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a b s t r a c t

SMAD4 mutation was recently implicated in promoting invasion and poor prognosis of pancreatic cancer
(PACA) by regulating the tumor immune microenvironment. However, SMAD4-driven immune landscape
and clinical significance remain elusive. In this study, we applied the consensus clustering and weighted
correlation network analysis (WGCNA) to identify two heterogeneous immune subtypes and immune
genes. Combined with SMAD4-driven genes determined by SMAD4 mutation status, a SMAD4-driven
immune signature (SDIS) was developed in ICGC-AU2 (microarray data) via machine learning algorithm,
and then was validated by RNA-seq data (TCGA, ICGC-AU and ICGC-CA) and microarray data (GSE62452
and GSE85916). The high-risk group displayed a worse prognosis, and multivariate Cox regression indi-
cated that SDIS was an independent prognostic factor. In six cohorts, SDIS also displayed excellent accu-
racy in predicting prognosis. Moreover, the high-risk group was characterized by higher frequencies of
TP53/CDKN2A mutations and SMAD4 deletion, superior immune checkpoint molecules expression and
more sensitive to chemotherapy and immunotherapy. Meanwhile, the low-risk group was significantly
enriched in metabolism-related pathways and suggested the potential to target tumor metabolism to
develop specific drugs. Overall, SDIS could robustly predict prognosis in PACA, which might serve as
an attractive platform to further tailor decision-making in chemotherapy and immunotherapy in clinical
settings.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As a digestive system tumor with high malignancy, metastasis
tendency and insidious onset, pancreatic cancer (PACA) ranks the
fourth highest mortality rate among tumor-related deaths [1]. Pan-
creatic ductal adenocarcinoma (PDAC) was the most common his-
tologic type, accounting for about 90% of cases [2]. Over the two
decades, the incidence of PACA has been increasing at an annual
rate of 0.5–1.0%, and the 5-year survival rate has only increased
from 5.26% in 2000 to 10% in 2020, without qualitative improve-
ment [2]. As a standard first-line treatment modality, surgery com-
bined with adjuvant chemotherapy achieved relatively long
survival, but only very few patients with resectable disease could
benefit from it [3]. Compared with other malignant tumors (e. g.
liver cancer, lung cancer), the clinical breakthroughs in early detec-
tion and diagnosis of PACA were relatively lacking, and 80–85% of
PACA patients have developed local progression and metastasis at
the time of diagnosis [3]. With the development of next-generation
sequencing and molecular targeted drugs, PARP inhibitors have
shown great potential in PACA patients with BRCA mutation [3].
However, a recent phase III clinical trial displayed that Olaparib
(a PARP inhibitor) prolonged progression-free survival from
3.8 months to 7.4 months compared with placebo, but the overall
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survival (OS) no statistical difference between the two groups [4].
Therefore, new clinical management and treatment strategies were
urgently needed to improve outcomes in PACA patients.

Immunotherapy represented by immune checkpoint inhibitors
(ICIs) has brought a new dawn for the treatment of solid tumors,
unfortunately, ICIs alone have been clinically proven ineffective in
PACA [5]. Increased evidences confirmed that the tumormicroenvi-
ronment (TME) of PACA was characterized by rare immune effector
cells (e.g., CD8 + T cells) and abundant immunosuppressive cells,
such as regulatory T cells (Tregs), myeloid-derived suppressor cells
(MDSCs), M2-type macrophages, and cancer-associated fibroblasts
(CAFs), all of whichmay contribute to immune escape and tolerance
in immunotherapy [3]. Numerous clinical trials also have demon-
strated disappointing results either with ICIs alone or in combina-
tion with anti-CTLA-4 and anti-PD-1/PD-L1 [5]. Cancer vaccines,
chemoradiotherapy and other treatments that promote T cell acti-
vation, combined with ICIs, have also not achieved significant suc-
cess [5]. Gratifyingly, the CD40 agonistic antibody APX005M was
approved by the FDA in 2020 as an orphan drug for PACA, following
encouraging results from a phase Ib multicenter clinical trial [6].
The results showed that APX005M and gemcitabine plus nab-
paclitaxel as first-line therapy created a 58% response rate in meta-
static PACA patients [6]. Therefore, in the future, identifying
patients with ‘‘immune-hot” and adopting combination therapy
as early as possible may be a promising strategy for PACA patients.

SMAD4, also known as DPC4 (Deleted in pancreatic cancer
locus4), encodes a core mediator of the TGF-b pathway and has
been confirmed to play a tumor-suppressive role in various tumors
such as PACA, cholangiocarcinoma and colorectal cancer, etc. [7].
Mutation or deletion of SMAD4 occurs in approximately 55% of
PACA patients, and SMAD4 mutation was associated with shorter
OS in PACA [8,9]. Multiple studies have verified that SMAD4 muta-
tion could render PACA resistant to radiotherapy by promoting
autophagy, and SMAD4 gene therapy could reverse the invasive
phenotype of SMAD4-deleted PACA cells [9,10]. In addition, the
TGF-b/SMAD4 signaling pathway was also involved in regulating
the PACA TME and mediating the crosstalk between the tumor
and stroma [11]. Ablation of SMAD4 modulates the immunosup-
pressive PACA microenvironment and enhances tumor cells sensi-
tivity to combined immunotherapy by increasing T cells infiltration
[12]. However, a comprehensive understanding of the role of
SMAD4 mutation on the PACA immune microenvironment and
their specific function in immunotherapy remains unknown.

Therefore, SMAD4mutation played a vital role in TME, andmight
serve as a potential biomarker for monitoring PACA development
and evaluating therapeutic efficacy. In this study, based onmachine
learning algorithm, we constructed and validated a SMAD4-driven
immune signature (SDIS). SDIS exhibited excellent performance in
evaluating the prognosis, chemotherapy, and immunotherapy effi-
cacy of PACA patients. In addition, PACA patients in the high- and
low-risk groups showed distinct clinical features, functional path-
ways, genome-driven events, and immune infiltration landscapes.
Furthermore, SDIS also demonstrated excellent stability and
robustness in five validation cohorts and one immunotherapy
cohort. Overall, our study provides an available reference to under-
stand the role of SMAD4 mutation in the PACA immune microenvi-
ronment, and reveals the underlying roles of SDIS in the stratified
management and individualized treatment of PACA patients.
2. Materials and methods

2.1. Data acquisition and processing

All data processing, statistical analysis and visualization for this
study were carried out in the R 4.0.5 software. We collected data-
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sets meeting the study objectives from The Cancer Genome Atlas
(TCGA, http://portal.gdc.cancer.gov/), International Cancer Gen-
ome Consortium (ICGC, http://dcc.icgc.org/), and Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) databases
using the following criteria: (1) at least 50 PACA patients with clin-
ical and prognostic information; (2) probes and gene IDs were
clearly annotated, and >10,000 genes; (3) patients with primary
tumors who did not receive other confounding factor interventions
before sampling. Finally, we included 850 samples from six data-
sets, TCGA (n = 176), ICGC-PACA-AU-seq (ICGC-AU, n = 81), ICGC-
PACA-AU-array (ICGC-AU2, n = 267), ICGC-PACA-CA (ICGC-CA,
n = 182), GSE62452 (NCI, National Cancer Institute cohort,
n = 65) and GSE85916 (n = 79). Of these, 158, 385, and 268 samples
with genomic mutation data were included in TCGA, ICGC-PACA-
AU, and ICGC-PACA-CA cohorts, respectively. The normalized
matrix files of GEO cohorts were directly downloaded. RNA-seq
data from TCGA (FPKM normalized) were generated from the
UCSC-Xena database and further transformed into log2 (TPM + 1)
format. Both exp-array and RNA-seq data of ICGC were obtained
from its portal. The detailed baseline data of the six cohorts were
presented in Table S1.

2.2. Single sample gene set enrichment analysis

Following the approach described in previous article, we uti-
lized the ssGSEA algorithm in the ‘‘GSVA” package to evaluate the
infiltration fractions of 28 immune cell types in TCGA cohort [13].

2.3. Consensus clustering

Based on the infiltration fraction of TME cells, we further per-
formed consensus clustering in TCGA cohort by the
‘‘ConsensusClusterPlus” package [14]. The parameters were set as
the Euclidean distance-based pam algorithm with 1000 iterations,
and 80% of the samples were randomly drawn at each iteration.
The optimal number of clusters was picked from the number of
2–9 clusters based on the CDF and PAC of the consensus score,
and the clustering results were further visualized by two-
dimensional PCA.

2.4. Differential expression analysis

To identify genes driven by SMAD4 mutation in PACA patients,
we further used the ‘‘edgeR” package to differentially analyze
between the SMAD4MUT and SMAD4WT patients. A cutoff threshold
false discovery rate (FDR) < 0.05 along with FC < 2/3 or > 3/2 was
set to identify DEGs.

2.5. Weighted correlation network analysis

We further conducted co-expression analysis using the
‘‘WGCNA” package to cluster gene modules with similar expression
patterns while highly associated with the immune subtypes [15].
As shown in Fig. 3E, the soft power of b = 5 (scale-free R2 = 0.9)
was selected, and then we further constructed the adjacency
matrix by raising the intergenic Pearson correlation matrix to the
soft threshold power. Next, the topological overlap matrix (TOM)
was calculated using the TOMsimilarity algorithm, and genes with
similar co-expression patterns in the samples were hierarchically
clustered into different modules through dissimilarity between
the TOM matrices (1-TOM). The cutreeDynamic algorithm (setting
a minimummodule size of 100) was utilized to incorporate similar
co-expression modules. Finally, we calculated the correlation
between each module and the clinical traits of the samples, and
further selected the modules with the highest module-immune
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subtype associations to determine the genes highly correlated with
immunity.

2.6. Signature generation

Genes recognized by WGCNA as closely related to immunity
and simultaneously driven by SMAD4 mutation were defined as
the SMAD4-driven immune genes (SDIGs). We performed univari-
ate Cox regression analysis to determine the prognostic perfor-
mance of SDIGs in four cohorts with mutational information.
Next, we selected eligible genes (P < 0.2 and all of the hazard ratio
(HR) > 1 or < 1) in at least 3/4 of the cohorts for backward stepwise
regression and used the following formula to establish SDIS that
can predict the prognosis of PACA patients:

SDIS ¼
Xn

i¼1
Expi � Coefi

where n denotes the gene in SDIS, Expi denotes the expression level
of genei, and Coefi denotes the regression coefficient of genei in the
backward stepwise regression analysis. Patients in ICGC-AU2 train-
ing set and TCGA, ICGC-AU, ICGC-CA, GSE62452 and GSE85916 val-
idation sets were then stratified into the high- and low-risk groups
using the median risk score. The performance of SDIS was further
assessed by Kaplan-Meier survival analysis, multivariate Cox
regression analysis, as well as receiver operating characteristic
(ROC) curve and area under the ROC curve (AUC) value.

2.7. Genomic alteration analysis

Somatic mutation data for the ICGC cohort were downloaded
from its portal. The raw mutation file of TCGA was obtained using
the ‘‘TCGAbiolinks” package. The mutation landscape of PACA
patients and high- and low-risk groups was visualized by the wa-
terfall function of the ‘‘maftools” package. Copy number variation
(CNV) data for the high- and low-risk groups of TCGA cohort were
acquired through the cBioportal portal website.

2.8. Gene set enrichment analysis

The gseKEGG and gseGO functions of the ‘‘clusterProfiler” pack-
age were conducted to perform GSEA, and further identified the
KEGG and GO pathways that were significantly enriched in the
high- and low-risk groups. The enrichment pathways in the top
five of normalized enrichment score (NES) and adjusted P
value < 0.05 were selected for visualization.

2.9. Immune molecule expression and immunogenicity assessment

The ‘‘MCPcounter” package was used to evaluate the infiltration
abundance of immune cell types and stromal cells in PACA sam-
ples. A total of 27 ICMs including 10 B7-CD28 family, 9 TNF super-
family as well as 8 other molecules were recruited from a previous
article [16]. In addition, IPS calculated using a range of marker
molecules for immune response or tolerance were used to measure
immunogenicity in the high- and low-risk groups [17]. The higher
IPS and TMB indicated stronger immunogenicity of tumors.

2.10. Response to chemotherapy

The pRRopheticPredict function of the ‘‘pRRophetic” package was
applied to estimate the half-maximal inhibitory concentration
(IC50) of several common drugs such as gemcitabine, paclitaxel
and cisplatin, TP53 activator JNJ.26854165 and CDK Inhibitor
CGP.60474 in TCGA cohort. The lower IC50 was more sensitive to
this drug.
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2.11. Evaluation the efficacy of immunotherapy

TIDE website was employed to predict responsiveness to ICIs in
the high- and low-risk groups [18,19]. The Subclass Mapping (Sub-
map) algorithm was implemented to calculate the similarity of the
expression pattern of PACA patients in the high- and low-risk
groups to melanoma patients who responded/non-responded to
immunotherapy, which in turn indirectly predicted immunother-
apy efficacy [20,21]. In addition, we enrolled an additional publicly
available cohort of 39 patients with advanced melanoma who
received anti-PD-1 therapy (GSE91061) [22]. Kaplan-Meier sur-
vival curve, ROC curve and AUC for predicting patient survival
and response to immunotherapy were computed to assess the pre-
dictive power of SDIS in GSE91061 cohort.
2.12. Statistical analysis

Categorical variables were analyzed by Pearson’s chi-square
test or Fisher’s exact test. Continuous variables were compared
using Wilcoxon rank sum test or Student’s t test. Univariate, mul-
tivariate Cox regression and Kaplan-Meier prognostic analysis
were performed by the ‘‘survival” package. ROC curve and AUC
for predicting response to immunotherapy were generated by the
‘‘AUC” package, and survival ROC curves and AUCs for the training
set, five validation sets as well as the immunotherapy cohort were
all quantified by the ‘‘timeROC” package. P values of two-
sided<0.05 were considered statistically significant.
3. Results

3.1. Mutational landscape and genes driven by SMAD4 mutation

Our workflow is illustrated in Fig. 1. SMAD4 mutation was one
of the most frequent mutation types in TCGA cohort, with 18%
mutation frequency and was located only after TP53, KRAS and
CDKN2A. Among them, missense mutation, nonsense mutation
and frameshift deletion were the most common types (Fig. 2A).
Similarly, in ICGC-AU and ICGC-CA cohorts, SMAD4 mutation
ranked third and fifth with mutation frequency of 21% and 22%,
respectively (Fig. S1). The results of differential analysis showed
that 1881 differentially expressed genes (DEGs) were significantly
up-regulated while 398 DEGs were down-regulated in SMAD4MUT

patients compared with SMAD4WT patients, with BPIFB2, PRSS57,
SFTPC, MPPED1 and CGB ranking in the top five-fold change (FC,
Fig. 2B).
3.2. Consensus clustering identifies two immune subtypes

Based on the infiltration of 28 immune cell subsets, two
heterogenous immune subtypes of PACA samples were revealed
(Fig. 3A). The cumulative distribution function (CDF) curve and
proportion of ambiguous clustering (PAC) analysis of the consensus
score further confirmed that division into two clusters was the best
choice (Fig. 3B, C). The principal component analysis (PCA) of TCGA
cohort also showed that the two groups of samples were signifi-
cantly separated in spatial distribution (Fig. 3D). Among them, sub-
type 1 displayed a significantly superior infiltration abundance of
immune cell types, while immunity of subtype 2 was relatively
deficient, which were defined as Immune-H and Immune-L sub-
types, respectively (Fig. 3F).



Fig. 1. The workflow of our research. Our detailed process for obtaining SMAD4-driven immune genes and establishing SDIS is as follows: (1). According to the SMAD4
mutation status of PACA samples, we first obtained 2279 SMAD4 mutation-driven genes by differential analysis. (2). The abundance of 28 immune cell types in PACA samples
was assessed using the single sample gene set enrichment analysis(ssGSEA) algorithm, after which the samples were stratified into two immune subtypes (Immune-H and
Immune-L) using consensus clustering, and the black module (containing 1446 immune-related genes) most associated with immune subtypes was further identified using
the weighted correlation network analysis (WGCNA) algorithm. (3). Using Venn diagram, 180 SMAD4-driven immune genes were obtained by intersection of 2279 SMAD4-
driven genes and 1446 immune-related genes. (4). Afterwards, we screened 3 risk and 14 protective eligible genes (P < 0.2 and all of the hazard ratio (HR) > 1 or < 1) in at least
3/4 of the cohorts by univariate Cox regression analysis. (5). Finally, we generated a 7-gene prognostic signature in the ICGC-AU2 training cohort by backward stepwise
regression machine learning algorithm using the 17 eligible genes obtained in step (4) and named: SMAD4-driven immune signature (SDIS).
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Fig. 2. Mutational landscape and genes driven by SMAD4 mutation of pancreatic cancer (PACA) patients in TCGA cohort. (A) Frequency and type of mutations in the top 30
genes in PACA. Genes are sorted according to frequency of mutations. (B) Identification the differentially expressed genes between the SMAD4MUT and SMAD4WT patients.
Orange dots represented up-regulated genes, green dots represented down-regulated genes and grey dots represented genes with no significance.
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3.3. Identification of an immune-related co-expression module based
on WGCNA

Weighted correlation network analysis (WGCNA) is a powerful
bioinformatics analysis tool to identify genes with similar expres-
sion patterns [15]. We sought to identify specific modules closely
related to the immune subtypes using WGCNA. Based on TCGA
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cohort expression profile, we identified 8 modules, among which
the gray module was the gene composition that could not be
assigned to other modules due to low correlation. We then
included several vital clinical traits such as age, gender, stage,
TNM stage and grade, and the results of correlation analysis
showed that the black module containing 1446 genes not only
had the strongest association with immune subtypes (R^2 = 0.76,



Fig. 3. Screening immune-related genes. (A) The consensus score matrix of all samples when k = 2. A higher consensus score between two samples indicates they are more
likely to be grouped into the same cluster in different iterations. (B) The cumulative distribution functions of consensus matrix for each k (indicated by colors). (C) The
proportion of ambiguous clustering (PAC) score, a low value of PAC implies a flat middle segment, allowing conjecture of the optimal k (k = 2) by the lowest PAC. (D) Two-
dimensional principal component plot by the abundance of 28 immune cell types in the two clusters. The orange dots represented C2, and blue dots represented C1. (E)
Analysis of network topology for various soft-thresholding powers. (F) The infiltration heatmap of 28 immune cell types in the two subtypes. (G) The correlation heatmap of
the modules obtained by WGCNA and clinical traits. (H) The correlation between genes within black modules with immune subtypes.
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P < 0.001), but also had a significant correlation with OS, gender, M
stage and grade (Fig. 3G). Further analysis also confirmed an extre-
mely strong correlation between genes within the black module
and immune subtypes (R = 0.94, P < 0.001, Fig. 3H).
1159
3.4. Construction of a SMAD4-driven immune signature

We obtained 180 SDIGs by intersection of 2279 SMAD4-driven
genes and 1446 immune genes by Venn diagram (Fig. S2A).
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According to the screening criteria that were consistently risk or
protective factors in at least 3/4 of the cohorts, we identified 3 risk
genes and 14 protective genes from the results of univariate Cox
regression analysis (Fig. S2B-C). The detailed univariate Cox regres-
sion results of these 17 eligible genes in the four cohorts were
shown in Fig. S2D–G. Next, based on backward stepwise regres-
sion, we established SDIS in the training set using these genes.
The risk score for each sample of the training and validation sets
can be calculated using the following equation: SDIS = 0.1781 *
Expression (PI15) �0.1352 * Expression (KCNH8) �0.1555 * Expres-
sion (USH1C) �0.1643 * Expression (ZFPM1) �0.1668 * Expression
(NDRG2) �0.1713 * Expression (C16orf89) �0.2283 * Expression
(IL33).

Next, we stratified PACA patients into the high- and low-risk
groups using the median value (0.94), and the Kaplan-Meier sur-
vival curves for OS and relapse-free survival (RFS) showed that
the high-risk group had significantly shorter survival (Fig. 4A, B).
The results of multivariate Cox regression analysis including age,
gender, stage, grade and SMAD4mutation status also demonstrated
that SDIS was an independent risk factor for OS and RFS (HR: 1.494
[1.305–1.710] and 1.942 [1.472–2.563], P < 0.05, Fig. 4C, D). In
addition, in the training set, the AUC values of SDIS for predicting
1-, 2-, and 3-years OS were 0.715, 0.708, and 0.630, respectively,
suggesting that SDIS could accurately predict the prognosis of
PACA patients (Fig. 4E).
3.5. Validation of SDIS in five external cohorts

To investigate the stability and robustness of SDIS, we evaluated
its performance in TCGA, ICGC-AU, ICGC-CA, GSE62452, and
GSE85916 validation cohorts. Consistent with ICGC-AU2 training
cohort, the Kaplan-Meier survival analysis results of the five exter-
nal validation cohorts indicated that patients stratified into the
high-risk groups had significantly shorter OS and RFS than the
low-risk group (all P < 0.05, Fig. S3A-H). Furthermore, we verified
the prognostic value of SDIS as a continuous variable in the valida-
tion cohort by multivariate Cox regression analysis. After adjust-
ment for confounders such as age, gender, stage, grade and
SMAD4 mutation status, SDIS remained statistically significant in
TCGA (HR: 1.237 [1.003–1.526]), ICGC-AU (HR: 1.462 [1.126–
1.898]) and ICGC-CA cohorts (HR: 1.313 [1.074–1.605]) (all
P < 0.05, Fig. S3I, K, M). Multivariate Cox results of RFS also sug-
gested that SDIS was an independent risk factor in ICGC-AU (HR:
2.084 [1.251–3.472]) and ICGC-CA cohorts (HR: 1.646 [1.287–
2.105], P < 0.05, Fig. S3L, N). It is worth pointing out that since only
69 of 176 samples in TCGA cohort owned RFS information,
although SDIS showed a corresponding trend, it lacked statistical
significance (HR: 1.317 [0.940–1.844], P = 0.109, Fig. S3J). As shown
in Fig. 4F–J, the AUCs of SDIS for 1-, 2-, and 3-year OS in the five
validation cohorts reached 0.638, 0.603 and 0.684 in TCGA cohort;
0.745, 0.774 and 0.730 in ICGC-AU cohort; 0.633, 0.680 and 0.696
in ICGC-CA cohort; 0.679, 0.846 and 0.883 in GSE62452 cohort; and
0.688, 0.661 and 0.738 in GSE85916 cohort, respectively. Overall,
these results demonstrated that SDIS was a robust and feasible
prognostic model in PACA.

The results of the above multivariate Cox regression analysis
indicated that SMAD4 mutation status could not accurately predict
prognosis of PACA, whereas our SDIS remained an independent risk
factor for OS and RFS in PACA patients (Fig. 3C, D, Fig. S3I-N). To
further verify whether SMAD4 mutation alone could predict prog-
nosis in the SDIS subtype, we further performed Kaplan-Meier sur-
vival analysis in the whole, high-risk and low-risk PACA samples.
The OS and RFS results of all four cohorts suggested that SMAD4
mutation status could not accurately stratify PACA patients
(P > 0.05, Fig. S4A–W). These results confirmed the superiority of
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SDIS over SMAD4 mutation alone in predicting the prognosis of
PACA patients.

3.6. Genomic landscape of SDIS

By drawing a waterfall plot of the top 20 mutations in both
groups, we found that among the top 5 high-frequency mutations,
TP53, KRAS and CDKN2Amutations were more frequent in the high-
risk group than in the low-risk group, while SMAD4 and TTN were
the opposite (Fig. 5A-B). Additionally, we also investigated the
recurrent copy number amplification and deletion in the high-
and low-risk groups, and the results showed that the high-
frequency homozygous deletions (HOMDEL) were generally con-
sistent between the two groups, but amplifications differed greatly
(Fig. 5C). In the high-risk group, amplification mainly occurred on
the oncogene MYC, transcriptional pseudogene POU5F1B, and long
non-coding RNAs (LncRNAs, CCAT2, CCAT1, CASC8, PRNCR1, PCAT1),
etc. On the other hand, the transcription factor (GATA6), lncRNAs
(GATA6-AS1, MIR133A1HG, TTC39C-AS1), transmembrane protein
(TMEM241), ubiquitin protein ligase (MIB1), and Cyclin-
dependent Kinase (CDK) regulator (CABLES1) were amplified in
the low-risk group. In term of HOMDEL, we observed relatively
consistent high-frequency deletion in CDK inhibitors (CDKN2A,
CDKN2B, etc.), interferon (IFNE, IFNA8, etc.) and lncRNAs
(LINC01239, MIR31HG, etc.) in the two groups. Of note, the deletion
frequency of SMAD4 in the high-risk group reached 20.5%, while it
was only 5.8% in the low-risk group. In summary, mutations and
CNVs landscape differ greatly between the two groups, which pro-
vided a novel orientation for chemotherapy.

3.7. Underlying mechanisms and clinical significances of SDIS

To further elucidate the potential biological characteristics of
the two groups, we performed Gene set enrichment analysis
(GSEA) of Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Gene Ontology (GO) pathways. As illustrated, the high-risk group
was observably enriched in immunity and cell proliferation-
related pathways (Fig. 6A, C). For example, antigen processing
and presentation, natural killer (NK) cell-mediated cytotoxicity,
ECM-receptor interaction and focal adhesion and collagen fibril
organization, as well as cell proliferation-related pathways such
as cell cycle and sister chromatid segregation. While the low-risk
group was predominantly associated with metabolic and
digestion-related biological processes, including fat digestion and
absorption, pancreatic secretion, retinol metabolism and xenobi-
otic metabolic process, etc. (Fig. 6B, D).

The clinical characteristics of the two groups were also further
explored. As shown in Fig. S5A-L, there was no significant differ-
ence in age, gender, and stage between the two groups. However,
the high-risk group was closely associated with the more advanced
grade (Fig. S5M-P, P = 9.252e-06 in ICGC-AU2 cohort; P = 0.0624 in
TCGA cohort; P = 0.0344 in ICGC-AU cohort; P = 0.0001 in
GSE62452 cohort).

3.8. Immune landscape and immune checkpoint profiles of SDIS

Because SDIS was constructed based on immune genes, we con-
sequently investigated whether there were differences in the infil-
tration abundance of 8 immune cell types (CD8 + T cell, NK cell, B
cell, Macrophage, Myeloid dendritic cell (DC), Neutrophil, Endothe-
lial cell and CAF) and 27 immune checkpoint molecules (ICMs)
expression between the two groups. The results displayed that in
addition to superior macrophage and CAF infiltration, the high-
risk group also exhibited higher ICMs expression, including
CD274, CD276, PDCD1LG2, CD40, CD70, TNFRSF9, HAVCR2, LAG3
and NT5E (Figs. 6E, Fig. S6A, D). Immunophenoscore (IPS) and



Fig. 4. The development and validation of SMAD4-driven immune signature (SDIS) for pancreatic cancer (PACA). (A, B) Kaplan-Meier analysis for OS (A) and RFS (B) between
the high- and low-risk groups in ICGC-AU2 cohort. (C, D) Multivariate Cox regression analysis of OS (C) and RFS (D) in ICGC-AU2 cohort. (E-J) The ROC curves of SDIS for
predicting 1-, 2-, and 3-years OS in ICGC-AU2 cohort (E), TCGA cohort (F), ICGC-AU cohort (G), ICGC-CA cohort (H), GSE62452 cohort (I), GSE85916 cohort (J). OS, overall
survival; RFS, relapse-free survival; ROC, receiver operating curve.
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tumor mutation burden (TMB), as important indicators of measur-
ing overall immunogenicity, had been widely applied in tumor
research [17,23]. Compared with the low-risk group, the high-
risk group displayed a significantly higher IPS (P = 0.0042,
Fig. S6B). TMB also showed a corresponding trend, but the differ-
1161
ence did not reach statistical significance (P = 0.32, Fig. S6C). Fur-
thermore, we performed Spearman correlation analysis with risk
score as a continuous variable, and the results indicated that SDIS
score was strongly correlated with the above evaluation indexes
(Fig. S6E).



Fig. 5. The genomic alterations landscape of the high- and low-risk groups in TCGA cohort. (A) The waterfall plot of top 20 mutation genes in the two groups. Each column
represented individual patients. The right barplot and number indicated the mutation frequency in each gene. The color of each column indicated the mutation type of this
gene in the sample. (B) Heatmap of mutation frequency of top 20 mutation genes in the high- and low-risk groups. (C) The top 10 amplification and homozygous deletion
(HOMDEL) genes in the high- and low-risk groups.
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3.9. Chemotherapy and immunotherapy evaluation

Given the patients in the high-risk group occurred mutations
and CNVs at classical sites such as TP53, KRAS, CDKN2A and MYC,
we hypothesized that they may be more sensitive to chemother-
apy. Using the ‘‘pRRophetic” package, we observed that several
common chemotherapeutic drugs such as gemcitabine, paclitaxel,
1162
and cisplatin as well as TP53 activator JNJ.26854165 and CDK Inhi-
bitor CGP.60474 had lower IC50 values in the high-risk group, indi-
cating more sensitivity to chemotherapy (Fig. 7A–E). In addition,
previous analyses demonstrated that patients in the high-risk
group possessed higher immunogenicity and ICMs expression, sug-
gesting that they were more likely to benefit from immunotherapy.
Based on the Tumour Immune Dysfunction and Exclusion (TIDE)



Fig. 6. The KEGG and GO enriched pathways and immune landscapes in the high- and low-risk groups. (A-B) The top five KEGG enriched pathways in the high (A) and low (B)
risk groups. (C-D) The top five GO enriched pathways in the high (C) and low (D) risk groups. (E) The heatmaps of 8 immune cell types and 27 immune checkpoints profiles in
the high- and low-risk groups. KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology.
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web tool, the high-risk group had a significantly greater response
rate to immunotherapy (Fig. 7F). The analysis results of the Submap
algorithm also displayed that the expression profile of the high-
risk group was more similar to those of patients who responded
to immunotherapy (Fig. 7G).

In addition, we recruited an immunotherapy cohort (GSE91061)
containing 39 melanoma patients with complete clinical and prog-
1163
nostic information [22]. Kaplan-Meier analysis exhibited that OS
was significantly shorter in the high-risk group (P = 0.013,
Fig. 7H). The results of ROC curve displayed that the AUC of SDIS
in predicting 1-, 2-year OS of patients receiving immunotherapy
reached 0.830 and 0.721, respectively (Fig. 7I). Due to the lack of
biomarkers that can accurately predict the efficacy of immunother-
apy, many sensitive patients have missed the opportunity of



Fig. 7. Efficacy evaluation of chemotherapy and immunotherapy in the high- and low-risk groups patients. (A-E) The estimated IC50 of several common drugs such as
gemcitabine (A), paclitaxel (B), cisplatin (C), JNJ.26854165 (D) and CGP.60474 (E) in the high- and low-risk groups. (F) The TIDE tool was used to predict the sensitivity of the
two subtypes to immunotherapy in TCGA cohorts. (G) Submap analysis of the two subtypes and 47 pretreated patients with comprehensive immunotherapy annotations in
TCGA cohort. For Submap analysis, a smaller p-value implied a more similarity of paired expression profiles. (H-J) Kaplan-Meier survival analysis of high SDIS and low SDIS
groups (H), the ROC curve of SDIS for predicting 1- and 2-year OS (I), and ROC curve of SDIS for predicting immunotherapy response (J) in GSE91061 cohort. IC50, half-
maximal inhibitory concentration; TIDE, Tumour Immune Dysfunction and Exclusion; SDIS, SMAD4-driven immune signature.
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immunotherapy, or insensitive patients have serious adverse
events or even death after receiving immunotherapy [24]. Surpris-
ingly, SDIS achieved an AUC of 0.763 for prediction of response to
immunotherapy in GSE91061 cohort (Fig. 7J). These results
strongly suggest that SDIS can be used to evaluate the prognosis
of patients and response to chemotherapy and immunotherapy,
and also has certain practical significance for individualized treat-
ment and stratified management of cancer patients in cinical
practice.
4. Discussion

PACA is a major challenge for clinicians because of its high
malignancy, rapid progression, and lack of effective treatments
1164
[1–3]. TGF-b/SMAD4 biological process plays an irreplaceable role
in TME remodeling and tumor development in PACA [7,12]. Recent
studies have confirmed deletion or mutation of SMAD4 occurred in
55% of PACA patients, and SMAD4 mutation could promote inva-
sion, metastasis and poor prognosis by mediating tumor-stroma
interaction and immune cell types infiltration [8,9,12]. In our
report, based on SMAD4 mutation status and immune subtypes,
we identified and validated a SDIS model, which was also an inde-
pendent risk factor for PACA patients. Compared with the low-risk
group, patients in the high-risk group had worse prognosis, higher
frequency of classical locus mutations such as TP53, KRAS, and
CDKN2A, superior infiltration abundance of immune cell types
and ICMs expression, and showed functional characteristics related
to immunity and cell cycle. In addition, further analysis exhibited
that the PACA patients in the high-risk group was more sensitive
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to chemotherapy and immunotherapy, and SDIS also showed
excellent predictive performance in the immunotherapy cohort.
Therefore, in the precision-therapy era, SDIS has the potential to
be a reliable biomarker for stratified management and individual-
ized treatment of PACA patients.

In recent years, the immune landscape and immunotherapy in
PACA have been increasingly investigated, and several prognostic
signatures based on immune/stromal scores or immune gene
expression have also been constructed and validated [3,5,6,25–
27]. However, current studies have focused solely on the transcrip-
tome RNA expression, and little attention has been placed on geno-
mic information that plays a decisive role in PACA initiation and
progression [8,9]. In this study, we took into account the SMAD4
mutation status that plays a crucial role in PACA development
and TME remodeling and obtained 2279 SMAD4-driven DEGs by
differential analysis. Unlike previous studies, we first calculated
the infiltration fractions of 28 immune cell types for each PACA
sample in TCGA cohort by the single sample gene set enrichment
analysis (ssGSEA). Second, based on the infiltration fractions of
immune cell types, we determined two immune subtypes by con-
sensus clustering. Finally, the WGCNA algorithm was applied to
obtain a black module containing 1446 immune genes, which
had the highest correlation with the immune subtypes. Compared
with searching for immune genes directly from the database, our
method was more specific and applicable. The similar methods
have also been implemented and validated in gastric and colorectal
cancer [28,29].

Overfitting was one of the critical issues in machine learning to
develop biomedical models, and many models perform well in the
training set, but perform poorly in the other cohorts [30]. Since
SDIS contains fewer elements, this 7-gene SDIS has a small ten-
dency to overfit, which still showed satisfactory predictive effect
in the five external validation cohorts. Consistent with the results
of the training set, Kaplan-Meier analysis revealed that the high-
risk group of the five external validation cohorts had significantly
shorter OS and RFS, and multivariate Cox regression also demon-
strated that SDIS was an independent risk factor for OS and RFS.
Due to the 5-year survival rate of PACA was <10%, we evaluated
the predictive power of SDIS for 1-, 2-, and 3-year OS using ROC
curve and AUC [2]. The results displayed the AUCs of SDIS for 1-,
2-, and 3-year OS reached 0.638, 0.603 and 0.684 in TCGA cohort;
0.745, 0.774 and 0.730 in ICGC-AU cohort; 0.633, 0.680 and 0.696
in ICGC-CA cohort; 0.679, 0.846 and 0.883 in GSE62452 cohort;
0.688, 0.661 and 0.738 in GSE85916 cohort, respectively. In sum-
mary, these findings suggest that SDIS could accurately predict
the prognosis of PACA patients.

After stratifying PACA patients into the two groups, we
observed no significant difference between the two groups in
age, gender, and stage. This was also consistent with the present
multivariate Cox analysis results, suggesting that SDIS was not sig-
nificantly associated with several important clinical traits that may
affect the prognosis of PACA patients, which avoids the affliction of
multicollinearity to some extent. Next, GSEA analysis was
employed to identify the potential molecular mechanisms in the
two groups. As expected, the high-risk group was significantly
enriched in immunity and cell cycle-related pathways, correspond-
ing to more sensitive CDK inhibitors and immunotherapy efficacy.
On the other hand, the low-risk group was significantly enriched in
metabolic and digestion-related functional pathways, suggesting
that we could target tumor metabolism to develop specific drugs
for the low-risk group patients.

Furthermore, to depict the molecular profiles of the two groups,
we also investigated the distinct genomic alterations between the
two groups. The mutation frequency of the two main tumor sup-
pressor genes TP53 and CDKN2A was higher in the high-risk group
patients, which partly explained their higher sensitivity to TP53
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activator JNJ.26854165 and CDK inhibitor CGP.60474. CNVs analy-
sis revealed that lncRNAs play a major role in the high frequency
amplification and deletion of the two groups, many studies have
verified that lncRNAs play an indispensable role in tumorigenesis,
progression, metastasis and resistance in PACA [31]. In addition,
molecular studies have confirmed that mutation or deletion of
SMAD4 is correlated with the invasive phenotype and worse prog-
nosis in PACA [7–9]. Recent reports have also shown that ablation
of SMAD4 reverses the immunosuppressive microenvironment of
PACA and enhances sensitivity to immunotherapy by increasing
the infiltration of T cells [12]. Notably, the frequency of SMAD4
deletion reached 20.5% in the high-risk group and only 5.8% in
the low-risk group, which was consistent with the worse progno-
sis, relatively active TME, and more sensitive immunotherapy effi-
cacy in the high-risk group.

To evade immune surveillance and antitumor immune
response, immunoediting could establish the immunosuppressive
activity of tumors by various mechanisms, including increasing
the abundance of immunosuppressive cells (TAMs, Tregs, etc.)
and the expression levels of ICMs, as well as reducing the immuno-
genicity of tumors [17,32]. ICIs targeting ICMs offered promise for
the treatment of PACA patients, we then explored the differences
in immune landscape and immunotherapy efficacy between the
high- and low-risk groups [5,6]. As expected, patients in the
high-risk group owned higher infiltration of immunosuppressive
cells such as CAFs and molecular expression of ICMs (CD274,
CD276, PDCD1LG2, CD70, TNFRSF9, HAVCR2, LAG3, NT5E). These
results indicated that patients in the high-risk group have a strong
inhibitory TME, which further resulting in immune escape or
immune tolerance, and poorer prognosis. In addition, TMB and
IPS analysis also verified that patients in the high-risk group had
superior immunogenicity. These findings suggest that patients in
the high-risk group are more likely to benefit from immunother-
apy. We further applied TIDE and Submap tools to explore the
potential significance of SDIS in predicting immunotherapy, and
the results showed that patients in the high-risk group had a
greater response rate. In addition, in GSE91061 immunotherapy
cohort, SDIS could also accurately predict response to
immunotherapy (AUC = 0.763) and patient OS (AUC = 0.830 in 1-
year OS and 0.721 in 2-year OS). Overall, SDIS is a promising bio-
marker to select patients with ‘‘immune-hot” for further
immunotherapy.

The vast majority of existing prognosis models were obtained
based on transcriptome RNA expression data and ignored the
genomic information that plays a decisive role in PACA initiation
and progression, which to some extent also leads to insufficient
repeatability and robustness for widespread use [8,9]. Stratified
management of patients with precision medicine as the core con-
cept is the hope of substantially improving survival and life quality,
but this requires us to find PACA biomarkers with high sensitivity,
stability, and simplicity. In the present study, we developed SDIS
based on SMAD4 mutation status and immune subtypes of PACA.
SDIS accurately predicted the outcome of PACA patients in both
the training and external validation cohorts. Further analysis also
indicated that the high-risk group had more immunosuppressive
cells infiltration, higher ICMs expression, and better chemotherapy
and immunotherapy efficacy. On the other hand, the low-risk
group was significantly enriched in metabolism pathways and
showed the potential to target tumor metabolism to develop speci-
fic drugs. Our work provided a reliable tool for the stratified man-
agement and individualized treatment of PACA in clinical practice.

Patient stratification has become a valuable tool for cancer
patients to receive individualized treatment and long-range man-
agement, which can provide accurate diagnostic and prognostic
information and guide clinical decision-making. Espiau-Romera P
et al. systematically summarized many published molecular and
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metabolic subtypes of PACA [33]. Among them, the most popular is
the Moffitt subtype, which stratifies PACA patients into two sub-
types: classical and basal [34]. In addition, the Purity Independent
Subtyping of Tumors (PurIST) developed by Rashid NU et al. is a
robust classifier with highly reproducible performance across var-
ious platforms and sample types [35]. These classifiers have some
clinical significance, but molecular subtypes can only simply clas-
sify PACA samples into several subtypes by sequencing, which
restricts its clinical practical value. Instead of, our SDIS focuses
on prognostic models, and after obtaining the expression level of
a 7-gene panel through kit or PCR, the risk score of a specific indi-
vidual can be calculated according to the formula, which is easier
for clinical translation and promotion.

Our research provided new insights into the treatment of PACA,
but there were still some certain limitations. First, we extensively
collected six cohorts from TCGA, ICGC, and GEO public databases,
but these data were all from predominantly white western coun-
tries and lacked information on yellow and black cohorts. Second,
although we applied algorithms to evaluate functional characteris-
tics and sensitivity to chemotherapy and immunotherapy in the
two groups, prospective clinical trials and follow-up data are
needed. In addition, among the seven genes contained in SDIS,
NDRG2 has been shown to be involved in tumor biological pro-
cesses such as PI3K/Akt, apoptosis and autophagy [36]. IL33 also
plays an integral role in tumor development and immune
responses [37]. However, because these genes have shown great
clinical predictive in tumors and few existing studies have been
reported, the role and related mechanism of these genes in tumors
need more studies in the future.
5. Conclusion

In conclusion, based on SMAD4 mutation status and immune
subtypes of PACA, we constructed and validated a 7-gene signature
termed: SDIS. In six independent cohorts, SDIS not only accurately
predicted prognosis of PACA patients, but also was an independent
risk factor for them. The high-risk group was significantly enriched
in immunity and cell cycle-related pathways, had more immuno-
suppressive cells infiltration, higher ICMs expression, and was also
more sensitive to chemotherapy and immunotherapy. On the other
hand, patients in the low-risk group were mainly enriched in
metabolism-related pathways and have a relatively good progno-
sis, showing the clinical prospect of targeting tumor metabolism
to develop specific drugs. Overall, the SDIS could robustly predict
prognosis in PACA, which might serve as an attractive platform
to further tailor decision-making in chemotherapy and
immunotherapy in clinical settings.
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