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GM1 Induced the inflammatory response related to the Raf-1/MEK1/2/ERK1/2
pathway in co-culture of pig mesenchymal stem cells with RAW264.7
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ABSTRACT ARTICLE HISTORY
Pig-human xenotransplantation can trigger cell-mediated immune responses. We explored the role Received 29 November 2017
of gangliosides in inflammation related to immune rejection in xenotransplantation. Co-culture of ~ Accepted 1 March 2018
xenogeneic cells (pig-MSCs and RAW264.7) was used to emulate xenotransplantation conditions.
MTT assay results indicated that cell viability was significantly decreased in pADMSCs co-cultured
with RAW264.7 cells. GM1 and GM3 were highly expressed in pADMSCs co-cultured with
RAW264.7 cells. pADMSCs co-cultured with RAW264.7 cells strongly expressed pro-inflammatory
proteins such as COX-2, iNOS, p50, p65, plkBa, and TNF-a. GM1-knockdown pADMSCs co-
cultured with RAW 264.7 cells did not show significantly altered cell viability, but pro-
inflammatory proteins were markedly inhibited. Co-culture of pADMSCs with RAW264.7 cells
induced significant phosphorylation (p) of JNK1/2 and pERK1/2. However, pERK1/2 and pJNK1/2
were decreased and MEK1/2 and Rafl were suppressed in GM1-knockdown pADMSCs co-
cultured with RAW264.7 cells. Thus, the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways were
significantly upregulated in response to increases of GM1 in co-cultured xenogeneic cells.
However, the inflammatory response was suppressed in co-culture of GM1-knockdown pADMSCs
with RAW264.7 cells via down-regulation of the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways.
Therefore, the ganglioside GM1 appears to play a major role in the inflammatory response in
xenotransplantation via the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways.
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Introduction . -
Although xenotransplantation has vast clinical poten-

Gangliosides are complex glycosphingolipids containing
one or more sialic acids, and are a main component of
cell membranes (Hakomori 1990). Some studies have
reported that gangliosides are developmentally con-
trolled in a cell type—specific manner (Yu 1994; Yama-
moto et al. 1996; Yu et al. 1988). Additionally,
expression of gangliosides is related to the biological
processes of stem cells in vitro (Kwak et al. 2006).
Mesenchymal stem cells (MSCs) are multipotent cells
(Pittenger et al. 1999) that can differentiate into several
lineages, including adipocytes, neuron-like cells, osteo-
blasts, hepatocytes, and myoblasts (Ferrari et al. 1998;
Pittenger et al. 1999; Sanchez-Ramos et al. 2000; Hong
et al. 2005; Sato et al. 2005; Ryu et al. 2009). Several
studies have reported that gangliosides are essential
factors in differentiation and proliferation of MSCs

tial, it is limited by the problem of immune responses
against xenogeneic tissue (Wright et al. 2016). Addition-
ally, xenotransplanted cells, including vascularized
organ xenografts, show loss of function within a short
time of transplantation in dissonant species combi-
nations. Previous studies reported that gangliosides
are related to the inflammatory responses induced in
co-culture of xenogeneic cells, such as pig endothelial
cells (PAECs) and human leukocytes (Cho et al. 2012).
The inflammatory responses were associated with
the mitogen-activated protein kinase (MAPK) family
(Yin et al. 2016).

The MAPK family of proteins regulates the cell death
and the proliferation (Lee et al. 2002; Tarallo and
Sordino 2004). The MAPK family consists of two major
subgroups: the c-Jun N-terminal stress-activated

(Sanchez-Ramos et al. 2000; Bergante et al. 2014). protein kinase 1/2 (JNK 1/2) subgroup and the
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extracellular regulated kinase 1/2 (ERK1/2) subgroup
(Jung et al. 2004). ERK 1/2, which is activated in inflam-
matory responses, is related to cell proliferation (Kyriakis
and Avruch 2012; Marques-Fernandez et al. 2013).
However, the expression and role of gangliosides in
inflammatory responses is unclear, and has not been
investigated using xenogeneic co-culture of pig MSCs
with cells from other species. In this study, we investi-
gated the role of gangliosides in inflammatory activation
using co-culture of pig adipose-derived mesenchymal
stem cells (pPADMSCs) with RAW 264.7 macrophages.

Materials and methods
Culture of pADMSCs and RAW264.7 cells

pADMSCs were provided by the Korea Research Institute
of Bioscience and Biotechnology (KRIBB). The cells were
cultured in pre-warmed Dulbecco’s Eagle Medium
(DMEM) containing 10 ng/ml basic fibroblast growth
factor (bGFGF; R&D Systems, Minneapolis, USA), 10%
fetal bovine serum (FBS), and 1% (v/v) penicillin/strepto-
mycin (P/S) solution and incubated in a humidified 5%
CO, atmosphere at 37°C. RAW 264.7 cells were main-
tained in DMEM supplemented with 10% FBS and 1%
P/S at 37°C in a humidified 5% CO, incubator.

Co-culture of mini-pig adipose-derived
mesenchymal stem cells (PADMSCs) with RAW
264.7 mouse macrophages

pPADMSCs were co-cultured with RAW 264.7 cells through
seeding of pADMSCs (5 x 10* cells/dish) and RAW 264.7
cells (1 x 10° cells/dish). LPS (from Escherichia coli 0111:
B4, Sigma) was administered at 10 uM to co-cultured
cells and RAW 264.7 cells only.

Cell viability

Cell proliferation was determined by MTT assay 24 h after
initiating culture of pADMSCs and RAW 264.7 cells.
pPADMSCs co-cultured with RAW 264.7 cells were trans-
ferred into 96-well plates at 1x10* cells/well and
treated with LPS at 10 uM and GM1 synthase siRNA (10
nM), respectively. MTT solution (Sigma) was added to
each well and incubated for 4 h and the absorbance
was measured at 590 nm using a spectrophotometer.

Ganglioside extraction and purification

Lee et al. have described the methods used to extract
and purify gangliosides. Briefly, cells were homogenized
in distilled water at 48°C to extract total lipids, which

were re-suspended in chloroform/methanol (1:1, v/v),
lyophilized using N, gas, and subsequently dissolved in
chloroform/methanol/H,O (15:30:4, v/v/v). The column
was washed with H,O to remove non-hydrophobic
lipids. Finally, the gangliosides were eluted with metha-
nol, dried at 30°C under N, for 3 h, and stored at —80°C
until analysis.

High-performance thin-layer chromatography

High-performance thin-layer chromatography (HPTLC)
analysis of the gangliosides was conducted using a
10x10cm TLC 5651 plate (Merck, Darmstadt,
Germany). The purified gangliosides (600 pg protein/
lane) were loaded onto TLC 5651 plates that were sub-
sequently developed in chloroform/methanol/0.25%
CaCl,-H,0 (50:40:10, v/v/v). The gangliosides were then
stained with resorcinol, after which the density of the
ganglioside bands was quantified by HPTLC densitome-
try (ImageJ, NIH). Purified mixed gangliosides (GM3,
GM2, GM1, GD3, GD1a, and GD1b) (Matreya LLC, Pleasant
Gap, PA, USA) were used as standards.

Design and selection of allele-specific siRNAs

GM1 and GM3 synthase-specific siRNAs and a control
siRNA were synthesized by Bioneer Inc. (Daejeon,
Korea). The primers for GM1 were: F, 5-ATCGC-
GAGTGTTGCTCTTCGT-3’ and R, 5-GAGCAACACTGG-
CACCTGCA-3'. The primers for GM3 were: F, 5'-
ATCGGCTAACCTGGACCT-3" and R, 5-TACCGTTACCG-
CAATTCCF-3'. All sequences were confirmed by capillary
sequencing. Transfection of siRNAs or DNA vectors was
performed using Lipofectamine 3000 reagent (Invitro-
gen, Carlsbad, USA) according to the manufacturer’s rec-
ommendations. The GM1 and GM3 synthase specificity
of the siRNAs was determined using HPTLC and
western blot analysis to compare the activities of GM1
and GM3.

Western blot analysis

pADMSCs and RAW 264.7 cells were homogenized in
RIPA  buffer (Sigma), and then centrifuged at
13,000 rpm for 20 min at 4°C. Proteins (30 pg/lane)
were separated on a 10% SDS polyacrylamide gel and
then transferred to a nitrocellulose membrane (Hybond
ECL; Amersham Pharmacia Biotech, Piscataway, NJ). The
blots were blocked for 2h with 5% bovine serum
albumin (BSA) in Tris-buffered saline, and the membrane
was incubated for 16 h with the following primary anti-
bodies: BCl-2, Caspase-8, Caspase-9, Caspase-3, and f3-
actin (1:500; Santa Cruz Biotechnology, Santa Cruz,



USA). The blot was then incubated with the correspond-
ing horseradish peroxidase-conjugated secondary anti-
bodies, such as anti-mouse and anti-rabbit (Santa Cruz
Biotechnology), and proteins were visualized using the
ECL system (Pierce, Rockford, USA).

Statistical analysis

All data are presented as mean (SD). Multi-group
associations were analyzed using one-way ANOVA and
two-way ANOVA, followed by Tukey’s and Bonferroni
post-hoc pairwise comparisons. A p-value < 0.05 was
considered statistically significant. All statistical analyses
were executed using GraphPad Prism (Ver. 5.00; Graph-
Pad Software Inc., La Jolla, USA).

Results

Cell viability and ganglioside expression patterns
in pADMSCs, RAW 264.7 cells, and pADMSCs co-
cultured with RAW264.7 cells

The co-culture was designed to emulate the conditions
of xenograft. The cell culture groups consisted of
pADMSCs only, RAW264.7 cells plus LPS, and co-culture
of pADMSCs with RAW264.7 cells. Figure 1 shows cell
viability as determined by MTT assays. Cell viability was
significantly decreased when pADMSCs were co-cultured
with RAW264.7 cells (Figure 1(A)). However, cell viability
was similar to control in LPS only group (Figure 1(A)). In
addition, we examined the ganglioside expression profile
in pADMSCs only, RAW264.7 cells only, and pADMSCs
co-cultured with RAW264.7 cells. GM2 and GD3 were
weakly expressed in pADMSCs only and RAW264.7 cells
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only (Figure 1(B)). However, GM1 and GM3 were highly
expressed in co-culture of pADMSCs with RAW264.7
cells (Figure 1(B)).

Expression of pro-inflammatory factors in
PADMSCs co-cultured with RAW264.7 cells

We investigated expression levels of pro-inflammatory
factors including COX-2, iNOS, p50, p65, plkBa, and
TNF-a. Pro-inflammatory factors were very weakly
expressed in pADMSCs and RAW264.7 cells (Figure 2).
Conversely, RAW264.7 cells plus LPS, the positive
control, showed significantly increased expression of
pro-inflammatory factors (Figure 2, p<0.001). Pro-
inflammatory proteins, such as COX-2, iNOS, p50, p65,
plkBa, and TNF-a, were strongly expressed in pADMSCs
co-cultured with RAW264.7 cells, compared with
pADMSCs only and RAW264.7 cells only (Figure 2, p <
0.001).

Cell viability in pADMSCs co-cultured with RAW
264.7 cells with knockdown of GM1 and GM3
synthase using siRNA

We investigated the effects of GM1 and GM3 knockdown
in pADMSCs using GM1 and GM3 synthase siRNA.
Figure 3(A) shows the results of GM1 and GM3 knock-
down in co-culture of pADMSCs with RAW264.7 cells
(Figure 3(A)). Cell viability significantly decreased in
pADMSC co-cultured with RAW264.7 cells as a positive
control (Figure 3(B)). However, cell viability was signifi-
cantly higher in pADMSCs (GM1 synthase knockdown)
co-cultured with RAW264.7 cells than in pADMSCs co-
cultured with RAW264.7 cells (Figure 3(B)).

GM3

GM2
GM1
GD3
GD1a

GT1a

GQ1b

Figure 1. Ganglioside expression patterns and cell viability in GM1-knockdown pADMSCs co-cultured with RAW264.7 cells. (A) Cell
viability of pADMSCs co-cultured with RAW264.7 cells. (B) Expression of gangliosides as detected by HPTLC in co-culture of GM1-knock-
down pADMSCs with RAW264.7. *** p < 0.001 indicates a significant difference from the pADMSCs.
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Figure 2. Increase of pro-inflammatory factors in co-culture of xenogeneic cells (pADMSCs with RAW264.7). Expression of B-actin and
pro-inflammatory factors such as COX-2, iNOS, p50, p65, plkba, and TNF-a was detected by western blotting. *** p < 0.001 indicates a

significant difference from pADMSCs. **#p < 0.001 indicates a significant difference from RAW264.7 cells.

and TNF-a. The pro-inflammatory factors were signifi-
cantly expressed in pADMSCs co-cultured with
RAW264.7 cells and RAW264.7 cells plus LPS (Figure 4).
In contrast, pro-inflammatory factors such as COX-2,
iNOS, p50, p65, plkBa, and TNF-a were markedly

Inhibition of expression of pro-inflammatory
factors by knockdown of GM1 and GM3 synthase
using siRNA

We examined inhibition of expression of pro-inflamma-
tory factors, including COX-2, iNOS, p50, p65, plkBa,

A B
- — 120 -
GM3 C— ? - _
GM2 s P 3 100
GM1 - ‘ f
GD3 S ' — ¢ 8o
K - : & *kk
GD1 < 60 - T
a e . >
GT1a ey F 40 -
S
GQth 2 20 -
< g "
MsC + + = -
— e RAW264.7 - + + +
& & &0 ¢ Ve LPS - - + -
& & ¢ & v
o » O GM1-knockdown . +
O o - -
© MSC
&
&
oF
«°

Figure 3. Expression of the ganglioside GM1 and cell viability in GM1-knockdown pADMSCs co-cultured with RAW264.7 cells. (A) Knock-
down of GM1 and GM3 was detected by HPTLC in co-culture of GM1-knockdown pADMSCs with RAW264.7 cells. (B) Cell viability of
GM1-knockdown pADMSCs co-cultured with RAW264.7 cells. *** p < 0.001 indicates a significant difference from pADMSCs co-cultured
with RAW264.7 cells.
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Figure 4. Inhibition of pro-inflammatory factors in co-culture of GM1-knockdown pADMSCs with RAW264.7 cells. Expression of B-actin
and pro-inflammatory factors such as COX-2, iNOS, p50, p65, plkba, and TNF-a was detected by western blotting. *** p < 0.001 indicates
a significant difference from co-culture of pADMSCs with RAW264.7. #*¥p < 0.001 indicates a significant difference from RAW264.7 cells

treated with LPS.

inhibited in GM1-knockdown pADMSCs co-cultured with
RAW 264.7 cells (Figure 4). Moreover, pro-inflammatory
factors were meanly inhibited in GM1-knockdown
pADMSCs co-cultured with RAW264.7 cells plus LPS
(Figure 4). However, expression of pro-inflammatory
factors was significantly increased in GM3-knockdown
pPADMSCs.co-cultured with RAW264.7 cells plus LPS.

Involvement of the MAPK pathway with GM1 in
inflammation of co-cultured pADMSCs and
RAW264.7 cells

We attempted to determine the role of MAPK and to elu-
cidate its mechanism of action in co-culture of pADMSCs
with RAW264.7 cells with or without knockdown of GM1.
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As shown in Figure 5(A), co-culture of pADMSCs with
RAW264.7 cells induced significant phosphorylation (p)
of pJNK1/2 and pERK1/2. However, pERK1/2 and
pJNK1/2 were markedly decreased in GM1-knockdown
pADMSCs co-cultured with RAW264.7 cells compared
with co-culture of pADMSCs and RAW264.7 cells
(Figure 5(A)). In addition, we investigated the upstream
ERK1/2 signaling, including mitogen-activated protein
kinase 1/2 (MEK1/2) and Raf1. MEK1/2 and Raf1 were sig-
nificantly activated in co-culture of pADMSCs and
RAW264.7 cells (Figure 5(B)). Moreover, activation of
MEK1/2 and Raf1 was strongly increased in GM3-knock-
down pADMSCs. However, in co-culture of GM1-knock-
down pADMSCs with RAW264.7 cells, MEK1/2 and Raf1
were meanly decreased compared with co-culture of
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Figure 5. Suppression of Raf-1/MEK1/2ERK1/2 phosphorylation and JNK1/2 in co-culture of GM1-knockdown pADMSCs with RAW264.7.
(A) B-actin, total ERK1/2, phosphorylated ERK1/2 (pERK1/2), total JNK1/2, and pJNK1/2, and (B) MEK1/2 and Raf-1 were detected by
western blotting. *** p < 0.001 vs co-culture of pADMSCs with RAW264.7. **¥p < 0.001 vs RAW264.7 cells treated with LPS.



162 (&) D.H.KWAKETAL.

pADMSCs with RAW264.7 cells plus LPS (Figure 5(B)).
These results indicated that GM1 inhibited both path-
ways (Raf1/MEK1/ERK1/2  pathway and JNK1/2
pathway) in inflammation induced by co-culture of
pPADMSCs and RAW264.7 cells.

Discussion

Inflammation results from an excessive immune
response, as part of the mechanism for protection
against damaged tissue and foreign substances (Fitzpa-
trick 2001). Inflammatory mediators such as NO are pro-
duced by macrophages (Lee et al. 2016). Inducible iNOS
and COX-2 are expressed following increased production
of NO in LPS-stimulated macrophages (Zhao et al. 2013).
iNOS is an important factor for the development of
inflammation and subsequent maintenance of the
inflammatory response. COX-2 is another important
factor in inflammation (Lee et al. 2009). In addition, the
activities of iNOS and COX-2 related to production of
TNF-a play important roles in inflammatory responses
(Shin et al. 2015). NF-kB is an important transcription
factor associated with inflammatory responses, which
induces the expression of various inflammatory factors,
including iNOS, COX-2, and TNF-a (An et al. 2017;
Yamada et al. 2014). In LPS-stimulated RAW264.7 macro-
phage cells, NF-kB is activated by the protein I-kBa
(Ramaswami et al. 2012). Some reports have shown
that gangliosides can induce production of cyclooxygen-
ase-2. In this study, we observed that pro-inflammatory
factors including COX-2, iNOS, p65, p50, p-lkBa, and
TNF-a were significantly increased in pADMSCs co-cul-
tured with RAW264.7 cells (Figure 2). Moreover, the
increases in pro-inflammatory factors in co-culture of
pPADMSCs with RAW 264.7 cells were similar to the pro-
inflammatory factor expression observed in LPS-stimu-
lated RAW 264.7 cells, as a positive control (Figure 2).
However, pro-inflammatory factors were significantly
suppressed in GM1-knockdown pADMSCs co-cultured
with macrophages (Figure 2). These results indicated
that in co-culture of xenogeneic cells (pig MSCs with
RAW264.7 mouse macrophages) inflammation related
to the rejection of xenografts was mediated by GM1.
Several studies have reported that phosphorylation of
three MAPKs (ERK, JNK, and p38) occurs by NF-kB acti-
vation (Hwang et al. 2011; Li et al. 2011). Szelenyi and
Uros reported that the ERK1/2 pathway is a dominant
and highly responsive pathway in inflammation (Szelenyi
and Urso 2012). MEK-mediated ERK activation is the most
important regulatory step in inflammation (Parthasar-
athy and Philipp 2014). A previous study indicated that
the anti-inflammatory mechanism of flavonoids was
related to inhibition of ERK phosphorylation by down-

regulation of the expression of iNOS and COX-2 (Han
et al. 2013), but was independent of the JNK and P38
pathway (Mazier et al. 2001). In addition, another
report indicated that GM1 can activate ERKs in young
rats and that GM1 induces activation of ERK1/2 by the
Raf-1/MEK1/2 pathway in the VSMCs pathway (Duche-
min et al. 2002). Ceramide, an important component of
gangliosides, is known to be related to the ERK1/2 and
the JNK pathways (Maziere et al. 2001). In particular, cer-
amide regulates the ERK1/2 pathway via activated RAf-1
and MEKs in various cell types (Willaime et al. 2001). In
this study, we investigated how the MAPK pathway is
involved with inflammation in pADMSCs co-cultured
with RAW264.7 macrophage cells, and we found that
expression of ERK1/2 and JNK1/2 were meanly activated
in pADMSCs co-cultured with RAW264.7 cells (Figure 5
(A)). Furthermore, activation of MEK1/2 and Raf-1, the
up-stream pathway of ERK1/2, was strongly increased
in pADMSCs co-cultured with RAW 264.7 cells (Figure 5
(B)). However, other components of the MAPK
pathway, including ERK1/2, JNK1/2, MEK1/2, and Raf-1,
were significantly suppressed in co-culture of pADMSCs
with GM1 knockdown (Figure 5). These results indicated
that ERK1/2 phosphorylation by upregulation of MEK1/2/
Raf-1 was associated with macrophage inflammation
mediated by an increase of the ganglioside GM1 in co-
culture of xenogeneic cells (pig MSCs with RAW264.7
mouse macrophages).

Conclusion

Cell - mediated immune responses can induce by xeno-
transplantation of pig and human. We explored the role
of gangliosides in inflammation related to immune rejec-
tion in xenotransplantation. We used the co-culture of
xenogeneic cells (pig-MSCs and RAW264.7) for emulate
xenotransplantation conditions. We observed the
highly expression of GM1 and GM3 when pADMSCs co-
cultured with RAW264.7 cells. Pro-inflammatory proteins
such as COX-2,iNOS, p50, p65, plkBa, and TNF-a strongly
expressed when pADMSCs co-cultured with RAW264.7
cells. In GM1-knockdown pADMSCs co-cultured with
RAW 264.7 cells, pro-inflammatory proteins were mark-
edly inhibited. In addition, we observed the phosphoryl-
ation (p) of JNK1/2 and pERK1/2 was significant induced
in co-culture of pADMSCs with RAW264.7 cells. However,
pPERK1/2, pJNK1/2, MEK1/2 and Raf1 were suppressed in
GM1-knockdown pADMSCs co-cultured with RAW264.7
cells. Thus, GM1 increases significantly up regulated the
Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways in co-
cultured xenogeneic cells. However, we find that inflam-
matory response suppressed by down-regulation of the
Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways in co-culture



of GM1-knockdown pADMSCs with RAW264.7 cells.
Therefore, the ganglioside GM1 appears to play a
major role in the inflammatory response in xenotrans-
plantation via the Raf-1/MEK1/2/ERK1/2 and JNK1/2
pathways.
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