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Abstract

Reducing unplanned readmissions is a major focus of current hospital quality efforts. In

order to avoid unfair penalization, administrators and policymakers use prediction models to

adjust for the performance of hospitals from healthcare claims data. Regression-based

models are a commonly utilized method for such risk-standardization across hospitals; how-

ever, these models often suffer in accuracy. In this study we, compare four prediction mod-

els for unplanned patient readmission for patients hospitalized with acute myocardial

infarction (AMI), congestive health failure (HF), and pneumonia (PNA) within the Nationwide

Readmissions Database in 2014. We evaluated hierarchical logistic regression and com-

pared its performance with gradient boosting and two models that utilize artificial neural net-

works. We show that unsupervised Global Vector for Word Representations embedding

representations of administrative claims data combined with artificial neural network classifi-

cation models improves prediction of 30-day readmission. Our best models increased the

AUC for prediction of 30-day readmissions from 0.68 to 0.72 for AMI, 0.60 to 0.64 for HF,

and 0.63 to 0.68 for PNA compared to hierarchical logistic regression. Furthermore, risk-

standardized hospital readmission rates calculated from our artificial neural network model

that employed embeddings led to reclassification of approximately 10% of hospitals across

categories of hospital performance. This finding suggests that prediction models that incor-

porate new methods classify hospitals differently than traditional regression-based
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approaches and that their role in assessing hospital performance warrants further

investigation.

Introduction

Approximately 15% of patients discharged after an acute hospitalization are readmitted within

30 days, leading to potentially worse clinical outcomes and billions of dollars in healthcare

costs [1]. Given these concerns, multiple quality efforts have been instituted in recent years to

reduce readmissions in the United States. For example, the Medicare Hospital Readmission

Reduction Program (HRRP) was created as part of the Patient Protection and Affordable Care

Act and financially penalizes U.S. hospitals with excess 30-day readmission rates among Medi-

care beneficiaries [2,3]. Similar programs are being launched for patients with commercial

insurance with the goal of further incentivizing hospitals to reduce readmissions [4,5].

Not surprisingly, the development of these programs has led to an increased demand for

statistical models that accurately predict readmissions using available healthcare claims data.

As the likelihood of readmission is related to key input features of patients (e.g., age and co-

morbidities), differences in the distribution of patients across hospitals based on such features

may lead to unfair penalization of hospitals that care for more at-risk individuals. Therefore,

using statistical prediction models to adjust for patient risk across hospitals is a major priority

for accountability programs [6]. However, the performance of prediction models for readmis-

sions have been generally poor. For example, existing methods that rely on regression-based

models report area under the curve (AUC) for the receiver operating characteristic in the

range of 0.63 to 0.65, suggesting limited discrimination for prediction [7,8]. Recent use of

more flexible prediction models that leverage machine learning algorithms, such as random

forest and traditional artificial neural network (ANN) models, have attempted to address this

limitation with minimal improvements [9–11].

The purpose of this study is to explore whether advances in ANN models and numerical

embedding techniques could improve prediction of 30-day readmission using administrative

claims data and how this potential improvement may impact calculation of risk-standardized

hospital readmission rates. Administrative claims data such as diagnosis code are key to

describe a patient’s condition and other characteristics, but are often not in the easiest or most

straightforward format for statistical analysis. We exploit a word embedding technique classi-

cally used in Natural Language Processing (NLP) to convert each diagnosis code into a numer-

ical vector such that the “distance” between diagnosis codes is related to “semantic” similarity.

Further, using these numerical vectors as input, we employ a newly developed deep set archi-

tecture ANN model to accommodate varying numbers of diagnosis codes across different

patients and the fact that the prediction should be invariant with respect to the ordering of the

diagnosis codes. ANN models abstract input features from large-scale datasets to assign output

probability by approximating a combination of non-linear functions over the input feature-

space [12, 13]. Modern deployment of ANN models, including deep learning models, have

been used successfully in a range of applications that include image classification and natural

language processing [14–17], as well as prediction from electronic heath records [18,19]. We

apply embedding algorithms from NLP and a new deep set architecture ANN model to a large

United States administrative claims data source focusing on 3 common conditions that were

targeted under the HRRP: acute myocardial infarction (AMI), heart failure (HF) and pneumo-

nia (PNA).
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Methods

We conducted this study following the Transparent Reporting of a Multivariable Prediction

Model for Individual Prognosis or Diagnosis (TRIPOD) reporting guidelines (see S1 Check-

list). All statistical code for replicating these analyses are available on the following GitHub

repository: https://github.com/wenshuoliu/DLproj/tree/master/NRD. Data used for these

analyses are publicly available at: https://www.hcup-us.ahrq.gov/tech_assist/centdist.jsp.

Study cohort

We used the 2014 Nationwide Readmissions Database (NRD) developed by the Agency for

Healthcare Research and Quality (AHRQ) Healthcare Cost and Utilization Project (HCUP),

which includes data on nearly 15 million admissions from 2,048 hospitals [20–22]. The NRD

has the advantage of including all payers, including government and commercial insurers. We

identified patients hospitalized for AMI, HF, and PNA. We created a separate cohort for each

condition using strategies for identifying patients that were adopted from prior published

work [8, 23]. The cohort of index admissions for each condition was based on principal Inter-
national Classification of Diseases-9 (ICD-9) diagnosis codes at discharge (e.g. in the case of

AMI we used 410.xx, except for 410.x2) while excluding the following cases: (1) records with

zero length of stay for AMI patients (n = 4,926) per standards for constructing that cohort (as

patients with AMI are unlikely to be discharged the same day); (2) patients who died in the

hospital (n = 13,896 for AMI, n = 14,014 for HF, n = 18,648 for PNA); (3) patients who left the

hospital against medical advice (n = 2,667 for AMI, 5,753 for HF, n = 5,057 for PNA); (4)

patients with hospitalizations and no 30-day follow up (i.e. discharged in December, 2014

(n = 23,998 for AMI, n = 44,264 for HF, n = 47,523 for PNA)); (5) patients transferred to

another acute care hospital (n = 8,400 for AMI, n = 5,393 for HF, n = 4,839 for PNA); (6)

patients of age< 18 years old at the time of admission (n = 12 for AMI, n = 409 for HF,

n = 28,159 for PNA); and (8) patients discharged from hospitals with less than 10 admissions

(n = 1,956 for AMI, n = 1,221 for HF, n = 418 for PNA). Given that such facilities (<10 admis-

sions) are not generally considered a part of typical quality assurance or performance measure-

ment programs for readmissions, we were not interested in these facilities. In circumstances

where the same patient was admitted several times during the study period, we selected only

the first admission. Flow diagrams for the cohort selection are shown in S1 Fig.

Study variables

Our outcome was 30-day unplanned readmission created using the NRD Planned Readmis-

sion Algorithm [23]. The NRD also includes patient-level information on demographics and

up to 30 ICD-9 diagnosis codes and 15 procedure codes from each hospitalization. Among the

diagnosis codes, the principal diagnosis code at discharge represents the primary reason for

the hospitalization while the rest represent comorbidities for the patient. To improve computa-

tional efficiency, we only included codes that appeared at least 10 times in the whole NRD

database, reducing the number of ICD-9 diagnosis and ICD-9 procedure codes for inclusion

in our analyses from 12,233 to 9,778 diagnosis codes and from 3,722 to 3,183 procedure codes,

respectively.

Statistical models and analysis

We evaluated four statistical models: 1) a hierarchical logistic regression model; 2) gradient

boosting (using the eXtreme Gradient Boosting [XGBoost] [24] approach, a widely-used, deci-

sion tree-based machine learning algorithm) using ICD-9 diagnosis and procedure codes
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represented as dummy variables (1 if present, 0 if absent); 3) an ANN model using a feed-for-

ward neural network with ICD-9 codes represented as dummy variables; and 4) an ANN

model in which ICD-9 codes were represented as latent variables learned through a word

embedding algorithm. We used hierarchical logistic regression as a baseline comparator given

its ubiquitous use in health services and outcomes research. XGBoost is based on gradient

boosted decision trees and it is designed for speed and performance. We used it given its rising

popularity in recent years as a flexible machine learning algorithm for structured data. The

intuition behind our model comparisons was to explore the differences between sophisticated

non-linear statistical models and traditional, “off-the-shelf” machine learning techniques. A

more detailed explanation for the statistical models and ANN approaches as well as accompa-

nying statistical code are available in the S1 Information.

To provide a reasonable baseline prediction against which to compare more sophisticated

models we constructed a hierarchical logistic regression model trained on account age, gender

and co-morbidity data. For co-morbidities, we used the well-established Elixauser Comorbi-

tidy Index [25] to identify 29 variables to include as independent features in the model, with a

hospital-specific intercept to account for patient clustering [7]. We implemented this model

using the R function glmer from the package lme4.

For the second model we trained an XGBoost model on ICD-9 codes and age and gender

information in order to provide a comparison to logistic regression. XGBoost has been well-

recognized as an “off-the-shelf” ensemble algorithm that extends classical decision trees by

iteratively fitting decision trees on the gradient of previous decision trees. XGBoost has been

shown to be highly effiecient on large datasets and require little hyper-parameter tuning to

achieve state-of-the-art performance in a variety of tasks [26]. We implemented this model

using the Python package XGBoost with a learning rate of of 0.0002 to prevent potential

overfitting.

For the third model we trained a shallow feed-forward ANN on the same set of features as

the gradient boosted tree. Our motivation for the ANN architecture was to use a simple design

with widely adopted parameters. We employed two fully-connected hidden layers with relu

activation functions and a single fully-connected output layer (softmax). We chose the ADAM

optimizer with a categorical cross-entropy loss function with a conservative learning rate of

0.0002. We reduced the dimensionality of the input feature space between the fully connected

layers from 1,024 to 256 to learn complex patterns from the input features instead of using

human-engineered selection of variables (i.e., the Elixhauser Comorbidity Index. ANN models

require human parameter specification and may be prone to overfitting. For this reason we

kept the architecture of the ANN relatively simple. As such, the ANN model represents a rea-

sonable “off-the-shelf” analogy to the XGBoost model. To further mitigate chances of overfit-

ting we included a dropout layer (0.3). Hyper-parameters were selected through cross-

validation to give the best prediction accuracy on a hold-out validation set and evaluated on

testing data.

In the fourth model, we encoded 9,778 ICD-9 diagnosis and 3,183 procedure codes into

200- and 50-dimensional latent variable space, using the Global Vector for Word Representa-

tions (GloVe) algorithm [27], i.e. each diagnosis code is represented by a 200-dimensional

numerical vector and each procedure code is represented by a 50-dimensional numerical vec-

tor. We used GloVe, an unsupervised embedding algorithm to project ICD-9 co-occurrences

to a numerical feature-space where semantic relations between codes are preserved. The pur-

pose of exploring GloVe embeddings and their potential impact on predictive readmission

models is to discover if radical changes from current practices in feature-space and model

design impact risk-standarization scores. The prescence of two ICD-9 diagnosis or procedure

codes in a patient record during hospitalization was considered as a co-occurrence. We then
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counted the number of co-occurrences for each pair of ICD-9 diagnosis and/or procedure

codes in the NRD training data, (excluding the testing set) and constructed embedding vectors

according to the GloVe algorithm, which uses the global co-occurrence of ICD-9 codes along

with a local context. A two-dimensional t-SNE visualization of the embedding vectors of the

ICD-9 diagnosis codes is shown in the S2 Fig. The visualization demonstrates that word

embedding resulted in related diseases clustering closer to each other and is consistent with

the application of word embedding algorithms in other administrative claims data [28, 29].

We used the deep set structure proposed by Zaheer et al [30] to incorporate ICD-9 diagno-

sis and procedure codes into the ANN model. This allowed us to account for varying counts of

secondary ICD-9 diagnosis and procedure codes across patients and allow our model to be

invariant to the ordering of these codes (e.g., the 2nd and the 10th code are interchangeable).

The hospital ID was embedded into a 1-dimensional variable–conceptually this is similar to

the hospital-level random intercept used in the hierarchical logistic regression models. The

architectures of the two ANN models are shown in S3 Fig. The implementation of the ANN

models was done using the Python packages Keras and Tensorflow.

To avoid the risk of overfitting, each of the study cohorts were divided into training, validation

(for parameter tuning), and final testing sets at a proportion of 80%, 10%, and 10%, stratified by

hospitals (i.e., within each hospital). We calculated AUC for the standard hierarchical logistic

regression model, the XGBoost model and both ANN models on the final testing set, with the

95% confidence interval given from a 10-fold cross-validation. Once the models were developed,

we then calculated risk-standardized hospital readmission rates for both the hierarchical logistic

regression and the ANN model trained on diagnosis code embeddings. We calculated these

using predictive margin, which is a generalization of risk adjustment that can be applied for both

linear and non-linear models (like ANN models) [31, 32]. Specifically, the predictive margin for a

hospital is defined as the average predicted readmission rate if everyone in the cohort had been

admitted to that hospital. Benefits of predictive margins over conditional approaches have been

discussed in Chang et al [33]. We compared this approach to the traditional approach for calcu-

lating risk-standardized hospital readmission rates in hierarchical logistic regression models that

uses the predicted over expected readmission ratio for each hospital and then multiplying by the

overall unadjusted readmission rate [7]; importantly, we found similar results (see S4 Fig).

Results

Study cohort

Our study cohort included 202,038 admissions for AMI, 303,233 admissions for HF, and

327,833 admissions for PNA, with unadjusted 30-day readmission rates of 12.0%, 17.7% and

14.3% respectively. The mean (standard deviation) age was 66.8 (13.7) for AMI, 72.5 (14.2) for

HF and 69.2 (16.8) for PNA, with the proportion of females 37.6%, 48.9% and 51.8%, respec-

tively. Summary baseline characteristics are shown in Table 1 with additional details of the

ICD-9 diagnosis and procedure codes in S1 Table. In these cohorts, we noticed an extremely

skewed prevalence of ICD-9 diagnosis and procedure codes that were used to identify features

for training related to comorbidities. For example, in the AMI cohort, three quarters of the

5,614 distinct secondary ICD-9 diagnosis codes appear less than 49 times (prevalence 0.02%),

while the most frequent ICD-9 diagnosis code (i.e., 41.401 for coronary atherosclerosis of

native coronary artery) appears 152,602 times (prevalence 75.5%). See S1 Table for details.

Performance of prediction models

Results of prediction of 30-day readmission as assessed by AUC are reported in Table 2 for

each model and each cohort. The gradient boosting model utilizing XGBoost performed
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slightly better than the hierarchical logistic regression model and similar to the basic feed-for-

ward ANN model. In general, the medical code embedding deep set architecture model gener-

ated the best results on all cohorts relative to the other three models. Compared with

hierarchical logistic regression (as a reasonable baseline), the medical code embedding deep

set architecture model improved the AUC from 0.68 (95% CI 0.678, 0.683) to 0.72 (95% CI

0.718, 0.722) for the AMI cohort, from 0.60 (95% CI 0.592, 0.597) to 0.64 (95% CI 0.635, 0.639)

for the HF cohort, from 0.63 (95% CI 0.624, 0.632) to 0.68 (95% CI 0.678, 0.683) for the PNA

cohort. One possible explanation for this performance increase is that the embeddings capture

the co-occurrence relationship between diagnosis codes, which is not enjoyed by the other

three models, and the ANN is able to learn non-linear mapping patterns between the embed-

dings and the outcome. In a sensitivity analysis, we repeated the same analysis on elderly

patients (65 years old and above) and these are provided in Table 2. Not unexpectedly, the

overall AUCs decreased in the sensitivity analysis due to restriction of the cohort by age

(which is a powerful predictor of readmission for patients); however, the margins for differ-

ences in AUCs across the four different statistical models increased slightly with this restriction

by age.

Risk-standardized hospital readmission rates

Given its overall higher performance, we compared risk-standardized hospital readmission

rates calculated from the medical code embedding deep set architecture model with those cal-

culated using the hierarchical logistic regression model. The histograms and summaries of

these results are shown in (Fig 1). Distributions of the risk-standardized hospital readmission

rates from the two models were similar with just a modest shift downward in the mean for the

medical code embedding deep set architecture model. We observed substantial differences in

terms of rankings of individual hospitals between the two models. For both models, we divided

the hospitals into three groups based on quintiles of predicted risk-standardized hospital read-

mission rates: top 20%, middle 60% and bottom 20%. For AMI, the medical code embedding

deep set architecture model classified 72 (6.4%) hospitals in the middle 60% that the

Table 1. Summary statistics of the predictors for each cohort assessed in this study population.

Acute Myocardial Infarction Heart Failure Pneumonia

No Readmission Readmission No Readmission Readmission No Readmission Readmission

N = 177,892 N = 24,146 N = 249,584 N = 53,649 N = 257,135 N = 46,508

Age, mean (std) 66.3 (13.7) 70.5 (13.3) 72.5 (14.3) 72.5 (13.9) 68.6 (17.2) 70.3 (15.8)

Female pct. 36.60% 45.00% 48.80% 49.30% 52.60% 50.20%

No. of diagnosis codes, mean (std) 12.4 (6.1) 15.7 (6.4) 15.1 (5.5) 16.2 (5.7) 12.7 (5.8) 14.7 (5.8)

No. of procedure codes, mean (std) 5.6 (3.3) 5.2 (3.9) 1.1 (1.9) 1.3 (2.1) 0.7 (1.5) 1.0 (1.8)

https://doi.org/10.1371/journal.pone.0221606.t001

Table 2. Summary statistics of ICD-9CM diagnosis and procedure codes for each cohort.

Methods Acute Myocardial Infarction Heart Failure Pneumonia

Hierarchical Logistic Regression 0.639 (0.635, 0.642) 0.580 (0.578, 0.583) 0.605 (0.601, 0.609)

XGBoost 0.666 (0.664, 0.668) 0.602 (0.599, 0.605) 0.635 (0.632, 0.638)

Feed-Forward Neural Networks 0.667 (0.664, 0.670) 0.604 (0.602, 0.606) 0.639 (0.636, 0.641)

Medical Code Embedding Deep Set Architecture 0.683 (0.680, 0.686) 0.618 (0.616, 0.621) 0.656 (0.653, 0.658)

The prediction accuracy was assessed by the area under the curve for Receiver Operating Characteristic (AUC) on the three cohorts. We compared the four models: the

hierarchical logistic regression, XGBoost, the feed-forward neural networks, and the medical code embedding Deep Set architecture model.

https://doi.org/10.1371/journal.pone.0221606.t002
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hierarchical model classified in the top 20% and classified 37 (3.3%) hospitals in the middle

60% that the hierarchical model classified in the bottom 20%. Results were similar for the HF

and PNA cohorts (Table 3). Given the differences in risk-standardization it is worth investigat-

ing whether traditional approaches (like logistic regression) are the best models on which to

base risk-standardization scores.

Discussion

In recent years, ANN models have shown advantages over traditional statistical models in a

variety of medical tasks [18, 19]. Whether the application of such models to administrative

claims data brings similar improvement in specific tasks related to prediction is worth explor-

ing. This is especially important given the ubiquitous nature of claims data for assessing quality

and hospital performance. In this paper, we applied ANN models towards the task of predict-

ing 30-day readmission after AMI, HF, and PNA hospitalizations with and without diagnosis

code embeddings. We compared “more sophisticated” statistical models to existing

approaches that use input features from classification systems that rely on expert knowledge

like hierarchical logistic regression models as well as gradient boosting. Our findings suggest

ANN models trained on medical code embeddings provide more accurate predictions of read-

mission and generate risk-standardized hospital readmission rates that vary from commonly

used hierarchical logistic regression models.

Fig 1. Distribution of risk-standardized hospital readmission rates. This figure shows differences in the distribution of risk-standardized hospital readmission rates

for acute myocardial infarction (AMI), congestive health failure (HF), and pneumonia (PNA) generated by the hierarchical logistic regression (HLR) model and the

medical code embedding Deep Set architecture ANN (ME-DS) model. Standardized readmission rates are generated by comparing model predictions to expected

readmission rates for each hospital. This figure illustrates that despite having comparable predictive accuracy LHR and MS-DS lead to differences in hospital risk

stratification.

https://doi.org/10.1371/journal.pone.0221606.g001

Table 3. Cross tabulation of divided groups between the Hierarchical Logistic Regression (HLR) and the medical code embedding deep set architecture (ME-DS)

model for each cohort.

Acute Myocardial Infarction Heart Failure Pneumonia

Rank in HLR model

Rank in ME-DS model Top 20% Middle 60% Bottom 20% All Top 20% Middle 60% Bottom 20% All Top 20% Middle 60% Bottom 20% All

Top 20% 151 72 0 223 235 106 0 341 261 122 0 383

Middle 60% 72 563 37 672 106 854 66 1026 122 949 82 1153

Bottom 20% 0 37 186 223 0 66 275 341 0 82 301 383

All 223 672 223 1118 341 1026 341 1708 383 1153 383 1919

https://doi.org/10.1371/journal.pone.0221606.t003
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There has been substantial work performed on constructing risk prediction models to pre-

dict readmissions after a hospitalization. The most frequent way these models are employed is

through regression-based models that include age, gender and co-morbidities as input features

[7]. For co-morbidities, ICD-9 diagnosis and procedure codes obtained from administrative

claims data are used as input features to adjust for differences in individual patient risk in

these models; however, not all of the thousands of potential ICD-9 diagnosis and procedure

codes are included in the models and selecting which to incorporate is an important step. The

selection has been based largely on expert input and empirical studies that have been used to

generate fixed classification systems like the Hierarchical Condition Categories [34] or Elix-

hauser Comorbidity Index [25]. Our findings suggest that more attention should be paid to

risk-stratification methods based on non-linear classification systems, as they lead to substan-

tial differences in risk-scores.

An advantage of ANN models is their ability as a statistical model to capture potential non-

linear effects and interactions of an abstract feature space. By first representing the cooccur-

ance patterns in diagnosis codes using GloVe, followed by a deep set ANN model, one may

not need to rely on human-generated classification systems, instead learning to automate

extraction of relevant features from the data. Yet few studies to date have explored this type of

model towards administrative claims data. We believe a primary reason for this is that ANN

models can be difficult to train due to the issues related to parameter optimization and mem-

ory consumption in the setting of a large number of parameters–sometimes in the order of

millions. In the few studies that have used ANN models with administrative claims data [9, 35,

36], their use also may not have fully captured their full potential for risk prediction. For exam-

ple, the use of binary “1/0” input features for ICD-9 diagnosis and procedure codes may ignore

hidden relationships across comorbidities, limiting the ability of ANN models to improve on

traditional hierarchical logistic regression or other methods like gradient boosting.

Of course, there has been some work on predicting readmissions using ANN models in the

published literature. Futoma et al. implemented the basic architecture of feed-forward ANN

models and showed modest advantages over conventional methods [9]. A number of research-

ers proposed to embed medical concepts (including but not limited to ICD-9 diagnosis and

procedural codes) into a latent variable space to capture their co-relationships [28, 29, 37];

however, these investigators used this approach largely for cohort creation rather than predict-

ing clinical outcomes or risk-adjustment. Krompass et al [36] used Hellinger-distance based

principal components analysis [38] to embed ICD-10 codes and then built a logistic regression

model using the embedded codes as input features. They found marginal improvements in

prediction of readmissions over a feed-forward neural network but were restricted by their

limited sample size. Choi et al. [35] designed a graph-based attention model to supplement

embedding with medical ontologies for various prediction tasks, including readmission. How-

ever, their model did not explicitly consider the fact that the medical codes are permutation

invariant. In this paper, we took advantage of a novel word embedding approach, Global Vec-

tor for Word Representations (GloVe) [27], as well as a new and recently proposed deep set

architecture [30] to fully capture the inter-relationship and the permutation-invariant nature

of the diagnosis and procedure codes at a local and global level. These choices–which were

purposeful and driven by our intuition on the benefits of ANN models for this specific task–

resulted in improved accuracy of prediction for readmission for a word embedding deep set

architecture model across all 3 conditions under consideration.

Our study should be interpreted in context of the following limitations. First, although we

found ANN models outperformed hierarchical logistic regression models, it is uncertain

whether these improvements will justify their use more broadly as this requires consideration

of other issues. For example, ANN models require large-scale data sources to train. Even

PLOS ONE Artificial neural networks for predicting 30-day readmission

PLOS ONE | https://doi.org/10.1371/journal.pone.0221606 April 15, 2020 8 / 12

https://doi.org/10.1371/journal.pone.0221606


though such data were available given the NRD for our current work, these are not always

available. But the widespread availability and application of administrative claims data in

assessing quality and hospital performance justifies the need to explore ANN models (and

other approaches) and alternative feature representation further. Second, ANN models are

computationally intensive and retain a “blackbox” feel with its findings difficult to understand

and explain to users (similar to other models like gradient boosting). These issues may make it

less attractive to policymakers and administrators when there may be a need to justify why per-

formance is lacking in a public program (e.g., HRRP). Third, ANN models may not work for

applications beyond 30-day readmission in these 3 common conditions. Work is needed to

compare the performance of ANN models with traditional approaches for other outcomes

(e.g., mortality), rare diseases, or populations (i.e., non-hospitalized patients).

In summary, ANN models with medical code embeddings have higher predictive accuracy

for 30-day readmission when compared with hierarchical logistic regression models and gradi-

ent boosting. Furthermore, ANN models generate risk-standardized hospital readmission

rates that lead to differing assessments of hospital performance when compared to these other

approaches. The role of ANN models in clinical and health services research warrants further

investigation.
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