
Clinical Science (2017) 131 2671–2685
https://doi.org/10.1042/CS20160407

Received: 14 May 2017
Revised: 22 September 2017
Accepted: 25 September 2017

Version of Record published:
6 November 2017

Review Article

Personalized medicine—a modern approach for the
diagnosis and management of hypertension
Carmine Savoia1, Massimo Volpe1,2, Guido Grassi3, Claudio Borghi4, Enrico Agabiti Rosei5 and Rhian M. Touyz6

1Clinical and Molecular Medicine Department, Cardiology Unit Sant’Andrea Hospital, Sapienza University of Rome, Rome, Italy; 2IRCCS Neuromed, Pozzilli (Is), Italy; 3Clinica
Medica, Department of Medicine and Surgery, University Milano-Bicocca, Milan, IRCCS Multimedica, Sesto San Giovanni, Milan, Italy; 4Chair of Internal Medicine, Department of
Medical and Surgical Sciences, Faculty of Medicine, University of Bologna, Bologna, Italy; 5Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia,
Brescia, Italy; 6Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K.

Correspondence: Carmine Savoia (carmine.savoia@uniroma1.it)

The main goal of treating hypertension is to reduce blood pressure to physiological levels
and thereby prevent risk of cardiovascular disease and hypertension-associated target or-
gan damage. Despite reductions in major risk factors and the availability of a plethora of
effective antihypertensive drugs, the control of blood pressure to target values is still poor
due to multiple factors including apparent drug resistance and lack of adherence. An expla-
nation for this problem is related to the current reductionist and ‘trial-and-error’ approach
in the management of hypertension, as we may oversimplify the complex nature of the dis-
ease and not pay enough attention to the heterogeneity of the pathophysiology and clinical
presentation of the disorder. Taking into account specific risk factors, genetic phenotype,
pharmacokinetic characteristics, and other particular features unique to each patient, would
allow a personalized approach to managing the disease. Personalized medicine therefore
represents the tailoring of medical approach and treatment to the individual characteris-
tics of each patient and is expected to become the paradigm of future healthcare. The ad-
vancement of systems biology research and the rapid development of high-throughput tech-
nologies, as well as the characterization of different –omics, have contributed to a shift in
modern biological and medical research from traditional hypothesis-driven designs toward
data-driven studies and have facilitated the evolution of personalized or precision medicine
for chronic diseases such as hypertension.

Introduction
Hypertension occurs in more than one billion individuals, and its prevalence appears to affect approxi-
mately 40% of the general population, with an increase upon aging from 7% in younger individuals (18–39
years old), to 65% in individuals over 59 years old [1]. Hypertension represents the most relevant risk fac-
tor for death and disability worldwide, causing an estimated 9.4 million deaths every year [2]. Hyperten-
sion contributes 3.5 times more to the total global disease burden of cardiovascular disease than smoking
and 1.6 times that of hypercholesterolemia [3]. Prospective cohort studies have reported a continuous
log-linear association between blood pressure and vascular events beginning at values of 115/75 mmHg
with no apparent threshold [4-9]. The burden of hypertension and its associated arteriosclerotic target
organ complications are increasing as the population increases in size, age, and obesity [10]; this associa-
tion seems to exist across large and diverse population groups from several ethnicities, with and without
established vascular disease [4,11,12]. Nevertheless, hypertension contributes to an unequaled burden of
disease globally [13], for example, Western European countries exhibit a downward trend, in contrast with
Eastern European countries, which show an increase in death rates from stroke [14,15].

Tissue and organ remodeling processes induced by hypertension may impair the physiology and struc-
ture of the heart, arteries, kidneys, and brain. Thus, the presentation of target organ complications in
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hypertensive patients may reflect different pathophysiological abnormalities including: diastolic and systolic dysfunc-
tion, left ventricular hypertrophy, congestive heart failure (39% of cases in men and 59% in women), coronary disease,
accelerated atherosclerosis, aneurysm formation, stroke, nephrosclerosis, and renal failure [16]. Approximately 50%
of hypertensive patients develop related end-organ damage if blood pressure is untreated or not treated to target.
Yet hypertension remains the most common modifiable risk factor for cardiovascular disease [10]. The net benefit
derived from antihypertensive therapy has been demonstrated in clinical trials and is associated with reduction in
stroke (35–40%), myocardial infarction (20–25%), and in heart failure incidence (50%) [17-28]. In particular, a 10
mmHg reduction in systolic blood pressure is associated with a 22% reduction in coronary heart disease and 41%
reduction in stroke, with a slight difference in reduction in cardiometabolic mortality for men (46%) and women
(41%) [29]. Interestingly, mortalities attributable to heart attack and stroke are declining, whereas the incidence and
prevalence of heart and kidney failure are rising [14]. This is mainly due to the therapeutic targeting of structural
vascular alterations that lead to increased stiffness of large and small arteries in hypertensive patients, particularly if
diabetes is associated [30-32].

For over a decade, international guidelines for the management of hypertension have stratified cardiovascular risk
into different categories, based on blood pressure values, the presence of other cardiovascular risk factors, and organ
damage [33,34-39]. Accordingly, patients at high or very high cardiovascular risk require intensive cardiovascular
risk-reducing measures and eventually intensive drug therapy. Nonetheless, whether blood pressure lowering treat-
ment reduces the risk of cardiovascular disease in all types of patient populations remains unclear, particularly in
the elderly, individuals with lower blood pressure values, or with comorbidities [40-43]. Hence, although a modern
drug-based therapeutic approach has the capacity to reduce blood pressure in a high percentage of patients with
hypertension, the best approach to reduce blood pressure remains controversial [36,44-47].

Moreover, despite increased awareness of hypertension-related complications, reductions in major risk factors,
widespread availability of very good antihypertensive drugs, as well as the better use of antihypertensive therapies
[1,4,33,48], the control of blood pressure to target values is still poor (only 30% of treated patients achieve blood
pressure control ≤140/90 mmHg), thus the overall prevalence of hypertension has increased by approximately 10%
[1,49,50]. For instance, in a large Italian population of treated hypertensive patients followed for 10 years, it has been
shown that approximately 60% of hypertensive patients were treated and among these only 33% achieved effective
blood pressure control [51]. These data are similar to other reports from different countries. This is mainly attributable
to reduced compliance and adherence to antihypertensive treatment [52-54], which is associated with a lack of im-
provement in cardiovascular risk. Among the explanations for the poor adherence we should consider the variability
in the individual response to a given treatment, as well as the individual, distinctive, and not always predictable oc-
currence of adverse events related to antihypertensive medications, which are usually not life-threatening although
frustrating for the patient who eventually may decide to discontinue the therapy. This can generate a ‘trial-and-error’
approach in clinical practice that is characterized by the switching to another medication in case the first therapeu-
tic choice was not satisfactory after few weeks. This approach is based on general information derived mainly from
data of randomized clinical trials regarding the drug that might work for that particular patient. In clinical trials,
individuals are enrolled under a reductionist approach that assumes the individuals have a common phenotype (i.e.
elevated blood pressure), and are treated following algorithms derived from large population studies [36]. The trial
results are described as the median blood pressure in a given treatment arm, which is characterized by a therapeutic
regimen that does not necessary distinguish among subtypes of patients. This ‘one size fits all’ approach is expensive
and is not adapted to current biomedical research, which explores differences in disease presentation and response
to therapies among individuals [55], rather it may oversimplify the complex nature of most diseases. Therefore, with
this approach based on the conventional diagnostic paradigm, the descriptions of the disease become broad, focus-
ing less on individual diversities in terms of heterogeneity in the pathophysiology, and the underlying mechanisms
of the symptoms. Hence, the characterization and distinction among multiple diseases with shared symptoms are
elusive [55-57]. On the other hand, a more personalized approach based on the specific disease pathology, symp-
toms, signs, and response to treatment of the individual patient would improve diagnosis and risk stratification. It
would also identify new pathophysiological pathways, tailor the appropriate therapy in order to improve adherence,
and take into account that blood pressure levels and target organ damage may differ among people, not only as a
consequence of different exposures to environmental factors but also because of genetic variation in susceptibility to
develop disease in response to the environment.

Major clinical guidelines, while advocating evidence-based suggestions, are not highly personalized to the patho-
physiology of individual patients and fundamentally use a standard universal approach at the individual level [10].
Thus, taking into account that patients with hypertension may have a different genetic predisposition, as well as the
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underlying mechanisms for high blood pressure may differ among individual patients, a more personalized and differ-
ent approach to the treatment of hypertension warrants consideration in order to improve the detection, evaluation,
treatment as well as prevention of hypertension, and eventually to improve adherence. Therefore, the large variety
of antihypertensive drug options may require personalization for individual patients and a careful balance of antihy-
pertensive efficacy, indications, and contraindications, in order to predict which drug will lower blood pressure most
effectively in an individual subject with a good cost-effectiveness profile.

In this review, we discuss the fundamentals of personalized medicine for the management of chronic diseases such
as hypertensive cardiovascular disease, focusing particularly on the possible applications of this new paradigm for
the evaluation and treatment of hypertensive patients. The ultimate aim is to provide the physician with a precise
tool to identify emerging biomarkers that will better address the therapeutic choice to improve the adherence to
antihypertensive therapies and reach better blood pressure control in the individual patient and population at large.

Rationale of the personalized approach to hypertension:
former approaches and new opportunities
The pathophysiology of hypertension is characterized by a complex interplay between susceptibility genes, physio-
logical systems, and environmental factors, which develop over time [6]. Several methods of personalized treatment
of hypertensive patients have been proposed and investigated. Personalized therapy in hypertension is conditioned
by the recognition of a group of traits that may differentiate the response of individual patients. Thus, a modern ap-
proach to personalized treatment should consider the use of diagnostic and screening methods that take into account
the distinctive molecular or risk profile of the individual patient in order to better identify the predisposition toward
a disease or personalized management of the disease.

Stratifying patients based on renin profiling
The role of plasma renin activity (PRA) in the regulation of blood pressure and response to medications has been ex-
plored over many decades [58], and enormous effort was spent stratifying patients according to their renin, sodium,
and volume profiling [59]. The approach using renin profile-guided treatment was characterized by equal or bet-
ter blood pressure control compared with clinical decisions not informed by PRA [60], and represented the starting
approach to physiological phenotyping that laid the foundation for hypertension precision medicine. However, the
clinical utility of renin profiling has been questioned due to the influence of several confounders, such as sex, race,
previous drug treatment, and assay issues, which might reduce the power of this approach in stratifying hyperten-
sive patients. Nevertheless, the ratio between PRA and aldosterone is currently used to make a diagnosis of primary
aldosteronism, although is not recommended by guidelines for widespread screening in hypertensive patients. Mea-
suring circulating plasma renin in patients can also indicate the contribution of salt sensitivity to the disease. A low
plasma renin can be considered a very specific marker for Na+ excess. This can address the therapeutic choice toward
diuretics rather than other therapeutic options, particularly in individuals of African origin who have a salt-sensitive
type of hypertension that is more responsive to diuretics or calcium channel blockers. In this regard, ethnicity can
also be used to stratify treatment in an individualized perspective [61]. For instance, patients with Caucasian back-
ground younger than 55 years of age are more responsive to angiotensin-converting enzyme inhibitors (ACEIs) or
angiotensin receptor blockers (ARBs) reflecting an overactive renin angiotensin aldosterone system.

Former single-nucleotide polymorphism studies
Several genetic single-nucleotide polymorphisms (SNP) have been investigated as potential predictors of antihyper-
tensive drug response, particularly in rare monogenic syndromes of hypertension secondary to the disruption of a
specific pathway [62]. For instance, in Liddle’s syndrome (an autosomal dominant condition with hypertension asso-
ciated with suppressed aldosterone and renin levels), a mutation in the epithelial Na+ channel gene induces increased
rates of Na+ reabsorption, volume expansion, and hypertension. In this condition, specific inhibitors of the epithelial
Na+ channel, such as amiloride or triamterene, could control elevated blood pressure values. Another example is fa-
milial hyperaldosteronism type 1, which is an autosomal dominant syndrome characterized by increased aldosterone
secretion in response to pituitary adrenocorticotropic hormone (ACTH), which is responsible for hypertension. In-
dividuals with this mutation respond to glucocorticoids, via the suppression of pituitary ACTH secretion [62]. A
particular insertion/deletion polymorphism in the ACE gene was studied in a large population with hypertension, in
order to examine the relationship with treatment response and coronary heart disease. The results demonstrated that
there was no effect of insertion/deletion polymorphism on treatment response or coronary heart disease [63].
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Figure 1. Systems biology integrated network

Omics data contribute to find biomarkers of the disease that contribute to clinical decision-making and may induce new hypothesis

and biological questions to be tested.

Although many other SNP-association studies have been performed on hypertension, these studies had some limi-
tations with respect to reproducibility and possible bias [64]; thus, this mode of scientific investigation has largely been
rejected. However, the improvement in high-throughput screening, the growing interest in genome-wide association
studies (GWAS), as well as advances in proteomic, transcriptomic, and metabolomic technologies, have provided
opportunities for stratification by individual genomic and molecular variants in order to define markers that might
potentially help target specific defects in the pathways even in essential hypertension, which does not recognize any
single known cause.

Introducing a new paradigm for cardiovascular prevention
and therapy—systems biology
Any method used to date for the detection, evaluation, prevention, and treatment of hypertension or its target organ
complications is unlikely to be equally successful in all individuals. Strategies tailored to the particular characteristics
of individual patients are appealing and might lead to improved health of populations by optimizing outcomes for
each individual patient [65,66].

In order to fully understand the rationale and hence the impact of precision medicine, it is important to know
the fundamentals of systems biology [57,67]. Systems biology is the study of systems of biological components (i.e.
molecules, cells, organisms, or entire species) via the computational and mathematical modeling of complex biolog-
ical systems, and it is emerging as crucial to all areas of biology and medicine. Systems biology may be considered a
‘holistic’ approach to study the complexity of biological systems. From a biological perspective, organisms (living sys-
tems) are considered dynamic and complex, and consist of many integrated networks that communicate at different
levels (genome, molecules, cells, and ultimately the entire organism which interacts with the environment) and their
behaviors may be complicated to predict exclusively by analyzing the function of individual parts. In other words, a
living organism may be considered a ‘network of networks’; thus systems biology focuses on the integrated analysis of
the dynamic behaviors of these networks at different levels in order to formulate hypotheses for biological function
and dynamical changes (Figure 1). This is different from traditional approaches to the study of living systems, which
usually focus on a single scale with a limited understanding of the system. Fundamental to systems biology is the
development and availability of modern high-throughput technology such as genomics, proteomics, metabolomics,
bioinformatics, and computational models. These provide insights into new pathways and networks between systems,
capture real-time molecular phenotypes, drive innovation in biology-based technology and computation in order to
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discover new biomarkers for disease, which allow the detection of network perturbations foreshadowing the actual
development of clinical symptoms, and eventually enable patient stratification on the basis of their individual genetic
and molecular profiles (Figure 1). Moreover, this approach may help to understand the determinants of responses to
treatments and individualize more specific and personalized targets for therapies by distinguishing in advance those
patients that are most likely to benefit from a given drug from those who will suffer side effects (Figure 1). In other
words, personalized medicine can be considered as an extension of traditional approaches to the understanding and
management of disease, and incorporates individual genetic, molecular, and environmental variability by using in
vitro diagnostics or imaging technologies (i.e. electroencephalography, electrocardiography, or diagnostic imaging
tools) in order to develop accurate and reliable diagnostic tools and predictive biomarkers for the assessment of the
patient’s individual characteristics (Figure 1). Thus, the new paradigm is shifting from the study of the ‘average’ cell to
the ‘discrete’ cell-subtype in a cell population, as well as from ‘the average’ patient in a global population, to the evalu-
ation of the unique characteristics of the individual patient. Compared with the traditional ‘trial-and-error’ approach
to disease treatment, precision medicine, using tools that are more precise, may ensure simplification and speeding up
of the diagnostic and decision-making processes and lead to more successful outcomes. Numerous molecular screen-
ing strategies have previously been developed for the risk stratification of individuals in order to develop markers
capable of detecting the disease at the early phase of its development and to facilitate targeted strategies to prevent
pathological complications [61,65,66-68]. For instance, in cancer research, considerable effort is currently spent on
identifying the specific molecular markers in a cluster of malignant cells in order to develop specific treatments [69].
Current cardiology practice also relies on a variety of biomarkers, imaging, and clinical information for primary and
secondary prevention of cardiovascular diseases, although those markers are not highly personalized. On the other
hand, genetic tests and modern transcriptomic, proteomic, and metabolomic methodologies are able to acquire and
give information related to the individual and environmental interactions, and may be extremely useful in identify-
ing molecular fingerprints for a personalized approach to guide therapeutic decisions for cardiovascular patients in
general and hypertensive patients in particular [66-70].

One important aspect of systems biology, and therefore of precision medicine, is data mining, taking into account
the massive amount of data generated with current high-throughput technologies [65,66,71] (Figure 1). In order to
explore and clinically interpret the complex interactions within the networks that result in individual phenotypes,
the availability of advanced computational and analytical techniques, interoperable devices, and the development of
informatic systems for the analysis and storage of the big data pool of ‘omics’ (genome sequences and molecular infor-
mation) in open-to-public databases is crucial [72]. A central role for this task could be played by physicians that can
mine data with appropriate algorithms in order to make open-to-public databases that could help data-driven medical
decisions (Figure 2). In this process, individual patients also become central stakeholders who contribute to the col-
lection of data by actively participating in shared decision-making (Figure 2). This novel approach could allow better
patient monitoring and treatment even outside clinics. Therefore, more people can be treated in their home environ-
ment, improving their lifestyle and quality of life. Thus, ‘omics’ technologies have the potential to transform medicine
from traditional symptom-oriented diagnosis and treatment toward data-driven disease prevention, early diagnos-
tics, and individualized treatment. There are different examples of the use of currently available high-throughput
databases of genome-wide association data obtained from individuals at cardiovascular risk [73,74,75]. For instance,
candidate genes for type 2 diabetes (including CD44 as the top candidate gene) have been identified by combining
the results of 130 functional microarray experiments for this disease [74]. Moreover, it has been reported that risk
alleles for diabetes were unequally distributed across different human populations, with the risk higher in African
populations, by analyzing data of 2510 individuals from 74 populations [75].

Hence, decisions in precision medicine are based on information that integrates data from clinical research, sys-
tems biology, and laboratory tests (i.e. molecular and ‘omics’ data), imaging findings, and electronic health records
(Figure 2). In this regard, healthcare will become a more dynamic and integrated system, in which the fulfillment of
personalized medicine will involve a broad community working together in order to improve patient care by connect-
ing new ideas and inputs in science and technology. As a result, this could improve compliance and clinical outcome,
particularly in cardiovascular patients.

Integrative ‘omics’ as predictive, diagnostic, and prognostic
biomarkers in disease-oriented cardiovascular medicine
Currently, molecular disease analyses using a large-scale approach are being employed by some clinicians and patholo-
gists [61,65,66,70] in order to highlight personalized disease susceptibility assessment and thus, patients can be treated
according to their own genetic and molecular phenotype.

c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

2675



Clinical Science (2017) 131 2671–2685
https://doi.org/10.1042/CS20160407

Figure 2. Precision medicine integrated model.

Medical doctors and patients are active parts of the integrated processes.

Whole genome sequencing (WGS) and whole exome sequencing (WES), the single-base analysis of a
genome–exome, have become largely available and affordable for genomic studies [61,65,66,70]. Moreover, the avail-
ability of next-generation sequencing [76], as well as proteomics [77], metabolomics [78], transcriptomics, and epige-
netics [79] stimulated interest in the application of other ‘omics’ to study chronic diseases [80] from an individual and
integrated perspective. The network of genetic variants that account for the biological differences between individuals
may physically and functionally connect the molecular elements in the system at different levels (i.e. metabolic and/or
environmental level) to produce a highly individualized disease phenotype. This novel clinical integrated approach
can help to identify perturbations in the system derived from these interactions and to discover specific therapeu-
tic targets that can modulate the key junctions in the integrated networks to more precisely and safely restore the
homeostasis of the system and the phenotype [81-83].

Genomics and pharmacogenomics
Analyzing the genome can be used to discover pathophysiological pathways, evaluate the individual risk for a given
person compared with the population at risk (also taking into account the same group of ethnicity, age, and gen-
der), and may suggest potential targets for more individualized therapies. Whole genome sequence revealed variants
for both high-penetrance Mendelian disorders [84,85], as well as, complex, chronic diseases including hypertension
[86]. Chronic disease-related research has gained significant benefit from WGS and WES technologies [66]. Ad-
vanced application of this approach is the use of next-generation WGS and computational genomics in the context of
family pedigrees, examining the diversity of the human genome over the entirety of the human population. Family
genomics is a powerful and precise method for identifying sequencing errors, disease-causing gene mutations, and
genetic relationships between individuals, as has been applied to identify high-risk genes for diseases such as familial
thrombophilia, obesity, and psoriasis [87].

Currently, GWAS studies have reported the association of more than 7000 SNP with over 700 complex traits [88].
The study of complex traits may include a variety of chronic diseases ranging from cancers to other chronic complex
diseases including diabetes, hypertension, and cardiovascular diseases. A large number of cancer genomes have been
sequenced, for different types of tumors [89-100], which may help to understand the susceptibility to the disease as
well as better addressing treatment. In addition, for cardiovascular disease, several studies have been performed for
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genetic associations in individual patients in order to test the risk of developing the disease. For instance, genomic
analysis for the risk of cardiovascular diseases was estimated in healthy subjects demonstrating increased probabil-
ity of risk for myocardial infarction and coronary artery disease [101]. In patients with a family history of vascular
disease and early sudden death, genetic variants associated with heart-related morbidities as well as drug response
were identified [102]. This information could facilitate future healthcare for an individual patient. In hypertension
research, GWAS studies have discovered approximately 63 loci influencing blood pressure, although these variants
are responsible for less than 1% of variation in blood pressure in the general population [61,88]. In individuals with
hypertension in the Framingham Heart Study population, genetic variants that led to severe hypertensive phenotypes
or even protection against hypertension were identified [103]. Some of these common variants are correlated to path-
ways that can be targeted for individualized therapy. Indeed, it is known that the same drugs may have different effects
on different individuals due to their personal genomic background and living habits [104,105], as genetic polymor-
phisms may partially account for interindividual variability and lack of consistent responsiveness to antihypertensive
drugs.

The identification of key enzymes that may play a role in variation in drug metabolism and response has provided
the basis for pharmacogenomics. This critically important area of personalized medicine specifically focuses on the
variations of DNA and RNA characteristics related to individual drug response [104,105], and may suggest tailored
antihypertensive therapeutic options in order to reduce side effects and ultimately healthcare costs [88].

Several hypertension studies have focused on genetic association with the effect of different antihypertensive drugs,
particularly diuretics and β-blockers. For instance, a previous GWAS study identified a single SNP in the upstream
end of the uromodulin gene (UMOD) associated with blood pressure regulation as well as hypertension [106]. The
UMOD gene is expressed in the kidney at the thick ascending limb of the loop of Henle and may interact with the co-
transporter 2 (NKCC2) channel modulating the reabsorption of filtered Na+. Thus, in patients carrying this mutation,
furosemide could be the first-line therapeutic choice since it is an inhibitor of NKCC2. Yet genotype-directed trials
are required to determine whether the UMOD variant could individualize patients that potentially gain benefit from
loop diuretic treatment, particularly in the setting of uncontrolled hypertension. Furthermore, the genetic polymor-
phism rs4149601G>A of the NEDD4L (which encodes the NEDD4 protein that controls the cell surface expression
of different sodium transporters including ENaC and NKCC2) has been associated with reduced ENaC expression,
sodium retention, and hypertension with lower plasma renin activity [107-110]. Thus, patients carrying this mutation
could better respond to a thiazide diuretic as shown in different clinical studies [111-113]. In the Pharmacogenomic
Evaluation of Antihypertensive Responses (PEAR) study only hydrochlorothiazide showed a greater blood pressure
lowering effect in patients with GG alleles [112]. In the Nordic Diltiazem (NORDIL) study, carriers of the G allele
exhibited a better blood pressure lowering effect and better outcome in response to the thiazide diuretic/β-blocker
combination treatment than patients with AA genotype [111]. Consistently, in the International Verapamil SR Tran-
dolapril Study (INVEST) patients who carried the G allele showed cardiovascular risk if not treated with a thiazide
diuretic [112]. Another GWAS study in over 60,000 subjects identified a polymorphism of ADRB1 associated with
hypertension and the response to β-blockers. This gene encodes the β-1 adrenergic receptor for the catecholamines,
and the Arg389 and Ser49/Arg389 haplotypes have been associated with greater response to β-blockers [114-117].
Interestingly, in the INVEST study, patients with these aplotypes presented increased cardiovascular risk on verapamil
therapy alone, the risk was offset by using β-blockers. Nonetheless, future researches need to better define whether
these polymorphisms could be used to guide therapeutic decision in hypertensive subjects.

The advances in epigenomics have provided another strategy for defining subgroups of hypertensive patients who
might benefit from specific therapies. For instance, aldosterone may target the epigenetically modified sodium chan-
nel epithelial 1α subunit (SCNN1A), which has been demonstrated to present hypermethylation of histone H3 at ly-
sine 79 (H3K79) at subregions of the promoter in some individuals [118]. The effort of identifying functional genetic
and epigenetic markers is extremely important to identify a new category of mechanism-based genetic biomarkers
that can facilitate the management of hypertension [119] from an individualized perspective.

In spite of these advances, there is still no ideal biomarker available with a high predictive accuracy for the response
to antihypertensive therapies. Therefore, prospective randomized studies are required in order to detect biomarkers
and demonstrate a clear clinical utility of the genomic approach [120-122], in terms of improved outcomes. Recently,
this approach was employed in a large Chinese population in which 11 biomarkers were used to predict the de-
velopment of hypertension with some success and accuracy [123]. The GENRES randomized, placebo-controlled,
cross-over trial [121] has also suggested a possible relationship between nephrosis (NPNS1) gene variants and re-
sponse to the angiotensin receptor blocker losartan, as well as between PRKCA (which encodes protein kinase Cα)
gene variants and blood pressure response to hydrochlorothiazide.
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Moreover, experimental studies have demonstrated that a p38 mitogen-activated protein kinase (MAPK) inhibitor
suppressed the markers of end-organ damage, osteopontin, and plasminogen activator inhibitor 1, in a rat model of
hypertension and correlated with improved end-organ function [124].

On the other hand, genetic studies present some limitations [125] related to the fact that they typically only analyze
a small fraction of the genome, in addition, gene–gene interactions are largely neglected. Moreover, genomic informa-
tion alone is not usually adequate to predict disease onset, and other factors such as environment are expected to play
a critical role in the pathophysiological process [126,127], particularly for alterations in blood pressure regulation.

Other personalized ‘omics’ in precision medicine
Other ‘omics’ technologies might also have an impact on personalized medicine providing increasingly detailed
and individualized characterization of hypertension subgroups. Among them, proteomics, transcriptomics, and
metabolomics may contribute to defining the fingerprints and markers that constitute the foundation for precision
medicine. The profiles of the transcriptome, proteome, and metabolome are more precise indicators of the real-time
phenotype, compared with genomic sequences alone; therefore, collecting this ‘omics’ information in an integrated
manner would allow monitoring the physiological state of the individual patient in a more complete way, which could
complement the systems biology approach, particularly for a multifactorial and complex disease such as hypertension.

Proteomics is defined as the characterization and quantification of proteins in an organism. The information to
build every protein in an organism is contained in the DNA, but not every protein is produced at once or in the
same amount. The current use of mass spectrometry has enabled great advancements in the proteomic analysis of
biological macromolecules with high sensitivity and accuracy [128,129]. With this technology it is possible to quan-
tify a large amount of proteins in a single sample, while simultaneously detecting the expression of mutations and
editing events in the human proteome [119], as well as profiling of the phosphoproteome [130]. High-throughput
sequencing technologies have also enabled whole transcriptome (cDNA) sequencing [131], which is a powerful tool
for disease-related studies, as it can reflect the actual gene activity by also detecting splicing isoforms [132]. Com-
bining such information with genomic information may be valuable in the treatment of chronic diseases, including
hypertension.

Profiling small molecules (i.e. metabolome) in a comprehensive and quantitative manner in biological fluids also
provides an analysis of multiple biological pathways [70,133]. Since the metabolome reflects the metabolism as well as
the real-time energy status of the living organism, it is expected that certain metabolome profiles may provide mech-
anistic insight and might be associated with different diseases [134]. Particularly fascinating is that it could result in
the metabolomic analysis of hypertension, since hypertension is often associated with alteration of metabolic path-
ways. Therefore, metabolomic profiles are an important aspect for personalized medicine [135,136], predominantly
for cardiovascular disease. In particular, it has been shown that the atenolol-induced changes in the metabolome are
dependent on race and genotype, which can help to explain the differential metabolomics signature of response to
atenolol and the differential response in blood pressure to β-blockers [137].

Challenges, opportunities, and future directions
Precision medicine is an emerging and growing field, and will probably be of major importance in the future. Growth
in this area has been facilitated by the development of systems biology and high-throughput technologies. Undoubt-
edly, the increasing knowledge and interpretation of personalized ‘omics’ data will enhance our understanding of
physiological events during health and disease, and promote personalized diagnosis and treatment. Using this ap-
proach, precision medicine aims to reduce the burden of disease by targeting prevention and treatment more effec-
tively through the integration of inputs from multiple data sources. Moreover, individualized medicine might also
decrease healthcare costs and prevent adverse events by improving the ability to select the right therapy at the right
time for an individual patient.

However, personalization will become more difficult in hypertension since it needs to integrate biological, non-
biological, and environmental factors in decision-making, much more than other conditions such as cancer therapy
where genomic factors may play a central role. In complex diseases, such as hypertension, peripheral components of
the biological network would be more likely to contribute to the disease than genetic determinants, which are also
more probabilistic than deterministic for the development of the disease. Thus, in hypertension, genetic or molecular
markers cannot be considered isolated from other reasons for uncontrolled hypertension, which include salt sensi-
tivity, excessive alcohol consumption, sleep apnea, renal artery stenosis, and comorbidities such as obesity, diabetes,

2678 c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).



Clinical Science (2017) 131 2671–2685
https://doi.org/10.1042/CS20160407

Figure 3. Different types of trials for personalized medicine.

Characteristics of Basket trial, Umbrella trial, and N-of-1 trial.

and chronic kidney disease. Furthermore, the intraindividual variability in blood pressure levels may also have an im-
pact on the determination of response to drugs. Finally, the impact of environment and personal choices also affects
patient behavior and treatment outcomes.

Thus, future approaches to the personalization of hypertension treatment will possibly focus less on the DNA se-
quence and more on variables that can change over time. The fields of epigenomics, metabolomics, proteomics, and
transcriptomics are likely to yield data useful in personalizing the treatment of hypertension. This combined infor-
mation not only determines the genetic susceptibility of the person, but also monitors his/her real-time physiological
states [67].

Personalized medicine, using ‘omics’ approaches, relies on the growing development of technology for biological
research, which is now affordable due to the rapid drop in technology costs. A challenge that should not be overlooked
in this new era of complex data regards storage and the analytical aspect of the ‘omics’ data, and as such it will be
critical for biologists, clinicians, bioinformaticians, and data scientists to work together in a truly integrated manner
to ensure the continued improvement of this field.

However, the significance of any specific approach to personalized medicine still needs to be tested. Therefore,
any proposed personalization method would theoretically need a clinical trial to demonstrate benefit above current
guideline-based therapy, although less rigorous evidence might be acceptable [138]. In addition to traditional types of
clinical trials, such as randomized, cross-over, double-blind etc., several new approaches for phase II clinical trials have
been developed, such as Basket and Umbrella trials, as well as the N-of-1 trial that might better account for variability
between patients [139-142] (Figure 3). In particular, in Basket Trials, drugs are tested based on their mode of action
and all participants included in the trial have a common contributing or facilitating factor, such as an abnormal protein
or metabolic pathway, which may be the target of the drug. In Umbrella Trials, the opposite strategy is followed.
Participants present the same clinical diagnosis but specific genetic markers or other factors may vary. Drugs are
tested according to individual profiles, therefore in one trial several different drugs may be tested for the same disease,
and adaptive trial protocols that allow modifications to interventions based on participant responses for a subset of
individual participants are allowed while the trial is ongoing. However, these studies are not considered sufficiently
personalized. Therefore, a trial centered more on individual (such as N-of-1 trials) than on ‘average responses to
therapy’ is required. N-of-1 trials have already been utilized as a matter of necessity for rare diseases. In this type
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of trial, different treatments (including placebo) are evaluated in one patient over a period of time. Although the
N-of-1 trial may require elaborate study design and the results may not be easily extrapolated to other patients, it can
provide useful medical information for subsets of patients in the general population. A detailed discussion on clinical
trials informed by biomarkers has recently been reviewed by Antman and Loscalzo [65], and a critical discussion on
the new types of clinical trials has been reviewed by Schork [139]. It is now timely to extend clinical trials beyond
the classical clinical approaches, by considering methods to address personalized medicine. This requires specialized
centers for the application of high-throughput system biology technology as well as resources and infrastructure to
collect integrated computational data. This implies that future healthcare systems will need the integration, analysis,
and representation of data to enable data visualization and a more precise selection of therapeutic regimens [143].

A discussion that warrants some consideration relates to the economics and cost-benefits associated with person-
alized medicine. As the field evolves and as ‘large data’ results become available, comprehensive health economic
analysis will be crucial. To date, we are still in the infancy phase of personalized medicine and hence economic anal-
ysis is based on predictions and theoretical knowledge. If personalized medicine does lead to the ‘right medicine
for the right patient at the right time’ then health management and associated costs should be less than the current
state, where the economic burden of treating cardiovascular disease is enormous. It should also be highlighted that
the costs of ‘high-throughput technologies’ to profile individual patients have been markedly reduced over the past
decade and hence global expenses to invest in this new approach should be more affordable, would be worthy, and
might contribute to reducing general healthcare costs, since the global cardiovascular risk could be controlled bet-
ter in numerous patients in primary and/or secondary prevention, and, optimistically, personalized medicine would
contribute greatly to reducing the burden of cardiovascular events which is currently still high and contributes sub-
stantially to healthcare expenses.

Furthermore, the new approach toward personalized medicine involves the patient as a central and active partic-
ipant of the complex network. Education and training for healthcare providers and patients are essential to prepare
for the next phase of modern medicine so that the tremendous potential of personalized medicine, for the individual
patient and ultimately the population at large, can be realized.
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