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A B S T R A C T   

Several species of wild mammals are farmed in China as part of the rural development and poverty alleviation, 
including fur animals, bamboo rats, and macaque monkeys. Concerns have been raised on the potential dispersal 
of pathogens to humans and other farm animals brought in from native habitats. Numerous studies have been 
conducted on the genetic identity and public health potential of Cryptosporidium spp., Giardia duodenalis, and 
Enterocytozoon bieneusi in these newly farmed exotic animals. The data generated have shown a high prevalence 
of the pathogens in farmed wildlife, probably due to the stress from the short captivity and congregation of large 
numbers of susceptible animals. Host adaptation at species/genotype and subtype levels has reduced the po-
tential for cross-species and zoonotic transmission of pathogens, but the farm environment appears to favor the 
transmission of some species, genotypes, and subtypes, with reduced pathogen diversity compared with their 
wild relatives. Most genotypes and subtypes of the pathogens detected appear to be brought in from their native 
habitats. A few of the subtypes have emerged as human pathogens. One Health measures should be developed to 
slow the dispersal of indigenous pathogens among farmed exotic animals and prevent their spillover to other 
farm animals and humans.   

1. Introduction 

Enteric parasites such as Cryptosporidium spp., Giardia duodenalis, 
and Enterocytozoon bieneusi are important causes of diarrhea (DuPont, 
2016). They exsert the highest tolls in young children and neonatal 
animals (Cho and Yoon, 2014; Collaborators, 2017). As these parasites 
have a broad host range, they are considered major zoonotic pathogens 
(Thompson and Smith, 2011). Therefore, the One Health approach has 
been suggested as a tool in the prevention and control of diseases caused 
by these pathogens (Krecek et al., 2020; Thompson, 2013). This becomes 
especially important in the era of COVID-19, when increased attention 
has been directed to emerging zoonotic pathogens. 

Molecular diagnostic tools have used extensively in studies of the 
transmission of these pathogens (Li et al., 2020c; Xiao and Feng, 2017). 
Results from characterizations of isolates from humans and various 
isolates have identified species/genotypes and subtypes with broad host 
ranges as well as those with host adaptation (Caccio et al., 2018; Feng 
et al., 2018; Li and Xiao, 2019). As a result, the cross-species 

transmission and public health potentials of various Cryptosporidium 
species, G. duodenalis genotypes (known as assemblages), and E. bieneusi 
genotypes are different. For example, among the over 40 known Cryp-
tosporidium species and an equal number of genotypes of unknown 
species status, only C. parvum, C. hominis, C. meleagridis, C. canis, and 
C. felis are major human pathogens (Zahedi and Ryan, 2020). Similarly, 
among the at least seven assemblages (A to H) of G. duodenalis from 
mammals, only assemblages A and B are major human pathogens 
(Caccio et al., 2018). Furthermore, only Group 1 genotypes among the 
nearly 500 E. bieneusi genotypes in 11 genogroups are major human 
pathogens (Li et al., 2019b). Therefore, not all species, genotypes, and 
subtypes of these pathogens have zoonotic potentials. 

Wildlife has been suggested to play important roles in the ecology 
and transmission of Cryptosporidium spp., G. duodenalis, and E. bieneusi 
(Appelbee et al., 2005; Li and Xiao, 2021). The similar distribution of 
Cryptosporidium species and G. duodenalis and E. bieneusi genotypes be-
tween humans and wild mammals indicates that there could be frequent 
cross-species transmission of these pathogens (Lesnianska and 
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Perec-Matysiak, 2017; Thompson and Ash, 2016). Some of the wildlife 
of major concern are rodents, nonhuman primates, and carnivores, as 
they are in closer contact with humans than other animals. As a result, 
numerous studies have been conducted on the molecular characteriza-
tion of Cryptosporidium spp., G. duodenalis, and E. bieneusi in these ani-
mals (Innes et al., 2020; Lesnianska and Perec-Matysiak, 2017). Many 
such studies were from China because of the increased awareness of 
wildlife as potential reservoirs of zoonotic parasites (Chen et al., 2019a, 
2019b; Huang et al., 2019; Karim et al., 2014c, 2015b; Li et al., 2016a; 
Lv et al., 2009; Song et al., 2018; Ye et al., 2012; Zhao et al., 2015b, 
2020). 

Terrestrial wild mammals are bred and farmed in China as part of the 
national policy for rural development and poverty alleviation. The value 
of commercial breeding and farming of terrestrial wildlife in China was 
estimated to be $11.4 billion in 2018 (You, 2020). In northern China, 
several species of fur animals such as blue and silver foxes, raccoon dogs, 
and minks are farmed in China (Zhao et al., 2015a). Similarly, some 
nonhuman primates such as crab-eating and rhesus macaques are 
farmed as laboratory animals and bamboo rats for food (Chen et al., 
2019a; Li et al., 2020a). As they are recently domesticated wild mam-
mals, concerns have been raised about their potential to transmit human 
pathogenic parasites (Wang et al., 2019; Yang et al., 2015, 2017; Zhang 
et al., 2018). In the present report, we have summarized data from 
recent molecular epidemiological studies of Cryptosporidium spp., 
G. duodenalis, and E. bieneusi for improved understanding of the public 
health significance of the pathogens in these farmed exotic animals. 

2. Cryptosporidium spp. in farmed exotic animals 

Cryptosporidium spp. have been commonly identified in farmed fur 
animals, bamboo rats, and macaque monkeys in China (Table 1). The 
reported infection rates varied greatly among studies for each species of 
the animals examined (Table 1). This has been attributed to levels of 
hygiene in the study facilities (Li et al., 2020b). The highest infection 
rates were reported as 9.1% in crab-eating macaques, 15.9% in foxes, 
20.5% in raccoon dogs, 29.4% in bamboo rats, and 29.6% in minks 
(Table 1). They are much higher than infections rates of Cryptosporidium 
spp. obtained from wild populations of these animals in China and other 
countries, possibly due to the short history of domestication and con-
gregations of many susceptible animals in confirmed spaces. As ex-
pected, young animals were reported to have higher prevalence of 
Cryptosporidium spp. than older animals (Chen et al., 2019a; Li et al., 
2020a, 2020b; Qian et al., 2020; Zhang et al., 2016a; Zhao et al., 2019). 
In crab-eating macaques, animals with diarrhea had higher occurrence 
of Cryptosporidium infection (Chen et al., 2019a). 

2.1. Cryptosporidium species and subtypes in fur animals 

Several Cryptosporidium species and genotypes were detected in 
farmed foxes, raccoon dogs, and minks in China. One dominant species 
in these fur animals is C. canis, which was found in most studies con-
ducted in northern China. In addition, Cryptosporidium mink genotype 
appears to be another common pathogen in minks. Other 

Table 1 
Distribution of Cryptosporidium species/genotype in farmed exotic animals in various studies in China.  

Host Location No. of 
specimens 

No. positive for 
Cryptosporidium (%) 

Species/genotype (no.) Reference 

Mink Xinjiang 214 26 (12.1%) Mink genotype (17), C. canis (7); C. parvum (2) Qian et al. 
(2020) 

Heilongjiang, Jilin, Liaoning 114 8 (7.0%) C. canis (6), mink genotype (2) Yang et al. 
(2018) 

Heilongjiang 162 48 (29.6%) C. canis (19), mink genotype (18) C. meleagridis (3) Zhang et al. 
(2016a) 

Hebei 469 6 (1.3%) Mink genotype (6) Wang et al. 
(2008) 

Raccoon dog Xinjiang 39 8 (20.5%) C. canis (8) Qian et al. 
(2020) 

Heilongjiang, Jilin 40 0 – Yang et al. 
(2018) 

Heilongjiang 162 17 (10.5%) C. canis (15) Zhang et al. 
(2016a) 

Fox Xinjiang 35 1 (2.9%) C. canis (1) Qian et al. 
(2020) 

Heilongjiang, Jilin, Liaoning 213 12 (5.6%) C. canis (11) C. meleagridis (1) Yang et al. 
(2018) 

Heilongjiang 191 3 (1.6%) C. canis (3) Zhang et al. 
(2016a) 

Hebei, Jilin, Heilong 302 48 (15.9%) C. canis (48) Zhang et al. 
(2016c) 

Crab-eating 
macaque 

Hainan 1452 132 (9.1%) C. hominis (86), C. parvum (30), C. muris (15), C. ubiquitum 
(1) 

Chen et al. 
(2019a) 

Hainan 193 11 (5.7%) C. hominis (11) Zhao et al. 
(2019) 

Guangxi 205 1 (0.5%) C. hominis (1) Ye et al. (2014) 
Guangdong 57 1 (1.8%) C. hominis (1) Karim et al. 

(2014c) 
Rhesus 

macaque 
Henan, Guangxi 1144 9 (0.8%) C. hominis (9) Karim et al. 

(2014c) 
Hainan 30 0 - Zhao et al. 

(2019) 
Bamboo rat Sichuan 92 3 (3.3%) C. parvum (3) Liu et al. 

(2015) 
Hunan, Jiangxi, Chongqing, 
Guangxi, Guangdong 

435 9 (2.1%) Bamboo rat genotype I (5), C. parvum (2), C. occultus (1), 
bamboo rat genotype II (1) 

Wei et al. 
(2019) 

Jiangxi, Guangxi, Hainan 709 209 (29.4%) Bamboo rat genotype I (85), C. parvum (78), bamboo rat 
genotype III (45), C. occultus (1) 

Li et al. 
(2020a) 

Guangdong 724 88 (12.2%) Bamboo rat genotype I (49), C. parvum (31), bamboo rat 
genotype III (5), C. occultus (2), C. muris (1) 

Li et al. 
(2020b)  
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Cryptosporidium species identified include C. parvum and C. meleagridis in 
a few animals (Table 1). The C. parvum identified in two minks belonged 
to IIdA15G1, one of the two most common C. parvum subtypes in China 
(Qian et al., 2020). Four divergent subtype families (Xb-Xe) were found 
in Cryptosporidium mink genotype, indicting the diverse origins of these 
animals (Qian et al., 2020; Yang et al., 2018; Zhang et al., 2016a). 

2.2. Cryptosporidium species and subtypes in bamboo rats 

Similarly, several Cryptosporidium species and genotypes were found 
in farmed bamboo rats in China. Among them, C. parvum was one of the 
dominant species in the a few studies conducted in southern China. 
Other common genotypes include Cryptosporidium bamboo rat geno-
types I and IIII, which are genetically related to C. ubiquitum and 
C. parvum, respectively (Li et al., 2020b). The remaining species and 
genotypes (C. occultus, C. muris, and bamboo rat genotype II) have been 
found in only a few animals (Table 1), thus could represent native 
parasites of other rodents. In the latter, bamboo rat genotype is genet-
ically similar to a genotype in found in a masked palm civet (Yu et al., 
2020). The intensity of oocyst shedding was higher when animals were 
infected with C. parvum and C. parvum-like genotype (bamboo rat ge-
notype III) than with other Cryptosporidium spp. (Li et al., 2020a, 
2020b). 

The C. parvum subtypes found in bamboo rats belong mostly to two 
divergent subtype families (IIo and IIp) of C. parvum, which are genet-
ically related to the IId subtype family and have been thus far reported 
only in Asia (Li et al., 2020a; Liu et al., 2015; Wei et al., 2019). Two 
subtypes of each subtype family have been identified in bamboo rats 
from various areas, including IIoA13G1, IIoA15G1, IIpA6 and IIpA9 (Li 
et al., 2020a, 2020b; Liu et al., 2015; Wei et al., 2019). One bamboo rat 
was identified as having the C. parvum IIdA15G1 subtype (Wei et al., 
2019). 

2.3. Cryptosporidium species and subtypes in macaques 

Four Cryptosporidium species have been identified in farmed ma-
caques, mostly in southern China. They include C. hominis, C. parvum, 
C. muris and C. ubiquitum. The dominant species is C. hominis, which was 
identified in all studies conducted in farmed crab-eating and rhesus 
macaques (Table 1). Other Cryptosporidium species were only detected in 
one study conducted in crab-eating macaques on a large farm in Hainan 
(Chen et al., 2019a). On that farm, significant number of animals were 
infected with C. parvum and C. muris in addition to C. hominis. The in-
tensity of oocyst shedding was higher in animals infected with C. hominis 
than those infected with C. parvum and C. muris (Chen et al., 2019a). 

The C. hominis subtypes detected in farmed macaques all belong to 
the unique C. hominis monkey genotype with divergent small subunit 
(SSU) rRNA gene sequence (Chen et al., 2019a; Feng et al., 2018; Karim 
et al., 2014c; Zhao et al., 2019). At the gp60 locus, they were from three 
unusual subtype families of Ii (IiA17), Im (ImA18), and In (InA14, 
InA17, and InA26), and one common subtype family Ib (Chen et al., 
2019a; Karim et al., 2014c; Zhao et al., 2019). The Ib subtype identified 
at the gp60 locus was IbA12G3, which at the SSU rRNA locus was 
identified as C. hominis monkey genotype (Karim et al., 2014c). Other 
subtypes of the Ib subtype family in humans have the typical SSU rRNA 
sequences of C. hominis (Feng et al., 2018). The C. parvum identified in 
crab-eating macaques belong to IIoA14G1 (n = 18) and IIdA19G1 (n =
2). Of clinical significance, C. hominis ImA18 subtype and C. parvum 
IIoA14G1 subtype were detected in animals with diarrhea whereas the 
remaining ones were mostly found in asymptomatic animals (Chen 
et al., 2019a). 

3. Giardia duodenalis in farmed exotic animals 

Several studies were conducted to assess the prevalence and geno-
type identity of G. duodenalis in farmed raccoon dogs, bamboo rats, and 

macaque monkeys in China. Low infections rates were obtained from 
most studies (Table 2). Two studies, however, showed common occur-
rence of G. duodenalis in farmed crab-eating macaques (32.3%) in 
Hainan and bamboo rats (10.8%) in Hunan. Younger animals and ani-
mals with diarrhea had higher infection rates than older animals and 
animals with normal stools (Chen et al., 2019b; Ma et al., 2018). Infected 
raccoon dogs mostly had assemblage C, while macaque monkeys and 
bamboo rats mostly had assemblage B (Table 2). There was a high ge-
netic diversity among assemblage B and C isolates in all these studies 
(Chen et al., 2019b; Karim et al., 2014c; Ma et al., 2018; Ye et al., 2014; 
Zhang et al., 2016d). In one study of G. duodenalis in crab-eating ma-
caques on one farm, 53 multi-locus genotypes were found. Most of them 
were genetically related to those previously seen in Old-World monkeys 
(Chen et al., 2019b; Karim et al., 2014c). 

4. Enterocytozoon bieneusi in farmed exotic animals 

The transmission of E. bieneusi in farmed exotic animals in China has 
been examined in numerous studies. E. bieneusi was commonly detected 
in farmed fur animals in northern China and bamboo rats and macaque 
monkeys in southern China (Table 3). The reported infection rates were 
mostly above 10%. This was especially the case with macaque monkeys 
(Table 3). Unlike the case with Cryptosporidium spp. and G. duodenalis, 
there were no consistent age-associated differences in infection rates of 
E. bieneusi, which was detected at high frequency in all age groups of 
animals sampled in most studies (Chen et al., 2019b; Ma et al., 2020a, 
2020b; Yang et al., 2015; Ye et al., 2014; Zhang et al., 2016b, 2018). 
Crab-eating macaques with diarrhea were reported to have higher in-
fections rates than those with normal stools (Chen et al., 2019b). 

4.1. E. bieneusi genotypes in farmed fur animals 

A high genetic diversity is present in E. bieneusi isolates from farmed 
minks, foxes, and raccoon dogs. Most of these studies have reported 
multiple genotypes in each species of animals on each farm (Table 3). 
Altogether, 25 E. bieneusi genotypes have been found in the small 
numbers of foxes, racoon dogs and minks examined in northern China. 
They all belong to Group 1, and many occur in multiple animal species. 
D, however, appears to be the dominant genotype in farmed fur animals, 
being found in all but one study (Table 3). Although concerns have been 
raised regarding the public health significance of E. bieneusi from fur 
animals based on the wide occurrence of the well-known zoonotic ge-
notype (Yang et al., 2015), multilocus characterization of E. bieneusi of 
ITS genotypes A, D and Type IV at four micro and minisatellites (MS1, 
MS3, MS4 and MS7) had shown clear genotypic and phylogenetic di-
vergences between isolates of ITS genotype D from fur animals and 
humans. In fact, in phylogenetic analysis of the multilocus sequence 
data, genotype D isolates from fur animals formed their own cluster, 
while human isolates of genotype D clustered together with Type IV 
from humans from several countries. A third cluster was formed by 
isolates of the anthroponotic genotype A. While the first two populations 
had clonal genetic structure, the third population had an epidemic ge-
netic structure (Li et al., 2016b). The presence of host-segregated 
E. bieneusi genotypes was supported by MLST analysis of additional 
isolates from other hosts (Li et al., 2019a; Liu et al., 2020). These data 
indicate significant population differentiation of E. bieneusi between fur 
animals and humans within some of the so-called zoonotic ITS 
genotypes. 

4.2. E. bieneusi genotypes in bamboo rats 

There were only two studies of E. bieneusi in bamboo rats in southern 
China. Altogether, eight genotypes were found among the small number 
of positive samples. The dominant genotype was D. Other Group 1 ge-
notypes included the well-known Peru11, EbpA, and PigEBITS7. Two 
novel genotypes of Group 2, however, were detected in a few animals 

Y. Guo et al.                                                                                                                                                                                                                                     



International Journal for Parasitology: Parasites and Wildlife 14 (2021) 241–247

244

(Wang et al., 2019), indicating that the ITS genotype D could be from a 
source different from that in fur animals. 

4.3. E. bieneusi genotypes in farmed monkeys 

E. bieneusi infections are especially common in farmed monkeys. 
Studies conducted in three species of farmed monkeys have identified 15 
E. bieneusi genotypes, all belonging to Group 1. Macaque3 (synonym of 
CM1) was the dominant genotype in most studies (Table 3). Other 
common genotypes include Type IV, D and Peru8, all well-known zoo-
notic ITS genotypes. There are no apparent differences in the distribu-
tion of E. bieneusi genotypes among the three species of farmed monkeys 
examined. This contrasts with the dominance of Peru11 and absence of 
Macaque3 in free-range monkeys in a public park in Guiyang, China (Ye 
et al., 2012). Similarly, in a study of various nonhuman primates in zoos 
in China, D was the dominant E. bieneusi genotype in most animals, 
while Macaque3 was only seen in macaque monkeys (Karim et al., 

2015a). In another study conducted in a zoo in Zhengzhou, Henan, all 
three species of monkeys were mainly infected with HenanV. Therefore, 
the distribution of E. bieneusi genotypes in farmed monkeys appears to 
be different from that in captive monkeys kept in zoos and parks. 

Multilocus sequence typing (MLST) of 85 of E. bieneusi isolates from 
diverse nonhuman primates produced 59 multilocus genotypes. They 
formed four subpopulations in phylogenetic and STRUCTURE analyses, 
all with an epidemic genetic structure. Among them, sub-population 1 
contained mainly ITS genotype Type IV, sub-population 2 contained 
mainly ITS genotypes Macaque3 (CM1) and D, sub-population 3 con-
tained mixed genotypes, while sub-population 4 contained genotype 
Henan V (Karim et al., 2014b). This was supported by recent population 
genetic analyses of E. bieneusi from nonhuman primates and ruminants 
in China (Chen et al., 2020; Zhang et al., 2020). 

Table 2 
Distribution of Giardia duodenalis assemblages in farmed exotic animals in various studies in China.  

Host Location No. of specimens No. positive for G. duodenalis (%) Assemblage (no.) Reference 

Raccoon dog Heilongjiang, Jilin, Liaoning, Hebei, Shandong 305 22 (7.2%) C (22) Zhang et al. (2016d) 
Crab-eating macaque Hainan 1452 469 (32.3%) B (469) Chen et al. (2019b) 

Guangxi 205 5 (2.4%) A (2), B (3) Ye et al. (2014) 
Guangdong 57 1 (1.8%) B (1) Karim et al. (2014c) 

Rhesus macaque Henan, Guangxi 1144 20 (1.7%) B (20) Karim et al. (2014c) 
Bamboo rat Hunan 480 52 (10.8%) B (52) Ma et al. (2018)  

Table 3 
Distribution of Enterocytozoon bieneusi genotypes in farmed exotic animals in various studies in China.  

Host Location No. of 
specimens 

No. positive for 
E. bieneusi (%) 

Genotype (no.)a Reference 

Mink Heilongjiang, Jilin, Liaoning, 
Hebei, Shandong 

298 30 (10.1%) D (12), Peru11 (5), EbpC (7), NCM-1 (5), NCM-2 (1) Zhang et al. 
(2018) 

Raccoon dog Shandong 356 23 (6.5%) Type IV (11), D (8), Peru8 (3), CHG1 (1) Ma et al. 
(2020a) 

Heilongjiang, Jilin, Liaoning, 
Hebei, Shandong 

305 68 (22.3%) NCF2 (33), CHN-F1 (10), D (9), CHN-DC1 (9), NCR2 (5), NCR1 (2) Xu et al. 
(2016) 

Heilongjiang 49 2 (4.1%) D (1), CHN-R1 (1) Zhao et al. 
(2015a) 

Heilongjiang 162 17 (10.5%) D (14), CHN-DC1 (1), CHN-DC1/WildBoar3 (1) Yang et al. 
(2015) 

Fox Shandong 344 31 (9.0%) HND-1 (10), NCF2 (5), Type IV (3), Hum-q1 (1), SDF1 (1), SDF2 (1) Ma et al. 
(2020b) 

Heilongjiang, Jilin, Hebei 302 37 (12.3%) NCF2 (13), Peru8 (4), Type IV (5), D (4), NCF1 (3), CHN-DC1 (2), 
NCF5 (2), NCF3 (1), NCF4 (1), NCF6 (1), NCF7 (1) 

Zhang et al. 
(2016b) 

Heilongjiang, Jilin 110 18 (16.4%) D (12), EbpC (5), CHN-F1 (1) Zhao et al. 
(2015a) 

Heilongjiang 191 53 (27.7%) D (44) Yang et al. 
(2015) 

Crab-eating 
macaque 

Hainan 1452 461 (31.7%) Type IV (236), Macaque3b (119), Peru8 (42), Pongo2 (27), CM2 
(17), Peru11 (12), D (4) 
CM3 (3), PigEbITS7 (1) 

Chen et al. 
(2019b) 

Beijing 133 34 (25.6%) Type IV (10), Macaque3b (9), CM2 (4), D (3), Peru11 (3), Peru8 (2), 
WL21 (1), CC4 (1), D/Peru11 (1), Peru8/Type IV (1), CMB1 (1), 
CMB2 (1) 

Yang et al. 
(2017) 

Guangxi 205 38 (18.5%) D (16), Macaque3 (15), Macaque4 (2), Peru11 (2), WL15 (1) Ye et al. 
(2014) 

Guangdong 57 40 (70.2%) Type IV (15), Macaque3b (14), Peru8 (3), CM2 (3), D (2), Peru11 (2), 
CM3 (1) 

Karim et al. 
(2014a) 

Rhesus 
macaque 

Sichuan, Guangxi, Yunan 427 53 (12.4%) Macaque3b (25), Type IV (15), D (9), Peru8 (4) Karim et al. 
(2014a) 

White-headed 
langur 

Guangxi 143 19 (13.3%) D (11), Macaque3b (4), Peru8 (2), CM2 (1), Peru11 (1) Karim et al. 
(2014a) 

Bamboo rat Hainan 117 18 (15.4%) D (15), Peru11 (1), HNR-IV (1), HNR-V (1) Zhao et al. 
(2020) 

Hunan, Jiangxi, Chongqing, 
Guangxi, Guangdong 

435 22 (5.1%) D (17), J (1), BR1 (1), BR2 (1), EbpA (1), PigEBITS7 (1) Wang et al. 
(2019)  

a Bolded ones are Group 1 genotypes. 
b Reported as CM1. 
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5. Public health perspectives of zoonotic protists in farmed 
exotic animals 

Data accumulated thus far have shown a prevalence of Cryptospo-
ridium spp., G. duodenalis, and E. bieneusi in farmed exotic animals. 
Molecular characterizations of isolates from these animals have identi-
fied the occurrence of human-pathogenic species/genotypes and sub-
types. The public health significance of these enteric protists depends on 
the distribution of genotypes and/or subtypes. This is further impacted 
by the species of animals under consideration. Therefore, data from 
individual pathogens and farm animals are needed for accurate assess-
ment of public health potential of pathogens in farmed exotic animals. 

While we appreciate the human-infective potential of enteric protists 
from farmed animals, host specificity in pathogens might have reduced 
the likelihood for zoonotic infections in humans and cross-species 
transmission of pathogens among animals. For example, the dominant 
C. canis species in farmed fur animals is unlikely to cause major out-
breaks in humans, which thus far are caused almost exclusively by the 
more virulent and infectious C. parvum and C. hominis. The canine- 
adapted nature of C. canis suggests that it is also unlikely to be a 
major pathogen in macaque monkeys and bamboo rats, which are 
farmed in southern China. The same is likely true for the assemblage C of 
G. duodenalis identified in farmed fur animals, which is not an estab-
lished pathogen in humans and has rarely been found in monkeys and 
bamboo rats. 

Host adaptation within pathogen species or genotypes could further 
reduce the occurrence of cross-species transmission. For example, the 
C. hominis variants infecting monkeys are not the subtypes commonly 
found in humans. The two differ from each other in the SSU rRNA se-
quences in addition to belonging to different subtype families at the gp60 
locus. Similarly, although monkeys and other nonhuman primates are 
commonly infected with assemblage B subtypes of G. duodenalis, results 
of the MLST analyses indicate that they differ from those found in 
humans genetically. Host-adapted subpopulations have further been 
found in E. bieneusi isolates from farmed monkeys. While fur animals, 
monkeys and bamboo rats appear to be commonly infected with human- 
pathogenic genotypes of E. bieneusi, the presence of host-adapted sub-
populations in some of the zoonotic ITS genotypes such as D implies that 
cross-species transmission might not occur as widely as believed. 

Results of genotype analyses suggest that most of the enteric protists 
in farmed wildlife were probably brought from their native habitats. The 
C. hominis identified in farmed macaque monkeys all belong to several 
subtype families (Ii, Im, and In) of the monkey genotype, which have not 
been found in other farm animals. Similarly, the dominant genotype of 
E. bieneusi in nonhuman primates in China, Macaque3, has rarely been 
found in other animals and never in humans (Chen et al., 2020). As 
discussed above, the assemblage B of G. duodenalis from farmed ma-
caques formed a cluster with sequences from Old World monkeys. A 
similar situation is seen with pathogens in farmed bamboo rats, which 
are commonly infected with very divergent Cryptosporidium spp. 
(bamboo genotypes I, II, and III) and occasionally infected with Cryp-
tosporidium spp. from other rodents (C. muris and C. occultus). When they 
are infected with C. parvum, the subtypes involved are mostly IIo and IIp 
subtypes, which are distinct to the IIa and IId subtype families found in 
other farm animals. As there are divergent subtype families within 
C. canis, it would be interesting to see whether the C. canis isolates in 
farmed fur animals belong to host-adapted subtype families, as sug-
gested recently on C. canis isolates from foxes in the United States (Jiang 
et al., 2020). 

The farm environment appears to promote the transmission of 
Cryptosporidium spp. with high transmissibility. This is reflected by the 
difference in the distribution of Cryptosporidium species and subtypes 
between farmed and wild animals. For example, farmed raccoon dogs, 
foxes, and minks are most infected with C. canis (Table 1), which in 
native habitats are only found in dogs, foxes and other canine animals 
(Zhou et al., 2004). Wild raccoon dogs, foxes, and minks, in contrast, are 

infected with a range of Cryptosporidium species such as C. parvum, 
C. hominis, C. ubiquitum, C. andersoni, C. felis, C. suis, and muskrat ge-
notype I, which are rarely seen in farmed fur animals (Barrera et al., 
2020; Gomez-Couso et al., 2007; Kellnerova et al., 2017; Mateo et al., 
2017; Matsubayashi et al., 2005; Nagano et al., 2007; Stuart et al., 2013; 
Zhou et al., 2004). As minks, raccoon dogs and foxes are frequently kept 
in proximity, it is possible that foxes might have transmitted C. canis to 
minks and raccoon dogs in captivity. There could be cross-species 
transmission of C. parvum between farmed bamboo rats and macaque 
monkeys as well. Both are commonly infected with IIo and IIp subtypes 
of C. parvum, which are divergent subtype families rarely found in other 
animals (Chen et al., 2019a; Li et al., 2020a, 2020b; Liu et al., 2015; Wei 
et al., 2019). This was supported by the dominance of G. duodenalis 
assemblage B in both group of animals (Table 2). Further studies using 
advanced molecular typing and comparative genomics are needed to 
valid these suggestions. 

Measures should be developed to prevent the spillover of the enteric 
protists from the farmed exotic animals to humans and other farm ani-
mals. As discussed above, some of the divergent C. parvum subtypes, 
such as IIo and IIp, have already been spread from bamboo rats to ma-
caque monkeys. Between them, two IIo subtypes have been identified in 
seven human patients in Thailand and New Zealand (Garcia et al., 2020; 
Insulander et al., 2013; Sannella et al., 2019). Previously, rodents were 
suggested to play a major role in the dissemination of C. parvum IId 
subtypes to farm animals and humans in China (Feng and Xiao, 2017). 
Among C. hominis detected in farmed macaque monkeys, the IiA17 
subtype has been reported in a few human cases (Elwin et al., 2012; 
Lebbad et al., 2018). Another subtype commonly detected in nonhuman 
primates, IbA12G3, is emerging as a major subtype for human crypto-
sporidiosis in the United Kingdom, Ireland, Canada, Mexico, and 
Australia (Chalmers et al., 2019; Guy et al., 2021; Millan et al., 2019; O’ 
Leary et al., 2020; Urrea-Quezada et al., 2018). This subtype could be a 
genetic recombinant, as isolates from farmed macaques differed from 
human isolates at the SSU rRNA locus. Genetic recombination has been 
implicated in the emergence of hyper-transmissible C. hominis subtypes 
in humans (Guo et al., 2015). 

Since the beginning of COVID-19, the Chinese government has 
tightened regulations on the breeding and farming of exotic animals 
(You, 2020). Captive wild animals are no longer farmed for meat and 
consumption of exotic meat becomes illegal. As a result, the farming of 
bamboo rats has been forbitten in China and the breading of other an-
imals requires special licenses and is subject to more stringent moni-
toring. Another newly established biosafety law has set specific 
guidelines on the surveillance of major and emerging diseases in farmed 
exotic animals. The implementation of these new legislations would 
probably reduce the emergence of new pathogens in farmed exotic an-
imals. One Health measures, including molecular surveillance systems 
and better training and education of farmers, should be developed to 
control the transmission of indigenous pathogens among farmed 
terrestrial wildlife and spillover of infections to other farm animals and 
humans. 
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