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Abstract: Since the first months of the coronavirus disease 2019 (COVID-19) pandemic, several
specific physiologic traits, such as male sex and older age, or health conditions, such as over-
weight/obesity, arterial hypertension, metabolic syndrome, and type 2 diabetes mellitus, have been
found to be highly prevalent and associated with increased risk of adverse outcomes in hospitalized
patients. All these cardiovascular morbidities are widespread in the population and often coexist,
thus identifying a common patient phenotype, characterized by a hyper-activation of the “classic”
renin-angiotensin system (RAS) and mediated by the binding of angiotensin II (Ang II) to the type
1-receptor. At the same time, the RAS imbalance was proved to be crucial in the genesis of lung injury
after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, where angiotensin-
converting-enzyme-2 (ACE2) is not only the receptor for SARS-CoV-2, but its down-regulation
through internalization and shedding, caused by the virus binding, leads to a further dysregulation
of RAS by reducing angiotensin 1-7 (Ang 1-7) production. This focused narrative review will discuss
the main available evidence on the role played by cardiovascular and metabolic conditions in severe
COVID-19, providing a possible pathophysiological link based on the disequilibrium between the
two opposite arms of RAS.
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1. Introduction

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), was first reported in December 2019 in Wuhan,
China [1]. Since then, COVID-19 has exponentially spread all around the world, making
the World Health Organization (WHO) declaring it a pandemic on March 11, 2020. Until
now, there have been millions of deaths worldwide. Since the first months of the pandemic,
several specific physiologic traits, such as male sex and older age, or health conditions, such
as overweight/obesity, arterial hypertension, metabolic syndrome, and type 2 diabetes
mellitus, have been found to be highly prevalent and associated with increased risk of
adverse outcomes in hospitalized COVID-19 patients [2]. The first report on hospitalized
COVID-19 patients in Wuhan found that hypertension (31.2%), diabetes mellitus (10.1%),
cardiovascular disease (14.5%), and malignancy (17.2%) were the most common related
health conditions [3]. In March 2020, the American College of Cardiology (ACC) issued a
clinical bulletin confirming that patients suffering from hypertension, diabetes, and cardio-
vascular disease had higher case fatality rates than the average population. In a large case
series of sequentially hospitalized COVID-19 patients in the New York City area between
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March 2020 and April 2020, the most common comorbidities were hypertension (56.6%),
obesity (41.7%), and diabetes (33.8%) [4]. Furthermore, meta-analytic data confirmed sig-
nificant positive correlations between COVID-19 severity and hypertension, diabetes, and
coronary heart disease [5]. Case-control studies have reported that obesity, together with
diabetes and hypertension, were the strongest predictors for COVID-19, being associated
not only with illness severity but also with higher risk of acquiring the infection [6].

Why do these conditions characterize the most severe COVID-19? It is very likely
that the “classic” renin-angiotensin-system (RAS) and angiotensin-converting-enzyme
(ACE) 2 play a key role in this scenario. ACE2 is the cellular receptor for SARS-CoV-
2 [7], but its functional down-regulation, through internalization and shedding caused
by the virus binding, can lead to an imbalance between the two arms of RAS, leading
to tissue damage after SARS-CoV-2 infection by unopposed angiotensin II (Ang II)-AT1
receptor (AT1R) activity [8]. A very large quantity of experimental evidence confirmed by
high-quality clinical research performed before the SARS-CoV-2 pandemic demonstrated
that RAS dysregulation, resulting from the disequilibrium between these two opposite
arms, driven by ACE and ACE2, may be a crucial factor in the genesis of lung injury in
SARS-CoV-2 infection [9]. In the following focused narrative review, we will discuss the
role played by cardiovascular and metabolic conditions in determining the risk for severe
COVID-19, proposing a conceivable pathophysiological link underpinning all, based on
the dysregulation of RAS.

2. Disequilibrium between ACE and ACE2 Activity as a Potential Causal Mechanism
for Severe COVID-19

The RAS plays a fundamental role in the regulation of fluid volume and blood pres-
sure, but it also exerts a large spectrum of effects on several tissues, especially those
that are microvasculature-rich, such as the lungs. Renin, a protease produced by renal
juxtaglomerular cells in its active form, cleaves angiotensinogen, released mainly by the
liver, to form Ang I. A pathophysiological mechanism underlying the cardio-metabolic
conditions associated with a greater risk of morbidity and mortality in COVID-19 is the
imbalance between ACE and its homologous ACE2, with a decreased activity of the latter
and impairment of its protective effects. Similarly to ACE, ACE2 is a ubiquitous enzyme,
particularly expressed in the lungs but also present on the enterocytes of the small intestine
and on the endothelial cells of several organs and systems, such as the brain, cardiovascular
system, and kidney [10,11]. ACE and ACE2 are key enzymes in the metabolism of Ang I:
ACE, expressed widespread by endothelial cells, catalyzes the conversion of Ang I to the
octapeptide Ang II [12], which exerts its effects via Ang II type 1 and type 2 receptors (AT1R
and AT2R, respectively). In particular, binding of Ang II to AT1R is the one most commonly
expressed in normal adult tissues, stimulating vasoconstriction, sodium reabsorption, and
blood pressure increase, promoting vascular damage, inflammation, and fibrosis [13]. On
the opposite side, ACE2 is a type I transmembrane metallocarboxypeptidase that cleaves
Ang I into a nonapeptide [Ang (1-9)] that binds AT2R and Ang II into a heptapeptide [Ang
(1-7)] that binds its specific receptor, initially identified as an “oncogene” (Mas receptor,
MasR) [14]. The two main effects of ACE2 are thereby the degradation of Ang II, the
principal effector of the “classic” RAS arm through AT1R, and the production of Ang (1-7),
which exerts opposite effects by inducing vasodilatation as well as anti-inflammatory and
anti-fibrotic pathways through binding to the MasR [15]. ACE2 also interacts with another
sub-branch of RAS based on Ang peptides in which the aminoterminal aspartate is replaced
by alanine (Alatensins), leading to the production of Ala-Ang (1-7) (Alamandine) that has
been found to bind Mas-related G protein-coupled receptor D (MrgD) and may also protect
against lung injury and fibrosis, improving vascular/endothelial dysfunction [11]. The
ACE2/Ang (1-7)/MasR axis has been found to attenuate inflammation and fibrosis in
experimental models to prevent heart failure and coronary heart disease [16], as well as
lung injury [17,18]. Therefore, ACE2 plays a pivotal role in the modulation of the two main
arms of RAS: the ACE/Ang II/AT1R axis (“classic RAS”) and the ACE2/Ang (1-7)/MasR
axis (“anti-RAS”). Indeed, ACE2 antagonizes “classic RAS”, playing an essential counter-
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regulatory role in the activation of the “anti-RAS” [19]. As SARS-CoV-2 uses ACE2 as a
primary receptor to gain entry into human cells, causing its functional down-regulation
through internalization and shedding [20,21], coronavirus infection leads to a RAS dys-
regulation, enhancing the ACE/Ang II/AT1R pathway up to vascular “toxicity”, causing
microvascular damage and dysregulated vascular permeability. This results in capillary
leakage of protein and fibrin-rich edema filling alveolar spaces, also promoting oxidative
stress and inflammation, leading to acute respiratory distress syndrome (ARDS) [9]. More-
over, the ACE/Ang II/AT1R axis is likely to promote the production of inflammatory
cytokines, accelerate apoptosis in alveolar epithelial cells and promote extracellular matrix
synthesis, resulting in lung fibrosis, a hallmark of tissue injury in SARS-CoV-2-related
pneumonia [22]. On the other hand, Ang (1-7) has been found to mitigate inflammation,
counteract lung fibrosis, and improve oxygenation in acute lung injury, acting as a pro-
tective factor against ARDS [17]. The main cardio-metabolic conditions associated with
a worse outcome in COVID-19 are intertwined via RAS imbalance at baseline. We will
discuss these conditions one by one in the following sections, assuming a key role of the
disequilibrium between “classic” RAS and “anti-RAS” as common denominators in the
development of severe COVID-19.

3. Overweight, Obesity, Visceral Adiposity and Metabolic Syndrome

Several studies have focused on the association between obesity and adverse outcomes
in patients hospitalized for COVID-19. A first meta-analysis [23] analyzed five different
cohorts between January and May 2020, finding how patients with higher body mass
index (BMI) had a greater risk for intensive care unit (ICU) admission and for invasive
mechanical ventilation. Further meta-analyses have corroborated these findings [24–26]. A
retrospective cohort study reported that the proportion of patients who required invasive
mechanical ventilation increased according to BMI, and it was greatest in patients with BMI
≥ 35 kg/m2 [27]. A recent large prospective, community-based, cohort study on patients
from over 1500 English general practitioners found J-shaped associations between BMI
and hospital admission or death due to COVID-19 and a linear association between BMI
and ICU admission [28]. The authors reported that each excess BMI unit above a BMI of
23 kg/m2 was associated with progressively increased hazard ratio of adverse COVID-19
outcomes (hospital admission, ICU admission, death). Interestingly, this association was
amplified for people of black ethnicity compared with those of white ethnicity and for
younger people (aged 20–39 years) compared with older people (aged ≥80 years) [28].
In addition to data concerning obesity, fat deposition in the abdominal region (visceral
fat) and in ectopic sites such as liver, epicardium, and skeletal muscle, was identified as
independent risk factor for worse severity of COVID-19. Indeed, higher visceral fat has
been reported to be associated with an increased need of intensive care in both subjects
older than 65 years and males [29]. Furthermore, the risk due to obesity in COVID-19 has
been found to be significantly greater in obese patients with metabolic associated fatty liver
disease (MAFLD) [30]. The visceral fat is an important component of metabolic syndrome
(MetS), another condition associated with poor prognosis in COVID-19. In previous case
series, the prevalence of MetS in hospitalized COVID-19 patients was up to 81%, with
a five-fold greater risk of disease deterioration and increased mortality risk as the MetS
components count increased [31,32].

Obesity and overweight with visceral adiposity promote increased circulating lev-
els of Ang I, leading to an overproduction of Ang II and hyper-activation of “classic
RAS” [33,34]. Adipocytes produce and release all the components of “classic RAS”, in-
cluding angiotensinogen, ACE, and Ang II, with the only exception of renin, even if they
express the renin receptor [35,36]. Thus, in the context of the aforementioned SARS-CoV-
2-induced ACE2 downregulation, it is likely that the increased levels of both Ang I and
Ang II coming from visceral adipose tissue lead to an ACE/Ang II/AT1R “storm” affect-
ing the pulmonary microcirculation in obese COVID-19 patients [37]. In addition, obese
subjects show high circulating levels of microRNAs involved in the downregulation of
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ACE2, resulting in further basal dysfunction of ACE2 compared to healthy subjects [38].
Adipose tissue is also involved in cytokine and adipokine secretion, contributing to a
pro-inflammatory environment. Indeed, leptin, one of the main adipokines secreted by
adipocytes, has been found to be related to increased Ang II levels and decreased ACE2
expression [39]. Moreover, the deficiency of the natriuretic peptide (NP) system, found in
obese subjects, mainly due to an increased expression of the clearance NP receptor C [40],
could further contribute to the RAS imbalance in this population. In fact, both A-type
(ANP) and B-type (BNP) NPs counteract the typical features of the ACE/Ang II/AT1R axis
hyper-activation (endothelial dysfunction and increased permeability, pro-inflammatory,
pro-hypertrophic, and pro-fibrotic activity), while experimental studies found that ANP
can prevent the reduction in ACE2 mediated by Ang II and, conversely, Ang (1-7) can
increase ANP release [34,41]. These interactions with RAS, together with their natriuretic
and cardio-protective effects against acute cardiac dysfunction that may develop during
SARS-CoV-2 infection, give NPs an important role in COVID-19, especially if obesity and
heart failure are present [42].

Overall, obesity and overweight can increase the risk for severe COVID-19 through
several mechanistic, biochemical, and immunological pathways; among them, the dysregu-
lation of RAS is likely to play a key role in increasing both disease severity and mortality
(Figure 1).
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Figure 1. Overweight/obesity, renin-angiotensin-system, and lung injury caused by SARS-CoV-2. ACE, angiotensin-
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4. Type 2 Diabetes Mellitus

Type 2 diabetes mellitus was identified early as a metabolic risk factor associated with
severe COVID-19. A large meta-analysis that included 33 case-control studies, published
between January and April 2020, has reported that diabetes was significantly associated
with COVID-19 mortality with a pooled odds ratio of 1.90. Diabetes mellitus was also
associated with severe COVID-19 with a pooled odds ratio of 2.75 [43]. The National
Cohort Study in England investigated 19,256 COVID-19–related ICU admissions and
reported that patients with diabetes were at increased risk of mortality independently
of other comorbidities, such as hypertension, chronic obstructive pulmonary disease,
heart failure, and chronic renal disease [44]. In a Chinese retrospective cohort study [45],
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diabetes has been found to be independently related with adverse outcomes in COVID-19,
while hypertension only when associated with diabetes was an independent predictor of
mortality and ARDS. A report from 1590 COVID-19 patients in China found that diabetes
was significantly more prevalent among patients with a worse course of disease than
among patients with a less severe form (34.6% vs. 14.3%), being a risk factor for ICU
admission and mortality [46].

New-onset hyperglycemia or acute decompensated diabetes mellitus have been fre-
quently observed in COVID-19 patients [47,48]. Moreover, susceptibility to other over-
lapped secondary infections, together with the use of glucocorticoid therapy, can further
precipitate acute hyperglycemia [49] with increased plasma osmolality, osmotic polyuria
and dehydration, endothelial dysfunction, thrombophilia, and amplified pro-inflammatory
cytokine secretion, all key factors in SARS-CoV-2-related multi-organ dysfunction. In
addition, binding of SARS-CoV-2 to ACE2 in pancreatic cells can damage islets and reduce
insulin release, leading to acute hyperglycemia and transient diabetes [50]. The evidence
that diabetes mellitus causes a pro-inflammatory environment has been corroborated by
serum levels of inflammation biomarkers, such as interleukin-6 (IL-6), C-reactive protein
(CRP), and ferritin, and D-dimer that are markedly higher in COVID-19 patients with
diabetes mellitus compared to controls without diabetes [51]. Generally, diabetes mellitus
is associated with weakened immune response and enhanced susceptibility to infections,
due to inherent neutrophil dysfunction, reduced T-cell responses, and disordered humoral
immunity [52]. As other cardio-metabolic comorbidities, type 2 diabetes mellitus bears
the fingerprint of RAS imbalance: indeed, chronic activation of “classic RAS” is typical
in diabetes and insulin-resistance, despite high sodium intake and high blood pressure,
and contributes to microvascular and macrovascular complications and is clearly involved
in diabetic kidney disease [53]. Furthermore, chronic hyperglycemia also reduces the
ACE2 expression, with a loss of its anti-inflammatory effects and protection of endothelial
function, because of a decreased counter-regulation of Ang II [54,55].

In the context of ACE/Ang II/AT1R axis hyper-activation, the insulin receptor also
uses mitogen-activated protein (MAP) kinase as a downstream mediator of its action [35],
mediating growth-factor-like effects, such as vascular smooth muscle growth and cardiac
hypertrophy [56]. Even AT1R can activate MAP kinase in its post-receptor cascade, so
it can be postulated that these two receptors synergize to exacerbate and perpetuate
inflammation, fibrosis, and tissue injury. These findings are in line with the hypothesis
that RAS dysregulation could be the backbone in the pathogenesis of severe COVID-19
in patients with diabetes mellitus. This vulnerability may play a synergistic role with
the underpinning inflammatory milieu and immune defects associated with diabetes,
providing SARS-CoV-2 a pathway for causing prolonged lung injury.

5. Arterial Hypertension

Worldwide epidemiologic data provided evidence that hypertension is a pivotal
comorbidity related to COVID-19 disease severity. A large meta-analysis [57], including
12 studies on 2389 COVID-19 patients (674 severe cases) found that the severity rate of
COVID-19 in hypertensive patients was much higher than in non-hypertensive cases
(37.58% vs 19.73%). Moreover, hypertensive patients showed a nearly three-fold higher risk
of dying from COVID-19. A community-based observational study [58] examined 1449
hospitalized and non-hospitalized COVID-19 patients in central Massachusetts and found
that hypertension was associated with severe outcomes among patients younger than
65 years of age. The results of a meta-analysis, including 60 studies with a total of 51,225
patients hospitalized with COVID-19, are in line with these findings, providing evidence
that hypertension was significantly associated with mortality in patients with a mean
age < 60 years (OR 3.7) [59]. In another review [60] on 15,794 participants, hypertension
has been found to be a significant predictor of ICU admission and mortality. Another
retrospective observational study has examined 2877 consecutive patients admitted to Huo
Shen Shan Hospital in Wuhan. The authors reported a two-fold increase in the relative
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risk of mortality in hypertensive individuals compared to non-hypertensive patients.
Additionally, hypertensive patients who were not taking anti-hypertensive therapy had a
significantly higher risk of mortality than patients on treatment [61].

In addition to the hypertensive condition, anti-hypertensive therapy is also likely
to affect the course of COVID-19. A large amount of data from both retrospective and
prospective studies provided evidence that patients treated with RAS inhibitors [ACE-
inhibitors (ACEIs) and angiotensin receptor blockers (ARBs)] tended to have a lower risk
of mortality than patients treated with other drugs, disproving initial fears arisen from
a possible hyper-production of ACE2 induced by RAS inhibitors, resulting in increased
susceptibility to SARS-CoV-2 infection. A large meta-analysis enrolling 101,949 COVID-19
patients found a significant association between treatment with RAS inhibitors and mor-
tality reduction among patients with hypertension [62]. Two nationwide cohort studies,
conducted in France and Sweden, reported that taking RAS inhibitors was associated with
a lower risk of COVID-19 hospitalization and death [63,64]. An analysis of the HOPE
COVID-19 registry revealed that patients receiving RAS inhibitors had lower mortality,
ICU admission, and need for mechanical ventilation [65], while an Italian nationwide obser-
vational study conducted by the Italian Society of Hypertension found that ACEIs/ARBs
did not affect the risk of more severe COVID-19 [66,67]. A French observational study,
conducted in a geriatric department, also showed a lower mortality rate in oldest old
patients (mean age: 86.3 ± 8.0 years) taking ACEIs/ARBs compared with patients not
taking these drug classes [68]. These data on older subjects have been confirmed by other
observational studies on hospitalized patients, providing additional evidence on the benefit
of RAS inhibitor use in this peculiar population [69,70]. On the other side, ACEIs/ARBs
withdrawal was found to be associated with greater risk for complications and mortal-
ity in hospitalized COVID-19 patients that were previously taking these drugs, as per
indication [71], while several large systematic reviews and cohort studies showed how
their assumption/continuation was not harmful, firmly advising against their discontinua-
tion [72–75].

The mechanisms by which hypertension leads to increased risk of worse outcome
in COVID-19 are likely to be many. Hypertension is a major cardiovascular risk factor
that promotes arteriosclerosis of large and small arteries and accelerates atherosclerosis,
leading to cardiovascular disease and death. Left ventricular hypertrophy and myocardial
fibrosis, with increased filling pressures and impaired coronary reserve, are key features
that contribute to atrial fibrillation, myocardial ischemia, and heart failure with preserved
ejection fraction [76]. Certainly, RAS hyper-activation or, at least, “inappropriately normal”
renin activity and aldosterone levels are typical of overweight/obese hypertensive pa-
tients [33]. In these patients, normal or increased Ang II production results in a stimulation
of the ACE/Ang II/AT1R pathway, leading to small arteries constriction, hypertrophy,
fibrosis, and tissue injury [77]. It also leads to the activation of NADPH oxidases, with
subsequent generation of reactive oxygen species, protein oxidation, and dysregulated cell
signaling [78]. Moreover, animal models support a hypothetical link between hypertension
and reduced ACE2 expression, corroborated by data showing lower expression of ACE2
mRNA and ACE2 protein expression in the kidneys of hypertensive rats [79].

Several findings in animal models [80,81] and humans [82,83] showed how the ex-
pression of ACE2 could increase, at least in some organs, after the introduction of ACEIs
or ARBs therapy [84]. In any case, ACEIs and ARBs facilitate ACE2 activity with a re-
balancing of the “anti-RAS” arm. Indeed, treatment with ARBs can counteract the RAS
imbalance through AT1R blockade, while treatment with ACEIs can increase the avail-
ability of Ang (1-9) and decrease the degradation of Ang (1-7) [9]. These mechanisms are
in agreement with clinical data of a better outcome in COVID-19 patients treated with
RAS inhibitors, likely thanks to the rebalancing of the two RAS arms, in addition to the
well-known protective effects on the heart and cardiovascular system.
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6. Dyslipidemia

Another risk factor often associated with overweight/obesity and MetS is dyslipi-
demia. Although its influence may vary, according to age and the presence of other
comorbidities, meta-analyses found that dyslipidemia was associated with higher mortal-
ity and disease severity [85,86]. Atherogenic dyslipidemia was more frequent in patients
with critical COVID-19 and was significantly associated with intubation and death. High
triglycerides levels were associated with high levels of inflammatory biomarkers and
poor COVID-19 outcome during hospitalization [87]. A retrospective study also found
that decreased serum high-density lipoprotein (HDL) cholesterol levels were associated
with COVID-19 severity [88]. Surely, HDL are very complex lipoproteins exerting several
functions that go beyond lipid transport and metabolism, and, perhaps, future studies
could give a more accurate explanation of these findings.

On the other side, statins, cornerstone drugs in dyslipidemia and cardiovascular
disease, demonstrated significant beneficial effects in patients with COVID-19, reducing
in-hospital mortality in several observational studies [89–91] and meta-analyses [92,93], al-
though not all studies are in agreement [94]. These beneficial properties, already suggested
in previous studies on hospitalized patients [69], might be mediated by their speculative
pleiotropic effects, including anti-inflammatory, immunomodulatory, and antithrombotic
properties, but the atherosclerotic plaques stabilization, thus avoiding acute cardiovas-
cular ischemic events that often complicate severe COVID-19, is likely to play the key
role [70,95–98]. Moreover, several experimental models pointed out their possible in-
hibitory action on the “classic RAS”, ameliorating Ang II-mediated cardiac hypertrophy
and fibrosis [98,99]. In experimental models, statins also promote ACE2 up-regulation via
inhibition of the MYD88–NF-κB pro-inflammatory pathway [100].

All these data highlight the association between dyslipidemia, the use of lipid-
lowering drugs, and COVID-19 severity. Further studies are needed to clarify this linkage,
but disposable evidence suggests that dyslipidemia, with its related cardiovascular risk,
often reported in obese, diabetic, and hypertensive subjects [101], is a real further risk factor
for severe COVID-19 more than a simple biomarker of obesity-related dysmetabolism.

7. Male Sex

From the early phases of the pandemic, male sex has been found to be associated to
a more severe course of COVID-19 and greater need for intensive care, compared with
female sex [102]. Studies found how men had a 59% increased risk for severe outcomes
compared to women [103]. Observational studies reported how the vast majority (82%) of
patients that needed intensive care were males [104] and how the main determinants of
ICU admission were male sex and obesity [105]. In a study on 4062 hospitalized COVID-19
patients in New York City, males had a higher risk of mortality compared to females and
were more likely to present with sepsis and hypoxia on admission [106]. A large meta-
analysis [107], including 3,111,714 reported global cases of COVID-19, found that males had
higher risk of both ICU admission and death compared to females, although no difference
has been found in the proportion of males and females infected with SARS-CoV-2.

Several factors can explain this sex difference. Although the greatest evidence on
RAS and sex comes from preclinical studies, both types of sex hormones, estrogens and
androgens, likely affect the expression and activity of several RAS components, especially
regarding the “classic RAS” pathway, while limited data are available on the interactions
with the counter-regulatory RAS components [108]. Estradiol is likely to cause a protective
shift in ACE/ACE2 ratio, by both increasing ACE2 and inhibiting ACE expression [109].
Estrogenic activity has been found to inhibit the hemodynamic effects of Ang II and
promote the action of ACE2/Ang (1-7) axis in animal models [110]. Estrogen has also been
found to decrease tissue AT1R expression and aldosterone production, while testosterone
conversely increases ACE activity and tissue AT1R expression [108]. Furthermore, the gene
for ACE2 is located in the X chromosome, which could make it susceptible to escaping
X-inactivation in women [111]. In an animal model of obesity-associated hypertension, the
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increase in blood pressure after high-fat diet is attenuated in females compared to males,
and this different behavior appears to be mediated by ACE2 activity [112]. In humans, men
tend to have higher levels of aldosterone than females, regardless of other confounders,
facilitated, at least in part, by higher levels of endogenous Ang II [113].

Further studies are needed to disclose all the mechanisms underlying this sex differ-
ence, but it appears reasonable that the sex-specific RAS regulation contributes to female
protection from severe COVID-19, as well as from some cardio-metabolic conditions found
more frequently in men [108,114].

8. Older Age

Since the beginning of the pandemic, older age, besides the presence of comorbidities,
has been clearly associated with a worse outcome in COVID-19 [67]. In China, data collected
by the WHO revealed that the majority of deceased patients with COVID-19 were 70 years
or older. Another report from the Chinese Centre for Disease Control and Prevention found
that fatality rates were 8% and 15% among people aged 70 to 79 years and 80 years or
older, respectively, while case fatality rate among the entire cohort was 2.3% [115]. Palmieri
et al. [116] examined the characteristics of 35,595 cases of COVID-19-related deaths in Italy
from March 2020 to August 2020, finding that the median age was 80.2, with 57.3% of
males; interestingly, they also reported that, in the second phase of the pandemic (June–
August 2020), deceased patients with COVID-19 were significantly older (median age 82.8)
and with a greater burden of comorbidities. Another Italian study [104] has evaluated a
cohort of 3988 critically ill patients with COVID-19 admitted to ICU in Lombardy region,
from February 2020 to April 2020; at the multivariate analysis, they found that age over
69 years (hazard ratio 4.25) and male sex (hazard ratio 1.22) were significantly associated
with mortality. Furthermore, they also confirmed that hypertension, hypercholesterolemia,
heart disease, and diabetes were associated with increased mortality. A large population-
based study reported how older age was strongly associated to increased risk of COVID-
19-related death: the risk increased with increasing age, up to 20-fold for subjects aged
≥ 80 years compared with subjects aged 50–59 years, independently of comorbidities
and other confounders [103]. A post-hoc analysis of the international, multicenter HOPE
COVID-19 registry has selected all patients aged ≥65 years hospitalized for COVID-19,
reporting that patients aged 75 years and older had more in-hospital complications and
a significantly higher mortality. Their most prevalent comorbidities were hypertension
(69.2%), dyslipidemia (48.6%), heart disease (38.4%), and chronic lung disease (25.3%) [117].

Several factors and age-related modifications are responsible for the increased risk
of severe COVID-19 and death in older patients: the large spectrum of multiple cardio-
metabolic morbidities, leading to a much higher cardiovascular risk, as well as immune-
senescence, endothelial dysfunction, limited organ reserve (especially diminished car-
diorespiratory function), and other psychosocial and nutritional factors [118]. In this large
variety of factors, age-related decline in ACE2 expression, as observed in the lungs of
rats [119], may play a non-negligible role. In older people, especially those with cardio-
vascular comorbidities, reduced ACE2 levels and increased Ang II signaling arrange a
pro-inflammatory background. When these subjects are infected with SARS-CoV-2, that
leads to a further reduction in ACE2 cell surface expression, there is a consequent over-
whelmed amplification of the ACE/Ang II/AT1R pathway that perpetrates microvascular
damage and inflammatory effects leading to severe lung injury [120]. It must be recalled
that aging has a major role in cardiovascular disease by substantially “giving time” to
multiple risk factors, even “borderline” in severity, to produce vascular damage through
decades of inappropriate control [121]. When infections strike these older patients, the
clinical scenario may often complicate with acute cardiovascular events, leading to more
severe clinical course and worse outcome. Furthermore, other conditions often resulting
from poor control of cardio-metabolic risk factors, such as chronic kidney disease and
vascular dementia, are highly prevalent in older subjects, and are major contributors of
severe COVID-19 and death [117]. However, the disequilibrium between ACE and ACE2
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activity, a pathophysiological feature of aging, is likely to play a key role in determining
the disease severity in older people affected by COVID-19 [67].

9. Conclusions

Titanic efforts have been made, and they are incessantly extended, to understand the
pathophysiological mechanisms of COVID-19 in order to prevent its consequences. In this
context, our work provides a pathophysiological link that combines several features of
patients at higher risk of developing severe complications and dying from SARS-CoV-2
infection, based on RAS dysregulation, which is typical not only of severe COVID-19 but
also of the most prevalent cardio-metabolic conditions. Therefore, we can draw a particular
phenotype, an “identikit” of the patient characterized by male sex, older age, features
of MetS (excessive visceral adiposity with insulin resistance, altered glucose, and lipid
metabolism), and arterial hypertension (Figure 2), aiming at detecting patients at higher
risk for severe COVID-19 and death. Ad-hoc studies that develop a risk score based on
the risk factors taken into account in the present review may allow a rapid identification
of these patients, with possible benefits in terms of resource allocation and prognosis.
Further studies are needed, to better clarify the pathophysiological bases of COVID-19, in
order to arrange more effective instruments of prevention and care that could help us to
reduce morbidity and mortality in the long struggle with this tremendous plague. At the
moment, the most rational and evidence-based link between the common cardio-metabolic
conditions and severe COVID-19 is the one based on the dysregulation of RAS.
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