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Abstract

Biology presents many examples of planar distribution and structural networks having dense sets of closed loops. An
archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-
nested architecture containing closed loops at many different levels. Although a number of approaches have been
proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is
still lacking. We present an algorithmic framework, the hierarchical loop decomposition, that allows mapping loopy networks
to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to
investigate computer generated graphs, such as artificial models and optimal distribution networks, as well as natural
graphs extracted from digitized images of dicotyledonous leaves and vasculature of rat cerebral neocortex. We calculate
various metrics based on the asymmetry, the cumulative size distribution and the Strahler bifurcation ratios of the
corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs.
This algorithmic framework decouples the geometric information (exact location of edges and nodes) from the metric
topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison
between predictions of theoretical models and naturally occurring loopy graphs.
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Introduction

Among the many different classes of complex systems that can

primarily be described as ‘‘networks’’, an important subclass

concerns physical networks devoted to transportation of various

entities, such as fluids or energy. To some extent, structural load-

bearing networks can also be considered in this category, as their

job is the distribution of stress-strain. Besides their evident

technological importance, these networks are central to the

function of living beings; because of their concrete physicality

they are sometimes far more accessible to experimental analysis

than other important biological networks, and hence offer an

important window into the organization and function of naturally

evolved large-scale networks.

Many biological distribution and structural networks contain

dense numbers of reentrant loops. The venation of angiosperm

leaves (Fig. 1) [1], the structural veins of insect wings, the

continuously adapting foraging networks of some fungi and slime

molds [2], the vasculature of animal organs such as the adrenal

glands, the brain [3] and the liver are just a few of a large number

of examples where physical networks developed loops in living

organisms. These networks perform functions crucial to the

survival of the organisms that use them. The hierarchical

organization and the intricacies of the architecture of these highly

interconnected networks dictate the efficacy in providing support

or distributing load under varying conditions. In some cases the

function of closed loops and how many there should be is

intuitively obvious; the webbing-like veins of a dragonfly wing

have cross-bracings that serve to maintain rigidity and resistance

with a minimum of weight. In other cases it is not self-evident why

there are as many loops as observed.

In many cases, such as leaf venation, loopy networks evolved

gradually from a tree architecture [4]. Various reasons for the

evolution of loopiness in biological distribution networks have

been proposed [5–7]. These networks are the result of de-

velopmental processes that frequently dictate not the exact

position of each network edge but the overall organization in

a statistical sense. For example, one can frequently determine by

mere inspection of the leaf venation patterns if two leaves are

specimens from two different species (Fig. 1). Similarly, networks

produced in silico by optimization routines or developmental

simulations that incorporate the effects of biological noise exhibit

architectures that are to some extent random: each simulation

repeat will produce statistically similar, but never identical,

networks [8–12]. To compare naturally occurring networks with

the computer simulated models we therefore need to be able to test

the null hypothesis that the two networks in question have been

drawn from the same distribution.

Some of the distribution and structural networks in question are

planar, i.e. their edges are (or can be) all confined to the same

plane and meet only at vertices (no two edges can cross each

other). Examples of naturally occurring planar networks include

the veins of leaves and insect wings, the loopy arterial network of

the mammalian neocortex and many others.

Despite the importance of these planar loopy networks, the

arsenal of specialized tools and techniques that can sufficiently

capture the architecture is still limited. Instead, so far the scientific

focus has been on quantifying and describing the topology of
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networks with a tree architecture or the connectivity of non-planar

complex networks, such as the internet. In particular, work

developed since the fifties to describe river networks and dendritic

architectures helped establish some powerful measures to describe

the topological properties of tree structures. The Horton-Strahler

stream ordering system [13,14] and the asymmetry [15] are two

such measures that played a crucial role in understanding the laws

that dictate network growth and organization. Invaluable though

these measures might be for rivers and dendrites, their definition

and usage presuposes a tree architecture and loops destroy their

consistency.

Although measures developed for general, non-planar complex

networks such as the degree distribution and the community

structure in principle work for planar graphs, frequently they are

not fine tuned to capture many aspects of the 2-d network

organization [16–22]. Methods to extract the hierarchical

organization of complex networks have focused primarily on the

node connectivity [23]. Similarly, other more specialized metrics

such as the distribution network entropy [24] are not very

informative with regard to quantities of interest in this work, and

in particular the hierarchical organization of graphs. Some

specialized schemes have been developed to quantify the loopy

architecture of dicotyledonous leaves (see e.g. [25]), and though

they can reveal important information about leaf physiology and

function [26] these methods do not explicitly characterize the

nestedness of the topology. Similarly, predominately geometrical

methods [27] do not fully capture the hierarchical organization of

the graph.

To achieve a meaningful and elegant quantification of highly

interconnected and loopy biological networks we need a sufficiently

nuanced metric that captures certain important aspects of the

topology and architecture of the loopy network without relying on

the exact value of the bond strength or geometrical location. Such

a metric would allow phenotypic parameter reduction and

assignment of numeric values to the level of loop nestedness and

other aspects of the architectural organization that are not

represented by descriptions that rely on local, scalar quantities

(such as histograms of the vein density). More importantly, it will

allow a quantitative and topologically based comparison between

natural loopy networks and the prediction of optimization models.

In this paper we present an algorithmic framework that allows

us to map the architectural organization of a planar graph to that

of a binary tree. We then use three metrics widely used for binary

trees and examine their properties with regard to the original

graph. These metrics are the asymmetry [15], the cumulative size

distribution [28,29] and the Strahler bifurcation ratio [14]. We

present results from three classes of networks: computer generated

networks (whose building rules are predetermined), networks

optimized for known functionals and naturally occurring networks

such as leaf veins and the arterial vasculature of the rat neocortex.

We finally discuss the advantages and disadvantages of each

approach and present future directions and applications.

Results

We have developed an algorithmic framework that maps

a predominately loopy architecture to a dichotomously branching

tree. This framework hierarchically decomposes the loopy

architecture by succesively deleting edges and joining contiguous

loops, and represents this hierarchical decomposition as a tree,

termed the nesting tree.

In what follows, the term link will refer to a graph element that

connects two nodes, and the term edge will refer to a chain of

links, connecting nodes. Each node in an edge is connected to

exactly two other nodes, except the nodes at the boundaries of

the edge, which can be connected to only one other node (when

that edge is the ‘‘leaf’’ of a tree), or three or more other nodes

(see inset of Fig. 2). The ‘‘edge strength’’ WJ is a quantity that

parametrizes the weight of the edge J. If an edge J is composed

of a chain of links, then WJ can be set to be the edge strength of

the weakest of the chain links, the median value, or any other

quantity that is of interest. The term loop is used to refer to the

graph cycles, and the terminal or ultimate loops are the cycles that

do not contain other loops.

Figure 1. Variability in natural loopy networks. (a), (b) Leaf vasculature of two dicotyledonous species. (c) Detail of leaf collected from the same
plant as leaf (a). The venation of (a) and (c) is predominately reticulate, (b) is percurrent. In general, leaves from the same plant (or species) share
statistically similar architectural properties, as compared to leaves from different species. The scale is 1 cm.
doi:10.1371/journal.pone.0037994.g001
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Algorithm
The hierarchical decomposition framework if graphically

represented in Fig. 2. The algorithm begins with a pruning step,

where all tree-like components rooted on the loopy graph

backbone, if present, are removed from the graph. This step

eliminates all vertices that belong only to one edge, and produces

a graph where each edge either separates or connects two loops

(Fig. 3(a)).

In the second step of this hierarchical decomposition, we order

the list of graph edges based on their width (if the graph edge is

composed of a single link) or their edge strength, and identify the

edge with the smallest WJ . In this step we assume that the edges

can be ordered according to their weight in a strictly monotonic

fashion, namely that WJ=WK for every pair of edges J,K. This is

a requirement that can easily be implemented by infinitesimally

randomly perturbing WJ or WK when WJ~WK .

In the third step, we remove the edge Js with the smallest edge

strength from the graph. When an edge separates two contiguous

loops, as in Fig. 3(a)(i), then its removal will result in joining the

two loops to form a larger one, the area of which is the sum of the

areas of the two initial loops. In most cases, this step will also result

in joining the remaining edges of the contiguous loops. For

example, in Fig. 3(a)(ii), the links AB and BC will be joined to form

the edge AC.

We then repeat steps 2 and 3 iteratively, to sequentially

remove every edge, and as a consequence, gradually join every

loop, and perform what we have termed a hierarchical de-

composition of the graph. We can represent this procedure with

a dichotomously branching tree, as follows. The ‘‘leaves’’ of the

tree are the original loops of the full graph, loops A–E in

Fig. 3(b), and each node downstream of the leaf nodes

represents a larger loop that is formed by joining two upstream

loops through the removal of an edge. The location of the

downstream nodes on the vertical axis of the branching tree

represents the edge strength that was removed to join these two

loops. Loops are being hierarchically combined until they break

to the outer region, termed exterior (and labeled ?). The exterior

is treated as a separate loop.

This algorithm will hierarchically decompose the original graph

and will register this hierarchical decomposition as a binary,

nesting tree. The branching patterns of this nesting tree contain

information about important topological properties of the original

graph. Thus, the nesting tree allows us to adapt and use metrics

traditionally defined for trees, to quantify the architecture and

topology of loopy graphs.

Examples of graphs and their corresponding nesting trees are

shown in Fig. 4. The underlying geometry, link connectivity and

point-wise link weight distribution are identical in every

example shown. The architecture is solely defined by the

building rule according to which the link weight values are

assigned on the network. In the gradient model in Fig.4, the link

weights are distributed according to the link center Euclidean

distance from the left-most vertex, creating a smooth gradient of

link weight. The model random links is produced by random

assignment of the weights to the links and exhibits no log-range

order. In the nested model, the straight lines defined by the

underlying link connectivity are ordered based on a self similar

subdivision scheme: the lines on the boundaries and center are

assigned order k~1, the lines bisecting order k~1 lines are

assigned order k~2 etc. The link edges are similarly ordered

according to weight, and then distributed to the ordered straight

lines so that higher thickness links occupy lower order lines.

This produces a hierarchical self-similar pattern, characterized

by long range order in the link weights. Finally, the random lines

model is produced by a random permutation of all the lines.

The ordered arrangement of the edge weights in the gradient

and nested models is reflected on the nesting tree structure. The

nesting tree of the gradient model is a purely additive tree of the

type shown in Fig. 3(e)(ii1). The nesting tree of the nested model is

similar to Fig. 3(e)(i1), however, the iterated building unit is

composed of four sequentially joining elements, rather than just

two joining nodes.

The random models random links and random lines translate to

disordered trees, with characteristic bifurcation statistics. This is

visually apparent by the frequent direct connections of low order

nodes to high order nodes in the nesting tree of the random links

model. Such discrepancies can be captured with metrics that

quantify the topology of trees, such as the asymmetry or the

Cumulative area distribution, discussed in Section ‘‘Hierarchical

decomposition of generated networks’’.

The hierarchical decomposition and the nesting tree contain no

explicit information about the geometry of each edge and element

of the graph, other than the fact that the two joining loops need to

be adjacent. Nodes of the nesting tree thus correspond to

neighborhoods of the original graph - the nesting subtree tj rooted
at node j represents the architecture of the subgraph enclosed in

the loop represented by node j.

When edges at the graph perimeter are removed and loops at

the boundary merge with the exterior, the neighborhood

information is lost. We can retain that information by

appropriately fragmenting the exterior region. Instead of having

a single exterior loop, where every boundary loop sequentially

merges to, we define a multitude of exterior loops as follows.

Figure 2. Hierarchical decomposition and nesting trees:
Algorithm. The first step consists of pruning all tree-like components
of the graph. In the second step we order the list of graph edges based
on their width. Here we mark the 5 thinnest edges, ordered based on
their weight. In the third step, we remove the weakest edge from the
graph. Here this step will result in joining the green with the red loop,
to form the yellow facet. The loops are represented as color coded
nodes in the nesting tree. We then repeat steps 2 and 3 iteratively, to
sequentially remove every edge, and as a consequence, gradually join
every loop.
doi:10.1371/journal.pone.0037994.g002

Quantifying Loopy Network Architectures

PLoS ONE | www.plosone.org 3 June 2012 | Volume 7 | Issue 6 | e37994



We consider an exterior phantom loop that encompasses the

original graph in its entirety. We then connect the vertices on

the perimeter of the original graph with the perimeter of the

phantom loop as shown on Fig. 3(c). Thus defines n boundary

phantom loops, labeled b1,:::,bn, where n is the number of loops

in the original graph that are adjacent to the perimeter. The

added phantom exterior loop and links are assigned infinite

weights and will never be removed during the hierarchical

decomposition. After the addition of the phantom loops to the

original graph, we proceed to iteratively decompose the graph

as before, and represent the decomposition with a binary

nesting tree, like the one shown in Fig. 3(b). In this way, the

neighborhood information at the boundaries is preserved and

will be reflected in the architecture of the nesting tree.

The nesting tree facilitates straightforward identification of the

two basic building blocks of the organization of a planar graph.

We will denote these building blocks as multiplicative (Fig. 3(i1)(i2)),

and additive (Fig. 3(ii1)(ii2)). The multiplicative building blocks

consist of events where the small loops are joined in an iterative,

self-similar fashion. It maps to a tall binary tree, such as the one

shown in Fig. 3(i3). The additive building block is characterized by

sequential joining of minor loops to an encompassing major loop.

It maps to a short binary tree, as in Fig. 3(ii3).

This mapping to a nesting tree is not a bijection. Any

information about the geometric organization (shape and location)

of the loops is lost. Only topological information is retained. For

example, networks Fig. 3(i1) and (i2) both map to Fig. 3(i3), and

Fig. 3(ii1) and (ii2) both map to Fig. 3(ii3). The connection between

the nesting tree the a spanning tree on the dual graph are

discussed in Supporting Information S1.

Elements of the architectural organization, such as loop area or

aspect ratio can be retained by assigning related values to the

nodes of the tree j and defining quantities that reflect their

distribution. For example, the cumulative size distribution is based

on measurements of the loop areas A(j) assigned to the nodes j of

the nesting tree.

When an edge connects, rather than separates, two loops, its

deletion will disconnect the graph (Fig. 3(a)(ii)). There is a number

of ways to incorporate such an event to the hierarchical

decomposition algorithm. In the example cases that we consider

in this work, such events are rare, so for simplicity we chose to

discard them in our implementation. In particular, we replaced the

weight value of the disconnecting edges with the maximum edge

width value of the disconnected loopy components, this way

ensuring that the loop will not disconnect from the graph before it

is hierarchically merged to the encompassing loop (Fig. 3(a)(ii)).

Figure 3. Hierarchical decomposition and nesting trees. (a) Deletion of an edge in a loopy graph. (i) The deletion of the edge joins two
adjacent loops. (ii) The deletion of the edge disconnects the graph. (b) Hierarchical decomposition of a planar graph. Boundary loops sequentially join
the outside space, marked as ?. Left: Nesting tree of the hierarchical decomposition. Right, top to bottom: hierarchically decomposed graph. The
bottom right panel corresponds to the full graph, the rest represents the network at different levels of decomposition (the corresponding cutoff level
of the tree representation is marked with a gray dashed arrow). As edges of the graph are hierarchically deleted, based on their thickness, the original
loops (A–E) are joined to form derived loops (N1–N3). (c) Hierarchical decomposition of a planar graph. Phantom boundary loops surround the graph
perimeter. Loops contiguous to the perimeter of the graph join a ring of phantom boundary loops. The decomposition proceeds as in (b), but the
phantom loops b1–b4 appear among the loops of the original graph in the tree representation. (d) Building blocks of a loopy architecture. The two
basic building blocks of the loopy architecture can be identified using the tree representation of the graph. (i1),(i2): multiplicative nestedness. Nested
loops merge hierarchically. (i3): This architecture is represented by ‘‘tall’’ trees. (ii1),(ii2): additive nestedness. Ordered loops join consecutively. (ii3): The
tree representation is that of ‘‘short’’ trees. Graphs (i1) and (i2) map equivalently to (i3), similarly graphs (ii1) and (ii2) map equivalently to (ii3). (e)
Cumulative size distributions of additive and multiplicative models of nestedness. (i1) Nesting tree for additive nestedness. The degree of each node is
is shown. (i2) Degree (size) distribution for additive nestedness. (i3) Cumulatize size distribution for additive nestedness. (ii1) Nesting tree, (ii2) Degree
(size) distribution and (ii3) Cumulatize size distribution for multiplicative nestedness.
doi:10.1371/journal.pone.0037994.g003
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The nesting tree allows the unique assignment of a number to

properties of the hierarchical organization of the graph and

decouples geometry from topology. In this paper we consider and

adapt three metrics that have been traditionally used on trees:

the asymmetry, the cumulative size distribution and the Strahler

bifurcation ratio. These metrics are presented in the Methods

section of this work - here we apply them to the nesting tree and

Figure 4. Loopy graphs and their corresponding nesting trees. In these examples the nesting trees have been truncated for clarity. Note that
in the ‘‘random links’’ nesting tree frequently low order nodes connect directly to high order nodes. This feature is absent from the ‘‘random lines’’
nesting trees, which are statistically self-similar.
doi:10.1371/journal.pone.0037994.g004
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consider what they mean for the organization of the original

graph.

Hierarchical Decomposition of Generated Networks
In this section we will consider various classes of architectural

models. These computer generated networks were produced

according to various predetermined rules. The gradient, random

links, nested and random lines models are shown in Fig. 4, and are

discussed in the previous section. The nested5 model is produced by

the nested model, choosing five lines at random and randomly

permuting their order. Similarly, the model nested10, is derived

from the nested model by swapping 10 lines at random. Finally, in

the peaks model, the thick links are concentrated around seven

equidistant peaks. These models are shown at the insets of Fig. 5

and 6.

We use the hierarchical decomposition and associated metrics

to quantify various aspects of the architecture, demonstrate what

the metrics reveal about the graph organization and understand

the effects of the finite size, boundaries and of noise.

In Fig. 5(a) we plot the asymmetry QT (tj) (defined in the

Methods section) of the architectural models termed nested (blue),

gradient (magenta) and peaks (green). We have analytically

calculated the asymmetry for the infinite gradient and nested

models. For the gradient model, it can be trivially found to be:

QT (tj)~1{
2

d(tj)
, ð1Þ

where d(tj) is the degree of the subtree tj , defined as the total

number of leaf nodes of tj .

The analytical, closed form expression of the nested model is

more complicated and is presented in Supporting Information S1.

To demonstrate the finite-size, boundary effects in the asymmetry

of the nested and gradient model, we overlay the theoretical

predictions on the finite size numerical results of Fig. 5(a). For the

gradient model, where a large number of low order loops break

directly to the boundary, we notice a deviation of the actual

measured finite size asymmetry from the theoretical one. This

deviation is mostly noticeable at small degrees d. In the nested

model case, there are no low level loops that join the exterior

during the initial stages of the decomposition, so the finite size

effects produce a deviation from the theoretical graph only at high

degrees d. The damped fluctuations in the asymmetry of the nested

model are a signature of the self similarity of the model. The

asymptotic relaxation value of these fluctuations depends on the

topology of the iterative building block of this architecture.

The asymmetry plot of the peaks model follows closely the one

of the gradient model, but, at approximately d^26:5 there is

a marked change of monotonicity. This is the characteristic scale

where the architecture of the model changes qualitatively. Until

that scale, the architecture was predominately additive, with

smaller loops sequentially joining larger ones, and the asymmetry

curve followed qualitatively that of the gradient model. The

asymmetry decreases when the six separate, large size segments,

represented in the inset graph with different colors, join. After

those events take place during the hierarchical decomposition

smaller loops with stronger edges continue to sequentially join

creating a pattern in the asymmetry plot that is again reminiscent

of the gradient model. The asymmetry can be used to identify

characteristic length scales in graphs where major changes in the

architecture take place.

All the three models shown on Fig. 5(a) are deterministic, with

relatively simple architectures. Models such as the random links or

the random lines model exhibit a much more complex asymmetry

profile, as shown in Fig. 5(b). The asymmetry values in that case

are drawn from a distribution the properties of which reflect the

architecture in question. Calculating mutual information and

comparing density maps such as the ones shown in the inset of

Fig. 4(b) can provide a statistically meaningful way to examine the

null hypothesis if two random graphs belong to the same

architectural class. An extensive statistical comparison of the

different architectural models is beyond the scope of this work.

Alternatively, we calculate the moving average of the asym-

metry �QQT , as described in the methods section and plot in Fig. 5(b)

with the red and cyan solid lines. The exact average asymmetry of

each realization of the random models depends on the details of

Figure 5. Asymmetry of generated graphs. The graphs were constructed to share identical underlying topology (N= 817 vertices, triangular
lattice) and edge width distribution, as shown in Fig.3. (a) The asymmetryQT (tn) of the every subgraph tn of rooting node n is plotted as a function of
the base 2 logarithm of the degree d(n), for the nested (red circles), gradient (green squares), and peaks model (blue diamonds). For the peaks and
random lines model, instances of the graph are plotted with highlighted subgraphs of degree 23 and 27 (nested) and *26:4 (peaks). Note the quasi-
periodicity of the asymmetry of the nested model (a signature of the self similar structure of the nested model) and the change of monotonicity of
the peaks model (indicating a qualitative change in the architecture of the graph at that level of organization). (b) The asymmetry QT (tn) of the
random lines model (red) and random links model (cyan). The x-axis is the logarithm of the degree of the vertex or the nesting tree. Red line:
averaged asymmetry of subgraphs of degree d(n), random lines model. Cyan line: averaged asymmetry of subgraphs of degree d(n), random links
model. Inset: Density plots: The overlap of the two distributions is plotted in white. (c) The averaged asymmetry �QQT (d) of the nested (blue), nested5
(orange), nested10 (light blue), random lines (red) and random links model (cyan) as a function of the base 2 logarithm of the degree d. The colored
area indicates the standard error of 20 realizations.
doi:10.1371/journal.pone.0037994.g005
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the noise. In Fig. 5(c) we plot the mean �QQT (d) over 20 realizations

of the nested (blue line), nested5 (orange), nested10 (light blue),

random lines (red) and random links (cyan) models. The colored

area represents the standard error.

The nested5 and nested10 models represent intermediate models

between the nested and the random lines architecture, with

progressively increasing disorder (and asymmetry) as the number of

lines that have been swapped becomes greater. The nested,

nested5, nested10 and random lines model are architectures with

long range order in the link strength, qualitatively significantly

different than the random links model, in which the link strength is

uncorrelated. This difference in reflected in the asymmetry values

of the random lines and random links models (Fig. 5(c)).

The cumulative size distribution P(Awa) is the cumulative

distribution over the areas A associated with the nesting tree nodes.

The cumulative size distribution of the generated models is

presented in Fig. 6(a) and Fig. 6(b,c). In particular, in Fig. 6(a) we

plot the cumulative size distribution of the peaks (green), gradient

(magenta), nested (blue) and random links model (cyan). As shown

in Fig. 3(e), the gradient model follows a straight line of slope 1/2

(a small deviation for small a is due to boundary effects). Kinks and

discontinuities in the slope, like the ones seen in the peaks model

curve, are indicative of qualitative changes in the architecture. The

random lines and nested model curves are significantly different

from the gradient model. We can robustly test for scale invariance

by defining the adjusted cumulative size distribution a:P(Awa).
Since P(Awa)*{1=a for self similar graphs, such as the nested

model, we expect a:P(Awa) to fluctuate around a constant value.

The nature of the fluctuations depends on the topology of the

iterative building block of the nested model.

In Fig. 6(b) we plot a:P(Awa) for the random links model, and

in Fig. 6(c) for the various nested and random lines models. As

expected, the curves for all realizations of the self similar models

fluctuate around a straight line. The periodicity of the curve can

reveal the size of the architectural unit of the self similar network.

The deviation from a straight line for large a is due to boundary

Figure 6. Cumulative size distribution of generated graphs. These graphs were constructed to share identical underlying topology (N= 817
vertices, triangular lattice) and edge width distribution. (a) The asymmetry QT (tn) of the random lines model (red) and random links model (cyan).
The x-axis is the logarithm of the degree of the vertex or the nesting tree. Red line: averaged asymmetry of subgraphs of degree d(n), random lines
model. Cyan line: averaged asymmetry of subgraphs of degree d(n), random links model. Inset: Density plots: The overlap of the two distributions is
plotted in white. (b) The averaged asymmetry �QQT (d) of the nested (blue), nested5 (orange), nested10 (light blue), random lines (red) and random
links model (cyan) as a function of the base 2 logarithm of the degree d. (c) Cumulative size distribution P(Awa) of generated models. Random links
model (green), nested (blue), gradient (magenta), peaks (green). The total area of the graphs has been normalized to 1. Discontinuities or near
discontinuities in the slope of cumulative size distribution indicate lengthscales where potentially the architectural organization changes
qualitatively. (f1). Adjusted cumulative size distribution, random links model. (f2) The Adjusted cumulative size distribution P(Awa) � a is plotted for
the nested (blue), nested5 (orange), nested10 (light blue) and random lines model (red).The Adjusted cumulative size distribution of the self-similar
networks (nested, nested5, and random lines) can be approximated by a straight line of slope zero. Notice the periodicity in the nested lines model.
The colored area indicates the standard error of 20 realizations.
doi:10.1371/journal.pone.0037994.g006
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effects. As the disorder increases, the periodicity becomes less

pronounced, and disappears at the random lines model.

Hierarchical Decomposition of Optimized Networks
In this section we use the hierarchical decomposition and the

nesting tree to analyze the output of the optimization routines

presented in [5]. Here, unlike the architectural models presented

earlier, the building rules according to which the networks were

constructed are not a-priori known. However, the functional

purpose of the networks is known, as they are the (local) minima of

global energy functions. The two models under consideration are

a robustness to damage (broken bond) and fluctuations in the load

(sink) model.

Modeled as electrical (or equivalently water distribution) grids,

the networks transport load from the root (bottom center vertex in

the networks of Fig. 7(a)) to other nodes in the network. In the

‘‘bond’’ model, the root has to distribute the load evenly to all the

vertices, even if a random single bond is removed (robustness to

damage). In the fluctuating sink model, instead of a uniform

distribution of sinks there is a single sink, the position of which

moves across the network. The cost to build the network is

determined by a function K~
P

Cc and is set to a constant in

each case. The parameter c quantifies the ‘‘economy of scale’’, i.e.

how relatively expensive is a high conductivity edge compared to

a smaller edge. The link thickness of the graphs shown in Fig. 7(a)

represents the bond conductivities, which are determined by

optimizing for the total network power dissipation (results are

shown for c~0:2, 0:5 and 0.7).

The asymmetry plots demonstrate the strong statistical similar-

ity of the sink c~0:5 and c~0:7 models with the random links

model at intermediate and large scales (Fig. 7(c)). For the bond

models, the c~0:2 follows closely the c~0:5 optimum, and they

both exhibit a marked change in monotonicity at larger scales.

The overall asymmetry increases with c in the sink model, whereas

there appears to be a significant qualitative change in the

architecture between the c~0:7 and c~0:2, 0:5 of the bond

model. Here it should be noted that the asymmetry metric, as

defined here, does not depend on the actual numerical value of the

bond strengths, just the absolute ordering on the lattice. The sink

model network for c~0:5, 0.7 appears uniform as the smaller

conductivity values are similar in value, however, architecturally

the network is similar to the random model of Fig. 4.

The adjusted cumulative size distribution shown in Fig.7(e),(f),

overall qualitatively reproduces the findings of the asymmetry.

The bond model for c~0:7 exhibits a small size plateau. The sink

c~0:7 model follows a similar curve as the one of the random

links model. Note the change of monotonicity in the bond c~0:2
and c~0:5 model. This indicates a change of architecture from

primarily additive to primarily multiplicative nestedness.

Hierarchical Decomposition of Natural Networks
In this section we apply the hierarchical decomposition for two

real examples, a leaf from Bursera tecomaca and a leaf from Protium

heptaphyllum, show on Fig.8. The leaves have been cleared and

stained by the group of D. Daly in the New York Botanical

Gardens, who provided us with high resolution images of the

Figure 7. Asymmetry and cumulative size distribution of optimized graphs. (a) Optimized networks, fluctuations in the load (sink model).
Instances of optimized graphs (c~0:2,0:5,0:7) when the load is concentrated at a single, moving, point. (b) Optimized networks, robustness to
damage (bond model). Instances of optimized graphs (c~0:2,0:5,0:7) when robustness is required under the presence of random damage. (c)
Asymmetry of sink model. (d) Asymmetry of bond model. The average asymmetry �QQT (d) is plotted as a function of the normalized subtree degree
d=dmax. Red line: c~0:2. Green line: c~0:5. Blue line: c~0:7. Black dashed line: random links model. The colored area represents the standard error
after averaging over 20 realizations of each model. (e) Adjusted cumulative size distribution, sink models. The gray line overlayed on the blue, c~0:7
line is the random links model. (f) Adjusted cumulative size distribution, bond models. The adjusted cumulative size distribution P(Awa) � a is
plotted for c~0:2, 0:5, 0:7 (red, green, blue respectively) The adjusted cumulative size distribution is averaged over 20 realizations for the bond, sink
and random edges model. The colored area represents the standard error after averaging over 20 realizations of each model.
doi:10.1371/journal.pone.0037994.g007
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specimens. We reconstructed and digitized the vasculature of

leaves using custom made software that we have developed to

translate the pixel values information to a collection of nodes and

edges on which we can perform hierarchical decomposition.

In Fig. 8 we show the reconstructed portion of the leaves,

overlayed on the digital image from which it was acquired. A non-

uniform staining or illumination of the specimen can introduce

bias to the reconstruction algorithm and certain neighborhoods of

the reconstructed graph might appear to have spuriously large

weights. In particular, executing an initial decomposition step on

the two networks of in Fig. 8(b1) and (b1), we can easily see that

unlike the Bursera, the Protium sample appears to have strong

loops of smaller size concentrated around major veins. A careful

inspection of the actual specimen is necessary to determine

whether the origin of this bias is due to differential staining or this

effect is of true biological origin. Although problems like this can

be dealt before the digitization step in a number of ways (such as

a variable threshold), here we will not follow this approach. In fact,

the Protium sample was chosen to illustrate a case where non-

uniform staining can result in spurious data and we will use it to

discuss how we can use the hierarchical decomposition framework

to perform data cleaning post the digitization stage.

A hierarchical decomposition of the intercostal area of

Bursera allows us to identify high level nodes of the nesting

tree that correspond to major loops. We use the nesting tree to

identify a natural segmentation of the graph to six major areas

which we plot in Fig. 8(c) along with the corresponding nesting

subtrees for two of those sections. The histogram of the

partition asymmetry q defined on the nodes of the nesting tree

has a local minimum at approximately q^0:97. This value can

serve as a natural cutoff for data cleaning, In the nesting trees

of Fig. 8(c), we color the links of the subtree upstream of the

nodes with partition asymmetry higher than 0.97 with gray.

The corresponding high asymmetry loops are colored white in

the original graph. We see that indeed the high symmetry loops

are consistently concentrated around major veins.

The asymmetry curve �QQT of the intercostal area of Bursera,

shown in Fig. 9(a), reaches a plateau. On the contrary, the Protium

asymmetry does not approach a constant value. However, if we

clean the sample by disregarding the high asymmetry nodes with

qw0:97, we see that the Protium asymmetry curve similarly

reaches a plateau, which is nevertheless higher than Bursera,

indicating an architectural model based on more additive than

multiplicative building blocks compared to Bursera. We can

calculate the asymmetry for each individual segment of Protium in

Fig. 8 and see that, as expected, the different segments exhibit the

same architecture and the asymmetry curves relax to a value of

approximately �QQT (d?1)^0:6, significantly different than the

value of 0.45 of the Bursera (Fig. 9(b)).

The cumulative size distributions of Fig. 9(c) qualitatively follow

the asymmetry plots. The cleaned Protium curve, as well as the

Bursera curve, both reach a plateau, however the cumulative size

distribution cannot effectively distinguish between the two

speciments.

Strahler Bifurcation Ratio
The Strahler bifurcation ratio (10) (discussed in the Methods

section), when computed on the nesting tree can provide a metric

to quantify the overall nestedness of graphs. It is defined as the

ratio of the number of streams Sv of order v to the number of

streams of order vz1. Since the Strahler law of stream numbers is

an inevitable reality for most trees, it is possible to fit the plots

log (Sv) versus logv with a straight line the slope of which will

determine the logarithm of the Strahler bifurcation ratio Rs for the

Figure 8. Hierarchical decomposition and segmentation of two dicotyledonous leaves. (a) Segments of digitized leaf vasculature. The
image of the skeletonized leaf has been overlayed with the digitized portion of interest. (a1) Bursera tecomaca, (a2) Protium heptaphyllum. Images
courtesy of Douglas Daly, New York Botanical Gardens. (b) Hierarchical decomposition of Bursera and Protium. (b1) Bursera, (b2) Protium. Top to
bottom: remaining loops at three different, progressively higher thickness cutoffs. Notice the persistent minor loops at the proximity of the major
veins. (c) Segmentation of Protium heptaphyllum and associated tree representation. The protium intercostal area area has been separated to six
color-coded sectors, as identified by hierarchical decomposition. The associated tree representation for that sector is shown for the green and red
sector. The non-colored (white) areas of the graph and associated gray links on the tree representation correspond to high asymmetry nodes of the
tree representation. Note how the high asymmetry areas are concentrated near major leaf veins.
doi:10.1371/journal.pone.0037994.g008
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whole graph. Examples of this fit are shown in the inset of Fig. 10.

The best fit is found in the least squares sense, and it is forced to

pass through (1,S1) (S1 is equal to the total number of ultimate

loops, or leaf nodes in the nesting tree). The data point for

max (v) is discarded, as it is very sensitive to noise.

In Fig. 10 we plot the Strahler bifurcation ratios for all the

graphs presented in this paper. For the architecture or the

optimization models that are not deterministic each realization of

the graph will produce a different Rs. In those cases, we plot SRsT,
the average bifurcation ratio over 20 realizations, with the black

error bar being the standard deviation. The red error bar

represent the (average) goodness of the linear fit. Notice the extent

of the red error bar for the gradient and peaks models.

The Strahler bifurcation ratio can clearly distinguish between

the strongly multiplicatively nested Bursera and additively nested

gradient model, but, with our current implementation it could not

sufficiently distinguish between many of the models presented in

this work. A major drawback of Rs is that it is a single number

which is inherently unsufficient to capture the complexity of

networks whose architectural properties do not necessarily remain

the same over all lengthscales.

The Rat Brain
The analysis and framework presented in this work can be

useful not only for leaves, but any other, biological or man made,

planar graphs. A notable example is the arterial vasculature of the

rodent neocortex which forms a planar network with multiple

loops [3]. We extracted the diameters of the arterial blood vessels

from a composite rat brain image provided to us by the Kleinfeld

group in UCSD and augmented the connectivity information in

[3] to obtain a weighted map of the arterial vasculature of the rat

brain, as seen in Fig. 11(a). Although the resolution of the image in

our disposal does not allow us to determine the vein widths with

absolute confidence, we were able to identify major vascular

sectors and determine that, according to the data at hand and the

corresponding nesting trees shown in Fig. 11(b), the architecture of

the network in question is primarily additive. Five sectors in

Fig. 11(a) and their associated nesting subtrees are shown in color.

Discussion

We have presented a framework that allows us to quantify the

hierarchical organization of predominately loopy architectures.

Our hierarchical decomposition consists of three iteratively repeated

steps:

1. pruning of the tree-like components

2. ordering of the edges

3. removal of the thinnest edge

This framework relies on the mapping of loopy planar graphs

and their hierarchical decomposition to binary nesting trees. The

nesting tree is subsequently used to quantify the architectural

organization of the original graph. A number of quantities that

reflect various aspects of the graph organization can be defined on

the nesting tree, each with each own advantages and disadvan-

tages. In this work we presented results for three such quantities,

the asymmetry QT (and average asymmetry �QQT ), the cumulative

size distribution and the Strahler bifurcation ratio. The asymmetry

is a bottom-up approach that assigns a number to every composite

loop at each scale. The QT (tj) value is a weighted average of the

nestedness of the architecture of the portion of the graph enclosed

in the j loop, corresponding to node j of the nesting tree. This

metric can be degenerate as, depending on the averaging window,

two different architectures of a high degree loop can map to the

same QT value. On the contrary, the cumulative size distribution

performs better in differentiating architectures at the high levels of

organization. The larger number of low level loops frequently

results in washing out interesting features of the structures at

smaller scales.

These observations are demonstrated in the sink and bond

model Asymmetries and cumulative distributions of Fig. 7. For

example, the asymmetry of the sink c~0:7 and bond models

(Fig. 7(c), (d)) has a local maximum, a feature that is absent from

the adjusted cumulative size distribution (Fig. 7(e), (f)). Similarly,

the asymmetry of all bond models is indistinguishable for large

scales, whereas the cumulative size distribution can statistically

distinguish these models.

Depending on the weight function wj , the asymmetry can be

used to define a single number that encompasses information

about the whole architectural organization (e.g. by calculating
�QQT (d?dmax)). Such a number would be meaningful only for

graphs with some degree of self-similarity. Some examples are

shown in Supporting Information S1.

The Strahler bifurcation ratio Rs can be used to describe the

overall architecture, but it does not perform well for complex

architectures. We have examined the Strahler bifurcation ratio as

Figure 9. Asymmetry and cumulative size distribution for two dicotyledonous leaves. (a) Asymmetry of Bursera and Protium intercostal
areas. The average asymmetry �QQT (d) is plotted as a function of the normalized subtree degree d. Red solid line: Protium, cleaned. Red dashed line:
Protium, full graph. Blue line: Bursera. Dark diamonds: random edges model. Dark circles: nested model. (b) Asymmetry of Protium intercostal
segments. �QQT (d) is plotted as a function of the normalized subtree degree d. Black dashed line: Protium, cleaned. Red, blue, green, magenta, cyan,
yellow lines: Protium segments, colorcoded as in Fig. 8. Gray squares: average of segment asymmetry with standard error. (c) Adjusted cumulative
size distribution, Bursera and Protium. Red solid line: Protium, cleaned. Red dashed line: Protium, full graph. Blue line: Bursera.
doi:10.1371/journal.pone.0037994.g009
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a function of the Strahler order v and degree d in an attempt to

extract information about the scale dependent organization of the

graph. We have found that the result is very sensitive to noise,

especially at high v.
The metrics presented in this paper focus on the metric

topology of the structure but they do not explicitly capture any

information about the geometry of the network. The cumulative

area distribution depends on the area of the terminal loops (the

areoles of a leaf vein network). The cumulative area distribution

follows closely the cumulative degree distribution provided that the

terminal loops are not substantially polydisperse. It is evident we

can supplement the descriptions presented here with more detailed

geometrical analysis, in which some aspects of the geometry of the

closed loops is kept, such as e.g. an approximating SVD ellipsoid,

which can be used to define a major axis and an eccentricity. We

can then incorporate such geometrical information into the

analysis of nesting, i.e., relationships defining what is the average

orientation of subloops in relation to the parent loops. Such

Figure 10. Strahler bifurcation ratio for the various generated, optimized and natural graphs. Red error bar: standard error of the linear
regression fit (represents goodness of linear fit). Black error bar: standard deviation of the logarithm of the bifurcation ratio (average over 20
realizations). Insets: Number of Strahler streams Sv of order v as a function of v for the random lines, nested and gradient model and the Bursera
leaf. Note that in each case, the Sv follows closely an inverse geometric progression with v (shown with the red dashed line).
doi:10.1371/journal.pone.0037994.g010
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detailed geometrical analysis, however, will evidently be sub-

ordinate to the coarser topological analysis we have presented

here.

A big part of our extensive understanding of fluvial networks is

due to the development of metrics to characterize and quantify

tree architectures. Accordingly, progress in understanding loopy

networks, which are ubiquitous in both natural and man made

structures, is contingent on our ability to measure their hierarchi-

cal architecture. The hierarchical decomposition framework

presented in this work provides a robust mathematical description

of the network architecture, applicable to leaf venation and other

loopy distribution (and structural) structures. It can be used to

characterize the in silico networks obtained from computer

simulations as well as to perform quantitative statistical compar-

isons between theory and experiment. As such, it can provide an

invaluable tool in deciphering the functional significance of the

loopy networks and possibly their developmental origin.

Methods

In this section we present in more detail the three metrics that,

applied on the nesting tree, characterize various aspects of the

hierarchical organization of the original graph.

Asymmetry
The asymmetry is a metric that characterizes the topological

structure of a binary tree. It was first developed mainly in the

context of neuronal branching patterns, such as dendritic trees and

was defined as the weighted mean value of the asymmetry of its

partitions. Adjusting the definition and notations of [15], we define

the partition asymmetry of a bifurcation vertex j as:

q(rj ,sj)~
sj{rj

sj
ð2Þ

with sj§rj and sjzrj§2. The parameters rj and sj are the

degrees of the two subtrees at partition j. The degree of a (sub)tree

is defined here as the total number of the leaf nodes (terminal

segments) of that (sub)tree. Note that Eq. 2 differs slightly from the

definition in [15].

The asymmetry QT (tn) of a subtree rooted at node n can now

be defined as the weighted average of the partition asymmetry

q(rj ,sj) of the nodes j[tn:

QT (tn)~
1

w(tn)

Xd(n){1

j~1

wjq(rj , sj) ð3Þ

where j runs over all d(n){1 bifurcating vertices of the subtree

(d(n) is the degree of the subtree), and wj is the weight of the

partition j. In the results shown in this paper we use a weighted

averaging window that includes all nodes of the subtree,

Figure 11. Digitized arterial vasculature of rat neocortex and corresponding nesting tree representation. (a)The arterial network forms
a planar graph. Different segments of the network, as identified by hierarchical decomposition are represented by different colors. (b) Nesting tree of
the digitized network. the highlighted segments of the network are color-coded.
doi:10.1371/journal.pone.0037994.g011
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wj~d(j){1. Results derived using other weight functions are

discussed in Supporting Information S1.

Finally, the normalization factor w(tn) is defined as:

w(tn)~
Xd(n){1

j~1

wj : ð4Þ

The averaged asymmetry �QQT (d) of trees of degree d is defined

as:

�QQT (d)~
1

nd

X

ftjg,d(tj)~d

QT (tj) ð5Þ

where nd is the number of nodes with degree d. In this work, we

adjust this definition to be the mean of the asymmetry for all the

nodes whose degree is within a distance D=2 from d:

�QQT (d)*
X

ftjg,Dd(tj){dDƒD=2

QT (tj) ð6Þ

Calculated on the nesting trees of the hierarchical decomposition,

the asymmetry is an metric that quantifies the nestedness of the

original graph. High asymmetry values correspond to a graph that

is primarily composed from additive building blocks, and low

asymmetry values correspond to a graph that is made from

multiplicative building blocks.

The actual correspondence between asymmetry values and level

of nestedness depends on the choice of weight function wj .

Different choices of weight functions amplify different aspects of

the graph architecture, and comparisons of asymmetry plots of

different graphs should only be done when the weight function

choice is consistent. In Supporting Information S1 we present

results acquired by considering no averaging Q0(tn):q(rn,sn) and
by averaging over a shallow averaging window.

Cumulative Size Distribution
The cumulative size distribution [28,29] is the cumulative

distribution over the areas associated with the nesting tree nodes.

It is calculated by assigning an area value A(j) to each node j of the

nesting tree, and then calculating the probability P(Awa) that an
area drawn at random will exceed a certain value a. In general, we

can associate the nesting tree nodes with any quantity that reflects

a property of the original graph that is of interest, such as the total

number of terminal loops nested in loop j of the original graph

(equal to the degree d(j) of node j of the nesting tree, if the

terminal loops are of equal size).

The cumulative size distribution reflects the overall architecture

of the original graph, as the smaller degree nodes of an aggressive

subdivision, like the one in Fig. 3(e)(ii), will be overepresented in

the degree and cumulative degree distribution. It is easy to show

that the cumulative degree distribution of iterative, self similar

architectures is inversely proportional to the area

P(Awa)*1=a: ð7Þ

Conversely, the cumulative degree distribution of an architecture

with additive nestedness (Fig. 2(e)(i)) is a straight line with slope:

dP(Awa)

da
~{

1

2
: ð8Þ

Strahler Bifurcation Ratio
The Horton-Strahler stream-ordering system has been an

invaluable tool in quantifying aspects of river topology and

architecture since its inception in the fifties by Horton and Strahler

[13,14]. It has since been used with considerable success in

describing the topology of a wide class of natural and man-made

networks.

According to the Horton-Strahler stream-ordering system, the

terminal nodes of the network (the leaves) are assigned Strahler

order 1. The order of every non-leaf node is determined by the

following rule: when two edges are connected to two nodes of

Strahler order v1,v2 upstream, the node downstream is assigned

an order

v~max(v1,v2)zdv1,v2 : ð9Þ

The Strahler numbers (or the related Horton numbers) can be

used to quantify the tree topology in a number of ways. In this

work we focus in particular on the Strahler bifurcation ratio,

defined as:

Rv~Sv=Svz1 ð10Þ

where Sv is the number of streams of Strahler order v. A stream is

defined as a maximal path of branches connecting vertices of

Strahler order v, ending in a vertex of higher order.

The law of stream numbers states that the stream numbers Sv

approximate an inverse geometric progression with the order v,
a statement that implies Rv~const. However, it is not possible to

use this law as evidence of self-similarity of a distinctive

architecture, as it is followed by the vast majority of binary trees

[30].

The Horton-Strahler stream-ordering system cannot be directly

used to describe loopy networks, as there can be no unique

assignment of the stream order in a redundant graph. The

hierarchical decomposition and the nesting tree provide a mapping

that allows assignment of Strahler numbers to a loopy graph, as

the loops of the original graph map to the vertices of the nesting

tree and the Strahler number of node j depends on the nestedness

of the graph segment enclosed by the loop j.

We now analyze examples from three classes of graphs: models

generated by specific, prescribed building rules, outputs of

optimization routines and natural graphs (in particular the

venation of two dicotyledonous leaves and the arterial vasculature

of the rat neocortex).

Supporting Information

Supporting Information S1

(PDF)
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