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Abstract

Ribotypes and toxin genotypes of clinical C. difficile isolates in Taiwan are rarely reported. A

prospective surveillance study from January 2011 to January 2013 was conducted at the

medical wards of a district hospital in southern Taiwan. Of the first toxigenic isolates from

120 patients, 68 (56.7%) of 120 isolates possessed both tcdA and tcdB. Of 52 (43.3%) with

tcdB and truncated tcdA (tcdA-/tcdB+), all were ribotype 017 and none had binary toxin or

tcdC deletion. Eighteen (15%) toxigenic isolates harbored binary toxins (cdtA and cdtB) and

all had tcdC deletion, including Δ39 (C184T) deletion (14 isolates), Δ18 in-frame deletion (3

isolates), and Δ18 (Δ117A) deletion (1 isolate). Eleven of 14 isolates with Δ39 (C184T) dele-

tion belonged to the ribotype 078 family, including ribotype 127 (6 isolates), ribotype 126 (4

isolates), and ribotype 078 (1 isolate). Among 8 patients with consecutive C. difficile iso-

lates, these isolates from 6 (75%) patients were identical, irrespective of the presence or

absence of diarrhea, suggestive of persistent fecal carriage or colonization. In conclusion in

southern Taiwan, ribotype 017 isolates with a tcdA-/tcdB+ genotype were not uncommon

and of C. difficile isolates with binary toxin, the ribotype 078 family was predominant.

Introduction

Clostridium difficile is the leading cause of nosocomial diarrhea with an increase in the inci-

dence of sporadic outbreaks causing severe and fatal infections since the beginning of the cen-

tury [1]. Most alarming is the outbreak of C. difficile infections (CDIs) in Quebec, Canada in

2003. During the outbreak involving 1,703 patients, CDI was the attributable cause of death in
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117 (6.9%) cases and a contributing factor in additional 127 (7.5%) deaths [2]. The hyperviru-

lent strain had been assigned as the North American pulse-field type 1 (NAP1), restriction

endonuclease analysis (REA) group BI, and polymerase chain reaction (PCR) ribotype 027

(sometimes referred to as BI/NAP1/027). Three bacterial factors have been found in the epi-

demic C. difficile strain, including in vitro increased production of toxin A and B, fluoroquino-

lone resistance, and production of binary toxin [1]. Toxin A and B are transcribed from a

pathogenicity locus comprised of five genes: tcdA (toxin A), tcdB (toxin B), and three regula-

tory genes. One of the latter, tcdC, is a negative regulator of toxin production. Binary toxin is

transcribed from cdtA and cdtB [1].

Changing C. difficile epidemiology is noted worldwide. In the European Study Group of C.

difficile (ESGCD) between 2002 and 2005, major toxigenic ribotypes were 001 (13%), 014

(9%), 002, 012, 017, 020, and 027 (each about 6%), with the CDI incidence ranging from 0.13

to 7.1 cases per 10,000 patient-days in different countries [3,4]. In Japan, a shift of the predom-

inant ribotype, from PCR ribotype a in 2000 (15/33, 45%) to PCR ribotype f (type smz) in 2004

(18/28, 64%), was noted in a teaching hospital between 2000 and 2004 [5,6]. In Korea, tcdA-/

tcdB+ C. difficile strains accounted for<7% in 2002, but increased to 13.2% in 2003 and 50.3%

in 2004. In Taiwan ribotype 027, 078, or 001 isolates were not reported [7–9], until 2012 when

the first case of CDI due to ribotype 027 was reported [10]. Nevertheless the information

regarding toxin genotype and ribotype distribution in Taiwan remains scarce.

Genetic relationship of the C. difficile isolates causing colonization, infection, or recurrence

in the same individual remains variable in several studies. Among 20 recurrent cases, Oka

found 16 (80%) cases were identical between the strains at initial infection and at recurrence

[11]. Nevertheless Barbut et al. reported that of the strains from 93 hospitalized patients with

recurrent CDI between 1994 and 1997, 48.4% of clinical recurrences were caused by different

strains compared with initial strains [12]. However, the question of whether the initial colo-

nized C. difficile strain was the same as or different from the strain causing subsequent infec-

tion was not answered.

In our previously published data, we reported the clinical impact and risk factor of C. diffi-
cile colonization and infection in a prospective study from January 2011 to June 2012

[8,13,14]. We analyzed the clinical C. difficile isolates during the study period and found the

first hypervirulent C. difficile ribotype 126 strain in Taiwan [15]. We further extended the pro-

spective study to January 2013. In this study we aimed to investigate the toxin gene content

and ribotype distribution of C. difficile isolates with tcdC deletion collected from previous stud-

ies [13–15].

Materials and Methods

Study design

We collected clinical C. difficile isolates from stool culture of the prospective study from Janu-

ary 2011 to June 2012 as described before [8,13,14]. Briefly a prospective investigation was con-

ducted in the medical wards of the Tainan Hospital, Ministry of Health and Welfare, a district

hospital in southern Taiwan. The prospective clinical study was further extended to January

2013. The study was approved by the institutional review board of the Tainan Hospital, Minis-

try of Health and Welfare, and written informed consents were obtained from enrolled

patients. Patients with age of at least 20 years old, and admitting to medical wards with

expected hospital stays of at least 5 days were included. Exclusion criteria were patients with

previous metronidazole or oral vancomycin therapy within three months, colectomy, or CDI

at admission [16–18]. We retrieved demographic information, laboratory data, medication

history, and underlying disease from medical records. Stool samples from the patients
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included in the study from January 2011 to January 2013 were sent for C. difficile culture. Stool

samples were plated on cycloserine–cefoxitin-fructose agar (CCFA) under anaerobic condi-

tions. C. difficile colonization (CdC) is defined as an asymptomatic patient with the presence

of C. difficile in stool and CDI as a patient with diarrhea and the detection of toxigenic C. diffi-
cile in stool. Recurrence was defined as the resurgence of clinical symptoms after cessation of

antimicrobial therapy, at least 10 days after the first episode [12].

Bacterial strains

C. difficile CCUG4938T (ribotype 001 with wild type tcdC, toxinotype 0, purchased from the

Culture Collections of the University of Goteborg, Sweden), a ribotype 078 strain (with a

39-bp deletion in tcdC, provided by Prof. EJ Kuijper at Leiden University Medical Center, the

Netherlands), and ATCC BAA1805 (ribotype 027 with an 18-bp deletion of tcdC, purchased

from American Type Culture Collection, USA), ribotype 106 and ribotype 001/072 strain (pro-

vided by Prof. Ellie JC Glodstein at UCLA, USA), were used as reference strains.

Genomic DNA

C. difficile strains were grown anaerobically in Brain Heart Infusion broth (Becton, Dickinson

and Company) with 5 mg/ml yeast extract (MO BIO Laboratories, Inc.) and 0.1% L-cysteine

(AMRESCO1) at 37˚C for two days. After harvesting the bacteria, C. difficile genomic DNA

was extracted with a genomic DNA mini kit (Geneaid, Ltd, Taiwan).

Detection of toxin genes

The extracted DNA was amplified for the 16s rDNA, tcdA, tcdB, cdtA, cdtB, and tcdC genes of

C. difficile in a single multiplex PCR, as described in [19]. The strains containing a truncated

tcdC profile were further examined through tcdC sequencing, as previously described in [20].

Sequencing was performed by Mission Biotech Co., Ltd. Amplification was performed with a

BigDye terminator 3.1 kit (Applied Biosystems) according to the manufacturer’s instructions.

Capillary sequence analysis was also performed by Mission Biotech, Taiwan with an ABI

3730xl DNA sequencer (Applied Biosystems).

Antimicrobial susceptibility

Overnight cultures of C. difficile strains were inoculated onto Brucella agar (Oxoid) plates con-

taining vitamin K1 (0.5 mg/L), haemin (5 mg/L) and 5% defibrinated sheep red blood cells.

Minimum inhibitory concentrations (MICs) of moxifloxacin (MX), metronidazole (MZ), and

vancomycin (VA) were evaluated by Etest (AB Biodisk, Solna, Sweden). Quality control strains

included Bacteroides fragilis ATCC25285, Bacteroides thetaiotaomicron ATCC 29741, and C.

difficile ATCC700057. The breakpoint used for three tested antibiotics was 8 mg/L, 32 mg/L

and 16 mg/L, respectively, in accordance with the guideline established by the Clinical and

Laboratory Standards Institute (CLSI).

Sequence analysis of gyrA and gyrB was performed as previously described [21]. Briefly,

the DNA region was amplified using the primer pairs, gyrA1–gyrA2 for gyrA and gyrB1–

gyrB2 for gyrB. PCR products were purified and sequenced. Pairwise alignments of DNA

sequences were carried out using the BLAST server of the National Center for Biotechnology

Information.
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PCR ribotyping

The isolates containing tcdB and determined as toxigenic strains were further examined by

polymerase chain reaction (PCR) ribotyping. The ribotyping method and PCR primers used

were as described previously [22]. After PCR amplification, the samples were concentrated

using the Gel/PCR DNA Fragments Extraction Kit (Geneaid, Ltd, Taiwan) and separated by

the QIAxcel capillary electrophoresis system (Qiagen, Hilden, Germany) using the “OM500”

method and QX Alignment Marker 15 bp/3 kb (Qiagen, Hilden, Germany).

Repetitive sequence-based polymerase chain reaction (Rep-PCR)

The identity of the consecutive isolates collected beyond 28 days from the same patient was

determined by Rep-PCR. Rep-PCR was performed as described by Versalovic et al. [23], and

the PCR products were analyzed using the QIAxcel system.

Statistical analysis

Statistical analyses were performed by statistical software (SPSS, version 13.0). Continuous

data were expressed as the means ± standard deviations. The χ2 test or Fisher’s test was used to

compare categorical variables, and Student’s t-test was used to compare continuous variables.

A two-tailed P value of less than 0.05 was considered to be statistically significant.

Results

Toxin gene content distribution of clinical C. difficile isolates

Of 569 hospitalized patients, 556 fulfilling the inclusion criteria were enrolled. C. difficile was

found in 170 patients. Overall 120 (70.6%) patients had toxigenic C. difficile isolates harvested

from stool and 50 (29.4%) harboured non-toxigenic C. difficile isolates (Fig 1). Of 120 patients,

26 (21.7%) developed diarrhea and were regarded as having CDI while 94 patients had toxi-

genic C. difficile colonization (tCdC). Of 120 toxigenic C. difficile isolates, 68 (56.7%) possessed

both tcdA and tcdB and 52 (43.3%) had tcdB and truncated tcdA (Table 1). Among 68 tcdA+/

tcdB+ isolates, 18 (26.4%) harbored binary toxin (cdtA and cdtB) and tcdC deletion, including

Δ39 (C184T) deletion (14 isolates), Δ18 in-frame deletion (3 isolates), and Δ18 (Δ117A) dele-

tion (1 isolate). Of 52 tcdA-/tcdB+ isolates, none had binary toxin or tcdC deletion.

Genetic relationship of consecutive toxigenic C. difficile isolates from the

same individual

Genetic relationship of consecutive toxigenic isolates from the same individual collected

beyond 28 days was examined by Rep-PCR (Table 2). Of 8 patients, consecutive isolates were

identical in 6 (75.0%) patients, irrespective of the presence or absence of diarrhea. Genetic sim-

ilarity among consecutive fecal C. difficile isolates obtained from 2 patients was illustrated

(Fig 2).

Ribotype and antimicrobial susceptibility of C. difficile isolates

The ribotypes, antimicrobial susceptibility, and partial sequences of gyrA/gyrBof 18 toxigenic

isolates with binary toxin and tcdC deletion were investigated (Table 3). Eleven (61.1%) isolates

belonged to the ribotype 078 family, including ribotype 078 (1 isolate), ribotype 126 (4 iso-

lates), and ribotype 127 (6 isolates) (S1 Fig). Of the 52 isolates with tcdA-/tcdB+ genotype, all

were identified to be ribotype 017. Prof. M Wilcox at the Leeds Teaching Hospitals NHS Trust

confirmed ribotyping of the above clinical isolates. For genetic relationship studied using Rep-
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Fig 1. Flowchart of the patients enrolled in this study.

doi:10.1371/journal.pone.0166159.g001

Table 1. Toxin gene contents of 120 toxigenic clinical Clostridium difficile isolates.

Toxin genes, isolate No. (%) CDT tcdC pattern Isolate No. (%)

tcdA+/tcdB+, 68 (56.7) CDT+ Δ18 bp, in-frame 3 (2.5)

CDT+ Δ18 bp, Δ117A 1 (0.8)

CDT+ Δ39 bp, C184T 14 (11.7)

CDT- Wild type 50 (41.7)

tcdA-/tcdB+, 52 (43.3) CDT- Wild type 52 (43.3)

CDT = C. difficile binary toxin; bp = base-pair.

doi:10.1371/journal.pone.0166159.t001
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Table 2. The toxin gene content and ribotype of consecutive toxigenic Clostridium difficile isolates.

Patient No. Follow-up period Clinical condition Strain shift* Toxin gene content Ribotype (RT)

1 2011/11/9-2012/2/15 C!D!C Yes A+B+CDT-! A-B+CDT- unknown!RT 017

2 2012/4/17-2012/11/30 C!D!D Yes A+B+CDT-! A+B+CDT-! A+B+CDT- RT 106!RT 001/072!unknown

3 2012/2/2-2012/8/20 D!C No A+B+CDT+ RT 126

4 2012/3/16-2012/4/16 D!C!D No A+B+CDT- RT 106

5 2012/4/20-2012/10/11 C!D No A-B+CDT- RT 017

6 2012/5/28-2012/10/1 C!D No A+B+CDT- RT 106

7 2012/6/20-2012/7/18 C!D No A+B+CDT- unknown

8 2012/8/9-2012/9/7 C!D!C!D No A+B+CDT- unknown

A = tcdA; B = tcdB; C = colonization (C. difficile colonization); CDT = cdtA/cdtB; D = disease (C. difficile infection).

* Indicates the detection of other rep-PCR profiles.

doi:10.1371/journal.pone.0166159.t002

Fig 2. Molecular characteristics of consecutive fecal isolates of Clostridium difficile obtained from two patients, TNHP 173~TNHP 328 (ribotype

126) and TNHP 269~ TNHP 356 (ribotype 106), respectively. A = tcdA; B = tcdB; CDT = binary toxin; bp = base-pair; del. = deletion; Rep-

PCR = repetitive sequence-based polymerase chain reaction.

doi:10.1371/journal.pone.0166159.g002
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PCR, 4 isolates of ribotype 126 were found to be identical as reported previously [15], and 6

isolates of ribotype 127 exhibited 3 distinct subtypes with a predominant Rep-PCR subtype (4

isolates). However, 3 isolates of ribotype 034 were genetically different (Fig 3). All 18 toxigenic

isolates with binary toxin were susceptible to metronidazole and vancomycin in vitro, and of

10 (55.6%) moxifloxacin-resistant isolates (MIC >32 mg/L), 9 had gyrA mutation (Thr82Ile)

and 1 had gyrB mutation (Asp426Asn).

Clinical characteristics of patients with C. difficile ribotype 078 family

Of 26 isolates causing CDI, 7 (26.9%) had binary toxin and 4 (15.4%) belonged to the ribotype

078 family. In contrast, 11 (11.7%) of 94 tCdC isolates had binary toxin and 7 (7.4%) isolates

belonged to the ribotype 078 family (S1 Table). Clinical characteristics of 26 patients with CDI

and 94 patients with tCdC were compared (Table 4). Patients with CDI were less likely to be

nursing home residents (57.7% vs. 77.7%; P = 0.049), and more likely to have nasogastric tube

(77.3% vs. 46.8%, P = 0.016) or diabetes mellitus (61.5% vs. 39.4%, P = 0.049). However, there

were no differences in underlying disease, laboratory findings, ribotype distribution, and mox-

ifloxacin resistance in two groups (Tables 4 and 5).

We assessed the seasonal distribution of toxigenic C. difficile isolates stratified by binary

toxin and ribotype 078 family (S2 Fig). More C. difficile isolates with binary toxin, particularly

those belonging to the ribotype 078 family, were harvested at the first and second quarters of

2011 and 2012.

Discussion

In the present study, the ribotype 078 family was dominant among toxigenic C. difficile isolates

with binary toxin and tcdC deletion in Taiwan. Moreover the ribotype 078 family in Taiwan

Table 3. Ribotypes, gyrA and gyrB mutations, and antimicrobial susceptibility of 18 Clostridium difficile isolates with binary toxin.

Isolate No. Ribotype (RT) gyrA mutation gyrB mutation MIC, mg/L

MX MZ VA

2 RT 328 - - 0.5 0.032 0.5

286 RT 034 - - 0.5 0.064 0.5

294 - Asp426Asn >32 0.125 0.5

381 - - 0.5 0.032 0.25

80 RT 078 - - 0.25 0.032 0.38

61 RT 126 Thr82Ile - >32 0.032 0.25

173 Thr82Ile - >32 0.032 0.5

203 - - 0.5 0.032 0.75

264 - - 0.5 0.047 0.75

7 RT 127 Thr82Ile - >32 0.032 0.38

15 Thr82Ile - >32 0.032 0.38

16 Thr82Ile - >32 0.032 <0.016

17 Thr82Ile - >32 <0.016 0.38

92 - - 0.38 0.032 0.38

293 Thr82Ile - >32 0.023 0.38

9 Unknown Thr82Ile - >32 0.032 0.38

13 Thr82Ile - >32 0.032 0.38

14 - - 0.1 0.047 <0.016

MX: moxifloxacin; MZ: metronidazole; VA: vancomycin.

doi:10.1371/journal.pone.0166159.t003
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often displayed a high level of moxifloxacin resistance. Several retrospective studies in Taiwan

investigated the prevalence of hypervirulent C. difficile strains, such as ribotype 027 or 078, but

no hypervirulent isolates had been discovered before 2012 [7–9]. To our knowledge, this is the

first study describing ribotype and toxin genotype distribution of clinical C. difficile isolates in

Taiwan. Our study revealed that among the isolates with binary toxin, more than half belonged

to the ribotype 078 family, including ribotypes 078, 126, and 127. The result was unique in that

ribotype 078 has been reported from Korea and China [24–26], but it not the dominant ribo-

type. Clinical impact and origin of the dominant ribotype 078 family among binary toxin pro-

ducers in Taiwan warrant further evaluations.

In Hangzhou, China in 2013, the predominant C. difficile ribotypes in hospitalized cancer

patients included 001, 017/1, and 017 [27]. At another hospital in Hunan, China between April

2009 and February 2010, the dominant ribotype was 017, followed by 046 and 012 [28].

Ribotypes 018, 017 and 001 were prevalent in Seoul, Korea from September 2008 to January

2010 [29]. In general, ribotype 017 isolates were commonly present in China and Korea, and

here we found that this ribotype accounted for 43% of toxigenic isolates, suggestive of its

Fig 3. Repetitive sequence-based polymerase chain reaction (Rep-PCR) gel patterns of 6 toxigenic Clostridium difficile isolates of

ribotype 127 (3 subtypes) and ribotype 034 isolates (3 subtypes).

doi:10.1371/journal.pone.0166159.g003
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Table 4. Clinical characteristics of 120 patients with toxigenic Clostridium difficile in stool, stratified by the presence (C. difficile infection, CDI) or

absence (C. difficile colonization, CdC) of diarrhea.

Characteristics CDI, n = 26 CdC, n = 94 P values

Male 17 (65.4) 51 (54.8) 0.377

Age, years 70.5 ± 12.7 73.6 ± 13.5 0.274

Body weight, kg 50.2 ± 12.1 50.6 ± 11.2 0.404

Nursing home residents 15 (57.7) 73 (77.7) 0.049

Recent hospitalization within three months 9 (34.6) 28 (29.8) 0.638

Nasogastric tube use 17 (77.3) 44 (46.8) 0.016

Prior exposure to antibiotic* 7 (30.4) 23 (24.5) 0.598

Prior exposure to proton pump inhibitor* 2 (8.7) 5 (5.3) 0.622

Underlying medical diseases

Hypertension 10 (38.5) 45 (47.9) 0.506

Diabetes mellitus 16 (61.5) 37 (39.4) 0.049

Old stroke 11 (42.3) 28 (29.8) 0.244

Chronic kidney disease (Ccr <60 ml/min) 3 (11.5) 19 (20.2) 0.400

On hemodialysis 1 (3.8) 8 (8.5) 0.682

Malignancy 4 (15.4) 9 (9.6) 0.475

Laboratory data, mean ± standard deviation

White blood count, 103/mm3 11.4 ± 5.8 11.5 ± 5.9 0.977

Neutrophils, % 75.5 ± 12.6 76.1 ± 15.1 0.856

Hemoglobin, g/dL 10.4 ± 2.3 11.92 ± 2.1 0.117

Platelet, 103/mm3 253.7 ± 105.6 219.2 ± 107.5 0.152

Alanine aminotransferase, U/L 22.5 ± 24.3 39.9 ± 70.5 0.058

Creatinine, mg/dL 1.5 ± 1.0 2.6 ± 2.8 0.214

Data are no. (%) of patients, unless otherwise indicated; Ccr = creatinine clearance.

*Medication within three months before admission.

doi:10.1371/journal.pone.0166159.t004

Table 5. Ribotype (RT), binary toxin, and gyrA/B mutation of initial toxigenic Clostridium difficile iso-

lates from 120 patients, stratified by the presence (C. difficile infection, CDI) or absence (C. difficile

colonization, CdC) of diarrhea.

Characteristics CDI, n = 26 CdC, n = 94 P values

Binary toxin 7 (26.9) 11 (11.7) 0.067

RT 078 family 4 (15.4) 7 (7.4) 0.250

RT 078 0 1

RT 126 3 1

RT 127 1 5

RT 034 2 1

RT 328 0 1

Unknown ribotype 1 2

gyr mutation

gyrA mutation 5 (19.2) 9 (9.6) 0.181

gyrB mutation 6 (23.1) 8 (8.5) 0.077

Data are no. (%) of patients, unless otherwise indicated.

doi:10.1371/journal.pone.0166159.t005
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widespread in Asia countries. An international surveillance of toxigenic C. difficile isolates is

essential to disclose ribotype distribution and clinical significance of toxigenic C. difficile iso-

lates in Asia.

Of the patients in our study, identical C. difficile isolates can be obtained from the same

individuals with tCdC, CDI, or recurrent CDI. The result was similar to the study conducted

by Oka et al., who noted 80% were identical between the strains at initial infection and at

recurrence [11]. Moreover Kim et al. found relapse rates of ribotype 017 and 018 isolates were

higher than those of other ribotypes (63.6% and 63.6% vs. 22.2%, respectively) [30]. The clini-

cal impact of C. difficile ribotypes on CDI recurrence warrants more studies. However, in our

study the same C. difficile isolate persisted from CdC to CDI or from CDI to CdC, suggestive

of long-term carriage of identical C. difficile strains, irrespective of the initial presence or

absence of diarrhea. Furthermore, the role of asymptomatic carriers in C. difficile transmission

has been supported by a recent study in which active surveillance detection and isolation of C.

difficile carriers was associated with a significant decrease in the incidence of healthcare-associ-

ated CDI [31]. Clinical significance and management of asymptomatic C. difficile carriers war-

rant more attention.

Patients with CDI were characterized as less likely to be nursing home residents, more likely

to use nasogastric tube and to have diabetes mellitus, than those with CdC. Nasogastric tube

use [32,33] and diabetes mellitus [34] had been regarded as risk factors for CDI before. It is

notable that CDI in our study was inversely correlated with nursing home residing, though the

prevalence of C. difficile colonization or infection among residents in long-term care facilities

had been increasing in recent years due to advanced age, the recipients of multiple courses or

longer duration of antibiotics, and previous CDI history [35,36].

There are some limitations in our study. Firstly, we only analyzed the ribotypes of toxigenic

C. difficile isolates with binary toxin and tcdC deletion and tcdA-/tcdB+ isolates. Secondly, the

C. difficile isolates studied were only obtained from a district hospital in southern Taiwan.

Their representativeness is of course questionable. Thirdly, it is likely that the boundary of C.

difficile colonization and infection is blurred. With longer followed-up periods, the isolates of

tCdC and CDI will be exchangeable. For example, the isolates initially causing colonization

can later be related to CDI, and vice versa. Finally, though a total of 13 patients were excluded

from the study due to expected hospital stay for less than 5 days, recent metronidazole or van-

comycin therapy, colectomy, or CDI at admission, the estimated number of toxigenic C. diffi-
cile isolates obtained from them was 2 or 3. Therefore, the exclusion of these patients will not

change significantly our study results.

In conclusion, ribotype 017 isolates were not uncommon in toxigenic C. difficile isolates

southern Taiwan and the ribotype 078 family predominated among clinical C. difficile isolates

with binary toxin.
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