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Abstract
Several human herpes viruses (HHVs) exert oncogenic 
potential leading to malignant transformation of infected 
cells and/or tissues. The molecular processes induced by 
viral-encoded molecules including microRNAs, peptides, 
and proteins contributing to immune evasion of the 
infected host cells are equal to the molecular processes of 
immune evasion mediated by tumor cells independently 
of viral infections. Such major immune evasion strategies 
include (1) the downregulation of proinflammatory 
cytokines/chemokines as well as the induction of 
anti-inflammatory cytokines/chemokines, (2) the 
downregulation of major histocompatibility complex (MHC) 
class Ia directly as well as indirectly by downregulation 
of the components involved in the antigen processing, 
and (3) the downregulation of stress-induced ligands for 
activating receptors on immune effector cells with NKG2D 
leading the way. Furthermore, (4) immune modulatory 
molecules like MHC class Ib molecules and programmed 
cell death1 ligand 1 can be upregulated on infections with 
certain herpes viruses. This review article focuses on the 
known molecular mechanisms of HHVs modulating the 
above-mentioned possibilities for immune surveillance 
and even postulates a temporal order linking regular tumor 
immunology with basic virology and offering putatively 
novel insights for targeting HHVs.

Introduction
The molecular mechanisms of virus-related 
malignant transformation of non-tumorous 
tissues are diverse and involve molecules 
encoded by viruses or induced on viral infec-
tion. Viruses are able to infect all types of life 
forms such as animals, plants, fungi, protists, 
and even microorganisms, like yeast, bacteria, 
and archaea.1–5 Viral infections can predis-
pose a patient to various malignancies which 
might be mediated by oncogenic viruses like 
Epstein-Barr virus (HHV4, EBV), human 
herpes virus 8 (HHV8, Kaposi-Sarkom herpes 
virus (KSHV)), hepatitis B virus, and certain 
human papilloma viruses (HPV).

Viruses completely rely on the host cell 
machinery to propagate and lack an own 
metabolism and reproduction. The viral parti-
cles, also called virions, contain the genetic 
material (single-stranded/double-stranded 

(ss/ds) RNA or ss/dsDNA), a protein coat 
(capsid) and optional a lipid envelope. The 
space between the lipid envelope derived from 
the host cell membranes and the capsid is the 
tegument, which contains molecules from 
the infected host cell including, for example, 
proteins and non-coding RNA species. These 
molecules may originate from the host cell 
or by the viruses of the infected host cell 
and promote the generation of macromole-
cules required for the next infection cycle.6 
Furthermore, the tegument contains fluids 
of the cytoplasm, the endoplasmic reticulum 
(ER) and/or of the Golgi apparatus.7 8

In ER, the assembly of the classical major 
histocompatibility complex (MHC) class Ia 
and non-classical MHC class Ib molecules 
consisting of the MHC class Ia/b heavy 
chain (HC), β2-microglobulin (β2-m), and a 
peptide derived from cellular proteins, which 
could theoretically also represent peptides 
derived from viral proteins or in the case 
of malignant transformed cells also from 
tumor antigens. The peptides are generated 
and processed by different components of 
the antigen processing and presentation 
machinery (APM) for their presentation to 
CD8+ cytotoxic T lymphocytes (CTLs) on the 
cell surface.9 10

The MHC class Ia molecules are physiolog-
ically expressed in nucleated cells with the 
exception of immune privileged tissues like 
cornea, brain, testis and chorion. In contrast, 
the MHC class Ib molecules, predomi-
nantly HLA-G and HLA-E, exert a physi-
ologically restricted and tightly regulated 
expression exclusively in immune privileged 
tissues.11 12 Since MHC class Ib molecules 
represent potent ligands for inhibitory recep-
tors of immune effector cells, the modulation 
of these molecules has functional relevance 
for immune responses.13 14

Independently of viral infections in solid 
and hematopoietic tumor diseases, classical 
MHC class Ia molecules are downregulated 
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with high frequencies by equal strategies, while non-
classical MHC class Ib molecules are induced, and even 
secreted or shedded into the local tumor microenviron-
ment (TME) strongly contributing to the tumor immune 
escape.11

Next to antigen presentation toward CTLs, also other 
molecular mechanisms contribute to successful immune 
surveillance against viral infections. Despite primary virus 
infections could elicit host antiviral immune responses, 
these responses are often insufficient to eliminate the 
virus. Thus, the ability of viruses to persist suggests that 
the viruses could subvert antiviral immune responses. 
For example, the virus mediated reduced expression 
of NKG2D ligands (NKG2D-Ls) upon viral infection 
avoids antiviral immune responses of the host immune 
system.15–19

In addition, the secretion of certain cytokines and/or 
chemokines on herpes virus infection is altered, which 
can modulate a strong and effective antiviral immune 
response against infected cells and/or tissues. It is note-
worthy that a number of inhibitory mechanisms medi-
ated by certain herpes viruses have been identified, which 
prevent the secretion of proinflammatory cytokines or 
enhance the secretion of anti-inflammatory cytokines.20 
Furthermore, the expression and the assembly of MHC 
class Ia/b and/or APM molecules and the NKG2D-Ls can 
be induced or reduced by different cytokines.

In this review, the known immune escape mechanisms 
of human herpes viruses (HHVs) are summarized. The 
family of dsDNA herpes viruses consists of the α-sub-
family (herpes simplex virus, HSV-1, HSV-2, varicella-
zoster virus (VZV)), the β-subfamily (cytomegalovirus 
(CMV), HHV6A, HHV6B, HHV7), and the γ-subfamily 
(EBV, KSHV), which exerts an oncogenic potential. This 
separation is based on their host range, genetic organiza-
tion and replication strategies.21 These family members 
share a common viral morphology and approximately 40 
conserved genes important for viral replication.22 Never-
theless, these pathogens differ in their pathogenicity. 
While the members of the α-subfamily have been iden-
tified to act as cofactors for some tumor malignancies 
resulting in elevated tumor incidences, the members of 
the γ-subfamily are causative inductors of solid and hema-
topoietic tumor diseases. Furthermore, CMV as a member 
of the β-subfamily may infect critical organs including 
the nervous system, hematological and vascular system, 
gastrointestinal system and therefore may be accompa-
nied by severe disease outcome in apparently healthy 
individuals.23

Following a primary infection, it is characteristically for 
herpes viruses to persist in the host for an extended dura-
tion, considering the herpes viruses as highly successful 
pathogens.24 A contributing factor of the herpes viruses 
is their ability to adopt two different modes of life cycle: 
the latency and the lytic cycles. After such a primary 
productive infection, the herpes viruses switch to latency, 
a transcriptional and translational suppressed state. 
This latent state can be frequently interrupted by lytic 

episodes. During such latency, the latency-associated 
transcripts including coding transcripts resulting in viral 
peptides and proteins as well as non-coding transcripts 
like microRNAs (miRs)have been identified to contribute 
to immune evasion.24–27

Focusing on the MHC class I a/b molecules, APM 
components, NKG2D-Ls, cytokine and chemokine 
signaling on viral infection, this review article will high-
light the known interfering molecular mechanisms of 
viral encoded or induced miRs, peptides and proteins. 
Exactly such processes are affected in tumor cells, also 
shaping the composition of the TME and therefore 
representing fundamental steps in immune surveillance 
or immune escape. Thus, the direct interactions between 
viral molecules of HHVs and host cell molecules next to 
indirect mechanisms leading to the induction/reduc-
tion of relevant host cell factors on viral infection will be 
addressed and discussed.

Viral proteins interfere with the peptide presentation 
of MHC class I molecules
Under physiologic conditions, the assembled trimeric 
MHC class I molecules consisting of the MHC class I HC, 
non-covalent bound β2-m, and processed peptides of 8–12 
amino acids in length are transported via the trans-Golgi 
to the cell surface of nucleated cells and presented to 
CD8+ CTLs.11

After ubiquitination, cellular proteins are degraded 
into peptides by the multicatalytic proteasome with a 
correct C-terminus, but a relegated N-terminus. These 
peptides could be further trimmed by cytosolic or 
ER-resident aminopeptidases.28 The cytokine interferon 
(IFN)-γ induces the so-called immunoproteasome, which 
contains novel active subunits of the proteasome activator 
(PA)28 and the IFN-γ-inducible proteasomal β-subunits, 
the low molecular weight proteins (LMP)2, MECL1 and 
LMP7, replacing their constitutive homologs β1, β2, 
and β5 during proteasome assembly.29 During the initial 
viral infection, a rapid induction of the immunoprotea-
some is crucial, which leads to an altered peptide reper-
toire.30 Subsequently, the peptides are transported via 
the heterodimeric transporter associated with antigen 
processing (TAP)1/TAP2 into the ER, which forms a 
peptide loading complex with the chaperones calreticulin 
(CALR), tapasin (TPN) and the protein ERp57, thereby 
facilitating peptide loading onto MHC class I molecules 
non-cavalently bound to β2-m.

Reduced or impaired expression of any of these mole-
cules can act as a bottleneck for proper MHC class I 
surface expression. For example, mutations or deletions 
of B2M or TAP subunits result in a complete absence of 
MHC class I molecules on the cell surface.31–34 Further-
more, downregulation of MHC class Ia surface levels on 
reduced expression of one or more APM components 
represents a potent mechanism for immune escape 
in tumor cells, but also of viral-infected cells to escape 
immune surveillance. However, in contrast to tumors, 
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Table 1  Viral peptides/proteins as well as viral miRs targeting MHC class I and APM components

Targeted mechanisms for downregulation of MHC class I

Peptide generation in 
general

Peptide transport in 
general

Peptide loading in 
general

Retention of assembled 
MHC class I or 
unknown reductive 
mechanism

Viral proteins/peptides vIL-10 (EBV39)
BGLF5 (EBV41)
EBNA-1 (EBV42)

ICP47 (HSV-135 36)
BNLF2a (EBV38)
vIL-10 (EBV39)
US6 (CMV44)

US3 (CMV45) ORF66 (VZV37)
BILF1 (EBV40)
BDLF3 (EBV43)
US10 (CMV46)
US11 (CMV47)
US2 (CMV48)
U21 (HHV-751)
K3 (KSHV52)
K5 (KSHV52)
LANA1 (KSHV53)

Viral miRs miR-US4-1 (CMV72) miR-BART17 (EBV71)
miR-BHRF1-3 (EBV71)

n.d. n.d.

APM, antigen processing and presentation machinery; CMV, cytomegalovirus; EBV, Epstein-Barr virus; KSHV, Kaposi-Sarkom herpes virus; 
MHC, major histocompatibility complex ; miRs, microRNAs; n.d., not determined; VZV, varicella-zoster virus.

many viral proteins have been identified to interfere with 
the expression of components of the APM. A summary of 
such ‘immune evasions’ is listed in table 1.

The human herpes virus (HHV) 1 (herpes simplex 
virus 1, HSV-1) produces the protein ICP47 that blocks 
the peptide loading on the MHC class I HC by direct 
binding to the TAP 1/2 heterodimer.35 36 In HHV-3 (VZV) 
infected cells, MHC class I complexes were hindered to 
pass through trans-Golgi to the cell surface, which is medi-
ated by the VZV protein ORF66,37 while HHV-4 (EBV) 
encodes for the BNLF2a protein blocking the TAP 1/2 
heterodimer even more efficient than ICP47 or US6.38 
Furthermore, EBV encodes for the protein vIL-10, which 
downregulates TAP1 and LMP2 expression. Both genes 
are controlled by a bidirectional promoter.39 The EBV 
protein BILF1 reduces MHC class Ia surface expression,40 
and the EBV protein BGLF5 as well as EBNA-1 interfere 
with the complete peptide generation.41 42 Interestingly, 
the late lytic BDLF3 gene product downregulates both 
MHC class I and class II molecules.43 The HHV-5 (cyto-
megalovirus, CMV) encodes for the US6 peptide, which 
is also able to interfere the peptide transport by blocking 
the TAP 1/2 heterodimer.44 Additionally, CMV encodes 
for the US3 protein that inhibits the TPN-mediated 
peptide loading and therefore retains HLA class I mole-
cules within the ER.45 While the US10 protein directly 
binds to MHC class I HC and retaining it in the ER,46 the 
US11 and US2 protein directs the MHC class I HC toward 
proteasomal degradation.47 48 Furthermore, it has been 
shown that the combination of cytosolic and ER-resident 
aminopeptidases shapes the pool of antigenic peptides as 
shown for the immunodominant CMV pp65495-503 CTL 
epitope.49 It is noteworthy that CMV virions can even bind 
β2-m on the cell surface and might use it as receptor for 
virus entry.50

An immune evasion of the HHV-7 viruses is the inhi-
bition of MHC class I presentation by the viral U21 
protein.51 Furthermore, HHV-8 (KSHV) viruses express 
the K3 and K5 proteins leading to the downregulation 
of MHC class I molecules.52 The similar effect was also 
reported for LANA1.53

Viral microRNAs prevent immune surveillance by MHC 
class I molecules
Not only viral-encoded proteins can counteract immune 
surveillance by interfering with peptide processing and 
presentation of MHC class I molecules, also viral-encoded 
microRNAs (miRs) are reported to hinder the MHC class 
I mediated immune surveillance. miRs are small single-
stranded non-coding RNAs of approximately 19–25 
nucleotide (nt) in length54 binding sequence specifically 
to the 3′-untranslated region (UTR), but less frequent 
to the 5′-UTR and the coding sequence (CDS) of target 
mRNAs.55 The miR binding to the target mRNA results 
in translational inhibition leading to mRNA storage56 or 
in most cases to mRNA decay.57 Only the seed regions 
of the miRs between the second to seventh nt exert 
perfect complementary sequence homology to the target 
mRNA sequences, but the impact of their length and the 
resulting target repression is currently controversially 
discussed.58 Furthermore, miRs redundantly regulate 
mRNAs and one single miR may control the fate of many 
different target mRNAs.57

Some of the miRs affect tumor biologic relevant cellular 
functions, like cell proliferation, cell migration, inva-
sion, angiogenesis, apoptosis inducibility, immune cell 
recognition and others. Therefore, based on their target 
genes, some miRs can be grouped into oncogenic, tumor 
suppressive or immune modulatory miRs.59
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Interestingly, some of these miRs are functionally incor-
porated into the RNA-induced silencing complex (RISC) 
complex.60 So far, more than 250 viral miRs have been 
identified, predominantly encoded by herpes viruses, but 
also by polyomaviruses, ascoviruses, and adenoviruses.61 
Herpes viruses encode and express not only own miRs 
binding to certain host mRNAs, they further alter the 
whole host cell miR transcriptome on infection61 and/
or during the process of viral-induced malignant trans-
formation.62 In the case of EBV, the viral-mediated induc-
tion of the oncogenic miR-155 in host B cells is one major 
molecular mechanism for immortalization and malig-
nant transformation.63 64 On the other hand, the EBV-
encoded miR-BART-1 targets the tumor suppressor gene 
PTEN, which is associated with tumor metastasis.65 The 
viral miR BART16 targets the transcriptional coactivator 
CREBBP mRNA and thereby inhibits type I IFN signaling 
and other target genes of this important transcriptional 
coactivator,66 affecting the whole host cell transcriptome 
for a putative shift toward immortalization and malig-
nant transformation. If secreted factors, like hormones, 
cytokines, and chemokines, are affected on viral infec-
tion, an impact even on non-infected host cells/tissues/
organs including immune effector cells could be possible. 
Indeed, KSHV downregulates the tumor suppressive 
miRs miR-221, miR-222, and the let7 family members of 
the infected host cell.67

The herpes viruses express miRs during the lytic phase 
and even during the latency.68 69 Currently, the tumor 
biologic and tumor immunologic targets of these viral 
miRs are identified. So far, there is no proof that the 
viruses do encode for additional miR processing enzymes 
or for additional RISC components, since the viral-
encoded miRs use the miR processing machinery of the 
infected host cells.70

Furthermore, EBV targets the mRNA of TAP2 by miR-
BART17 and miR-BHRF1-3.71 The CMV virus encodes for 
miR-US4-1 negatively regulating the ER-resident amino-
peptidase ERAP1 involved in the peptide shaping/trim-
ming for later presentation on MHC class I molecules.72 It 
is postulated that more herpes virus-encoded miRs will be 
identified impairing the function of the MHC class I APM 
in the future. All so far reported viral-encoded proteins 
and regulatory miRs affecting the MHC class I-mediated 
antigen presentation are summarized in table 1.

Viral proteins restrain the activity of immune 
effector cells
The current research does not only proof the inhibition 
of the MHC class I-dependent antigen presentation by 
viral proteins, but rather the disruption of the interac-
tion between (infected/tumor) target cell and immune 
effector cells. Such disruption could be arranged by 
reduction of certain host cell proteins acting as ligands 
for activating receptors on immune effector cells or by 
enhancing the expression of viral and/or host molecules 
leading to the inhibition of immune effector cells. This 

includes an enhanced expression of immune modulatory 
molecules, like non-classical MHC class Ib molecules, 
in the host cell. Actually, the expression of non-classical 
MHC class Ib molecules is strongly induced in solid and 
hematopoietic tumor malignancies offering a strong 
mechanism for immune evasion.13

Indeed, HHV-1 induces HLA-G expression on infection 
in human neuronal cells.73 While HLA-G is a ligand for 
the inhibitory receptors ILT-2, ILT-4, and KIR2DL4, which 
are present on NK cells, CTLs, B cells, macrophages and 
dendritic cells,74 HLA-E binds to the inhibitory receptors 
CD94/NKG2A, -B and -C on NK cells and CTLs.75 For 
both immune modulatory molecules, a strictly controlled 
gene expression has been reported, which includes also 
miRs. Those HLA-G negative regulatoring miRs were 
also classified as tumor suppressive miRs13 76 77 and might 
also be downregulated on viral infections. Indeed, CMV 
infection interferes the regulation between miR-376a and 
HLA-E.71 Furthermore, the HCMV genome encodes for 
different NK cell modulators, like UL135, UL141, UL142, 
and UL148 thereby inhibiting NK cell activation and 
recognition.78 UL141 inhibits the expression of the acti-
vating ligands CD155 and CD112, the activating receptor 
CD226 (DNAM-1), TRAIL-R1 and -R2, while UL142 and 
UL148A target specifically MICA and UL148 the expres-
sion of LFA-3.

Next to the viral-mediated enhancement of MHC class 
Ib molecules, the checkpoint molecule programmed cell 
death1 ligand 1 (PD-L1) is induced on several viral infec-
tions including HIV, HCV, and HHV1.79 80 There exist 
more immune inhibitory molecules, which are directly 
or indirectly induced on viral infections. For example, 
HHV1 induces transforming growth factor-β (TGF-β) 
secretion of infected host cells.81 TGF-β induces among 
others HLA-G, but inhibits MHC class Ia and APM compo-
nents gene expression.82 Such mechanisms are strongly 
required for the further processes of viral infection and 
immune evasion.

A second strategy is the reduced expression of mole-
cules that act as ligands for activating immune cell recep-
tors including among others different NKG2D-Ls, namely 
the major histocompatibility complex class I-related mole-
cules (MIC) A and B as well as the UL16-binding proteins 
(ULBP) 1–6, also known as retinoic acid early transcript 1 
(RAET1) proteins.83 84 In analogy to the tightly controlled 
cell surface expression of the MHC class Ia/b molecules, 
the NKG2D-Ls exert also strongly regulated cell surface 
expression to avoid respective immune responses by 
NKG2D expressing NK cells and CTLs.85 86 Various patho-
physiological situations, such as viral infection, oxida-
tive stress, genotoxic drugs, tissue damage, heat shock, 
inflammatory cytokines, and malignant transformation 
are known inductors for NKG2D-L surface expression.59

HHV-1-infected cells show reduced surface levels 
of MICA and ULBP2,87 as well as ULBP1 and −3.88 
VZV-infected cells reported to show equal effects by 
downregulating ULBP2 and ULBP3.88 EBV infection 
decreased MICA, MICB, and ULBP4 surface levels.89 
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Table 2  Viral peptides/proteins as well as viral miRs and other mechanisms leading to downregulation of the NKG2D ligands

NKG2D ligands

MICA MICB ULBP1 ULBP2 ULBP3 ULBP4 ULBP5 ULBP6

Viral proteins/
peptides

UL142 
(CMV92)
US18 (CMV94) 
US20
(CMV94)
U21
(HHV-795)
K5
(KSHV96)

UL-16 (CMV91)
U21
(HHV-795)
K5
(KSHV96)

UL-16 
(CMV90)
U21
(HHV-795)

UL-16 
(CMV90)

UL142 
(CMV93)

n.d. UL-16 
(CMV90)

UL-16 
(CMV90)

viral miRs miR-BART7 
(EBV100)

miR-BART2-5p
(EBV99)
miR-UL122 
(CMV101)
miR-K12-7 
(KSHV99)

n.d. miR-H8 
(HSV-198)

miR-H8 
(HSV-198)

n.d. n.d. n.d.

Downregulation 
on unspecified 
mechanism

HSV-187; 
EBV89

EBV89 HSV-188 HSV-187; 
VZV88

HSV-188; 
VZV88

EBV89 n.d. n.d.

CMV, cytomegalovirus; EBV, Epstein-Barr virus; HSV-1, herpes simplex virus 1; KSHV, Kaposi-Sarkom herpes virus; miRs, microRNAs; n.d., 
not determined; VZV, varicella-zoster virus.

The many possibilities of the herpes viruses to downreg-
ulate NKG2D-L surface expression include viral-encoded 
proteins, binding to the NKG2D-Ls and causing a func-
tional inhibition as well as viral miRs or a combination 
of them.

The CMV encodes for the UL16 protein, which is able 
to bind many ULBPs with the exception of ULBP3 and 
ULBP4.90 Even MICB can be bound and retained by 
UL16.91 Next to UL16, the viral UL142 protein binds 
and retains MICA as well as ULBP3.92 93 MICA is further 
targeted by the CMV gene products US18 and US20.94 
The immune evasion by U21 of HHV7 not only inhibits 
MHC class I antigens, but it also contributes to the down-
regulation of MICA, MICB, and ULBP1.95 Furthermore, 
the KSHV protein K5 causes a downregulation of MICA 
and MICB.96 The viral proteins/peptides targeting 
NKG2D-L mRNAs are summarized in table 2.

Viral-encoded miRs enable immune evasion by 
targeting NKG2D-L transcription
In analogy to the prevention of the antigen presentation 
by MHC class I molecules, the herpes viruses can also 
block the NKG2D-Ls via the expression of miRs. Indeed, 
current studies identified a number of viral miRs directly 
targeting the NKG2D-Ls or indirectly leading to a reduc-
tion of their surface levels. In addition, various host cell-
encoded oncogenic miRs have been described, which can 
be induced after malignant transformation or as an indi-
rect result of viral infection, such as miR-17–5 p, miR-20a, 
miR-93 directed against MICA, miR-10b against MICB, 
and miR-650 against ULBP1.59 The literature even lists 
more human miRs targeting NKG2D-Ls, but these miRs 

have not yet been classified as oncogenic based on their 
functional activity.

In addition to these host cell miRs, the viral miR EBV-
miR-BART-6 directly targets Dicer in the host cells,97 which 
has an impact on the whole miR transcriptome in the host 
cell and even on the processing of viral encoded miRs 
themselves. HHV-1 encodes for miR-H8, which reduces 
the surface levels of ULBP2 and ULBP3.98 The EBV-miR-
BART2-5p directly targets MICB,99while EBV-miR-BART7 
targets MICA.100 MICB expression is also repressed by the 
CMV-miR-UL122101 and by KSHV-miR-K12-7.99 The viral 
encoded miRs targeting NKG2D-L mRNAs are summa-
rized in table 2.

Herpes virus-mediated interference of the 
interaction between infected host cells and immune 
effector cells by targeting host cell cytokines and 
chemokines
For an early antiviral response, the secretion of certain 
proinflammatory cytokines is required, including among 
others IFN-γ, TNF-α, IL-1β, IL-2, IL-6, IL-12, IL- 18, and 
IL-23,102–105 leading to the activation of phagocytic cells 
like macrophages, but also to the activation of CTLs and 
NK cells. As a consequence of these proinflammatory 
cytokines, proinflammatory chemokines, like CXCL-8, 
CCL2 (MCP-1), CCL3, CCL4, CCL5 (Rantes), CCL11, 
CXCL10, are released and recruit other immune effector 
cells.106 A viral intervention at this point is crucial and is 
to be affiliated functionally and temporally before CTLs 
interact with MHC class I presented antigens or NK cells 
interact with the infected cell via NKG2D-Ls and/or other 
molecules. This putative intervention may include the 
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block of proinflammatory cytokines/chemokines and/or 
the increased secretion of anti-inflammatory cytokines/
chemokines. A respective summary of targeted cytokines 
and chemokines is listed in table 3.

HHV-1 represses several proinflammatory cytokines, 
including IL-6, TNF-α, IFN-α/β, CCL5 (Rantes), and 
IL-12, IL-23 by the tegument localized proteins VP16, 
ICP4 and ICP27,107 which underlines the relevance of 
these molecules for an early immune evasion.

EBV inhibits the IFN-γ downstream signaling pathway 
by its immediate-early protein BZLF1.108 Furthermore, 
EBV lytic transactivator Zta was characterized as a potent 
suppressor of IFN-β production,109 while the EBV LMP1 
protein inhibits TNF-α.110 The EBV protein LMP1 induces 
the secretion of the anti-inflammatory cytokine IL-10,111 
whereas the EBV miR-BHRF1-2-5p blocks the proinflam-
matory IL-1 signaling.112

CMV disrupts multiple levels of the IFN-α signal trans-
duction pathway113 and the IFN-β response with its US9 
protein.114 Also targeting the TNF-α115 as well as the IFN-γ 
induced gene expression by the CMV-encoded protein 
UL23 has been reported.116

The β-subfamily and γ-subfamily of the herpes viruses 
encode for own viral chemokines and even viral chemo-
kine receptors known to bind and interfere with the func-
tions of the host cell chemokines.117 The CMV UL21.5 
mRNA is also packed within the virion, and its protein 
binds and blocks the function of CCL5 (Rantes),118 
whereas the CMV-encoded protein US28 blocks CCL5 
function.119 KSHV expresses the viral chemokine vCCL2, 
which is a broad-spectrum chemokine receptor antag-
onist, which might impair the recruitment of antiviral 
immune cells to the site of infection.117 120 The KSHV 
infection is further accompanied by a reduced secretion 
of TNF-α and IL-1.121

Conclusion
This review summarizes for the first time the combined 
mechanisms for immune evasion strategies of herpes 
viruses with focus on cytokine/chemokine signaling, 
thereby interfering the MHC class I-mediated antigen 
presentation and the interaction with immune effector 
cells via NKG2D-L (figure  1). While the cytokine/
chemokine signaling and the NKG2D-based interac-
tions reflect parts of the innate immunity also, the adap-
tive immunity is targeted by viral molecules including 
antigen processing and presentation via MHC class 
I molecules. It is noteworthy that also other subareas 
of the immune system are targeted by viral molecules 
encoded by HHVs that have not been addressed within 
this study.

The cytokine/chemokine signaling is a very early 
reaction to viral infection and might explain the pres-
ence of the respective inhibiting viral factors in the 
tegument. Such factors are present as protein encoding 
mRNAs or already as peptides/proteins. In the case 
of viral-based cytokine and chemokine inhibition, the 
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Figure 1  Selected immune evasion strategies of herpes viruses in the cellular context of infected host cell and immune 
effector cells. APM, antigen processing and presentation machinery; CTLs, cytotoxic T lymphocytes; HLA, human leukocyte 
antigen; IL, interleukin.

involvement of respective viral miRs is not yet well inves-
tigated. In contrast, the involvement of viral miRs as 
well as peptides/proteins in the different steps of the 
complex MHC class I-mediated antigen presentation 
as well as in the NKG2D-Ls-based immune effector cell 
interaction is well studied and understood. A temporal 
order in the establishment of the strategies enabling 
the immune evasion on infection with herpes viruses is 
summarized in figure 2 and highlights the downregula-
tion of proinflammatory cytokines and/or chemokines 
as first step based on the fact that already the virions 
contain molecules directly targeting a proper cytokine 
and chemokine signaling. Only after host cell infec-
tion and viral DNA transcription leading to viral miRs 
and after translation of viral mRNAs to viral peptides 
and/or proteins, other mechanisms of correct immune 
surveillance are targeted including inter alia MHC class 
I antigen presentation as well as NKG2D interaction.

Unfortunately, only a little is known whether the 
reported molecular interactions between the viral 
miRs/peptides/proteins with immunological relevant 
targets in the host cell differ between primary infection, 
latency, reinfection, and so on, or whether they differ if 
different target cell types infected by the same virus, for 
example, EBV-infected B cells compared with infected 
epithelial cells of the respiratory tract. Further clinical 

studies are necessary to investigate and validate the clin-
ical relevance of the reported in vitro studies.

Furthermore, it is important to consider the informa-
tion of the viral-encoded immunomodulatory molecules 
in the context of coexpressed viral-encoded oncogenes. 
Already mentioned were the indirect mechanisms, 
like the induction of the human-encoded oncogenic 
miR-155 in host B cells by EBV. But, additionally, the 
herpes viruses are known to encode for genes exerting 
an oncogenic potential and such factors are not only 
limited to the strongly cancer-associated two members 
of the γ-subfamily of the human herpes viruses, namely, 
EBV and KSHV. In fact, even HSV-1 and HSV-2 are 
reported to act as cofactors for malignant transforma-
tion in several tumor malignancies including thyroid 
tumors, prostate cancer, and elevated incidences 
for melanoma, as well as cervical cancer in combina-
tion with HPV.122–125 As a major cause for a putative 
malignant transformation mediated by HSV-1/2, the 
oncogenic and antiapoptotic viral protein ICP10PK is 
discussed.126 VZV is also speculated to elevate the risk 
for certain malignancies mediated by its antiapoptotic 
IE63 protein.127 128 The oncogenic potential of EBV 
is well characterized. It is highly associated with the 
Burkitt’s lymphoma, Hodgkin’s lymphoma, and naso-
pharyngeal carcinoma. LMP1 was so far identified as 
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Figure 2  Schematic summary of the highlighted mechanisms leading to immune evasion with postulated temporal order. APM, 
antigen processing and presentation machinery; HLA, human leukocyte antigen; miR, microRNA.

the major EBV oncogene.129 The Roseoloviruses (HHV-
6/7) were at least detected in some hematopoietic 
malignancies.130 131 In contrast, the KSHV is the caus-
ative inductor of the Kaposi’s sarcoma by inhibiting the 
apoptosis via the viral-encoded proteins LANA, viral 
Bcl-2, and K13.132 133 Many malignancies induced by 
the herpes viruses occur in combination with immune 
deficiencies. The ability of the herpes viruses to prevent 
complete elimination by the host immune system 
is therefore a possible neuralgic point for putative 
therapies.

All of the addressed mechanisms for immune surveil-
lance are also targeted in tumor cells independently of 
viral infections and therefore the authors want to under-
line the strong connection between tumor immunology 
and virology.
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