi.org/10.1016/j.tplants.2018.03.015
https://doi.org/10.1038/s41419-021-03973-5
https://doi.org/10.1038/s41467-018-05694-4
https://doi.org/10.1038/cdd.2015.2
https://doi.org/10.1038/onc.2017.254
https://doi.org/10.1186/s13148-018-0459-2
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Tian et al. Identification and In silico Screening
57. Spicer AP, Roller ML, Camper SA, McPherson JD, Wasmuth JJ, Hakim S,
et al. The Human and Mouse Receptors for Hyaluronan-Mediated Motility,
RHAMM, Genes (HMMR) Map to Human Chromosome 5q33. 2–Qter and
Mouse Chromosome 11. JG (1995) 30(1):115–7. doi: 10.1006/geno.1995.0022

58. Chen H, Connell M, Mei L, Reid GS, Maxwell CA. The Nonmotor Adaptor
HMMR Dampens Eg5-Mediated Forces to Preserve the Kinetics and Integrity
of Chromosome Segregation. JMbotc (2018) 29(7):786–96. doi: 10.1091/
mbc.E17-08-0531

59. He Z, Mei L, Connell M, Maxwell CA. Hyaluronan Mediated Motility
Receptor (HMMR) Encodes an Evolutionarily Conserved Homeostasis,
Mitosis, and Meiosis Regulator Rather Than a Hyaluronan Receptor. JC
(2020) 9(4):819. doi: 10.3390/cells9040819

60. Li H, Kroll T, Moll J, Frappart L, Herrlich P, Heuer H, et al. Spindle
Misorientation of Cerebral and Cerebellar Progenitors is a Mechanistic Cause
of Megalencephaly. JScr (2017) 9(4):1071–80. doi: 10.1016/j.stemcr.2017.08.013

61. Lin A, Feng J, Chen X,WangD,WongM, Zhang G, et al. High Levels of Truncated
RHAMM Cooperate With Dysfunctional P53 to Accelerate the Progression of
Pancreatic Cancer. JCl (2021) 79-89. doi: 10.1101/2021.02.19.432042

62. Lu T, Zheng Y, Gong X, Lv Q, Chen J, Tu Z, et al. High Expression of
Hyaluronan-Mediated Motility Receptor Predicts Adverse Outcomes: A
Potential Therapeutic Target for Head and Neck Squamous Cell
Carcinoma. JFio (2021) 11:499. doi: 10.3389/fonc.2021.608842

63. Tokai N, Fujimoto-Nishiyama A, Toyoshima Y, Yonemura S, Tsukita S, Inoue
J, et al. Kid, a Novel Kinesin-Like DNA Binding Protein, is Localized to
Chromosomes and the Mitotic Spindle. JTEj (1996) 15(3):457–67. doi:
10.1002/j.1460-2075.1996.tb00378.x
Frontiers in Immunology | www.frontiersin.org 15
64. Liang Y, Ahmed M, Guo H, Soares F, Hua JT, Gao S, et al. LSD1-Mediated
Epigenetic Reprogramming Drives CENPE Expression and Prostate Cancer
Progression. JCr (2017) 77(20):5479–90. doi: 10.1158/0008-5472.CAN-17-
0496

65. Zhu X, Luo X, Feng G, Huang H, He Y, Ma W, et al. CENPE Expression is
Associated With its DNA Methylation Status in Esophageal Adenocarcinoma
and Independently Predicts Unfavorable Overall Survival. JPo (2019) 14(2):
e0207341. doi: 10.1371/journal.pone.0207341
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Tian, Fu, Zhang, Xu, Yuan, Qin and Zhang. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
October 2021 | Volume 12 | Article 761326

https://doi.org/10.1006/geno.1995.0022
https://doi.org/10.1091/mbc.E17-08-0531
https://doi.org/10.1091/mbc.E17-08-0531
https://doi.org/10.3390/cells9040819
https://doi.org/10.1016/j.stemcr.2017.08.013
https://doi.org/10.1101/2021.02.19.432042
https://doi.org/10.3389/fonc.2021.608842
https://doi.org/10.1002/j.1460-2075.1996.tb00378.x
https://doi.org/10.1158/0008-5472.CAN-17-0496
https://doi.org/10.1158/0008-5472.CAN-17-0496
https://doi.org/10.1371/journal.pone.0207341
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Identification of a DNA Methylation-Driven Genes-Based Prognostic Model and Drug Targets in Breast Cancer: In silico Screening of Therapeutic Compounds and in vitro Characterization
	Introduction
	Materials and Methods
	Patients and Samples
	Data Pre-Processing for DNA Methylation Profiles and Gene Expression Profiles
	Differentially Methylated Sites and Gene Analysis
	Comprehensive Analysis of Gene Expression and DNA Methylation
	Generation and Validation of the Predictive Model
	Analysis of Tumor Immune Signatures
	Analysis of the Tumor Mutation Status
	Cancer Cell Line Data
	Cell Lines and Drug Compounds
	Cell Viability Assay
	Quantitative Real-Time Polymerase Chain Reaction
	Flow Cytometry
	Statistical Analysis

	Results
	Identification of DNA Methylation-Driven Genes in Breast Cancer
	Generation and Validation of the Prognostic Model Based on DNA Methylation-Driven Genes
	Identification of Potential Drug Targets and Biological Processes for High Risk Score Breast Cancer
	The Relationship Between Risk Score and BRCA Immune Signature
	Mutation Status in BRCA Patients in the High- and the Low-Risk Groups
	Estimation of Drug Response in Clinical Samples
	Upregulated Expression of CENPE in Breast Cancer Cells
	In vitro Anti-Breast Cancer Activity of Selected Drugs

	Discussion
	Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


