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Ultra-low-field magneto-elastocaloric cooling
in a multiferroic composite device
Huilong Hou1, Peter Finkel2, Margo Staruch2, Jun Cui3,4 & Ichiro Takeuchi1

The advent of caloric materials for magnetocaloric, electrocaloric, and elastocaloric cooling is

changing the landscape of solid state cooling technologies with potentials for high-efficiency

and environmentally friendly residential and commercial cooling and heat-pumping applica-

tions. Given that caloric materials are ferroic materials that undergo first (or second) order

phase transitions near room temperature, they open up intriguing possibilities for multiferroic

devices with hitherto unexplored functionalities coupling their thermal properties with dif-

ferent fields (magnetic, electric, and stress) through composite configurations. Here we

demonstrate a magneto-elastocaloric effect with ultra-low magnetic field (0.16 T) in a

compact geometry to generate a cooling temperature change as large as 4 K using a mag-

netostriction/superelastic alloy composite. Such composite systems can be used to cir-

cumvent shortcomings of existing technologies such as the need for high-stress actuation

mechanism for elastocaloric materials and the high magnetic field requirement of magne-

tocaloric materials, while enabling new applications such as compact remote cooling devices.
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E lastocaloric cooling exploiting the stress-induced martensi-
tic phase transformation of shape memory alloys (SMAs)
has recently emerged as a strong alternative cooling tech-

nology candidate due to the intrinsically high coefficient of per-
formance of elastocaloric materials1–5. Compared to other solid-
state cooling techniques, its potentials for high-efficiency cooling
systems are only rivaled by magnetocaloric cooling6. Previously,
compression-based 400W systems and tension-based device and
active regenerators have been demonstrated using the elastoca-
loric effect7–10. Despite its high efficiency, one disadvantage of
elastocaloric cooling is the large stress required to induce the
martensitic transformation. For a commonly available Ni-Ti
SMA, for instance, >600MPa is required in compression for the
transformation11,12. There are only a handful of engineering
options for exerting such large stress, making it challenging to
design compact cooling devices.

There have been many demonstrations of composite multi-
ferroic effects that take place via elastic coupling between mag-
netostrictive and piezoelectric materials at their interfaces, and
they have been explored for a variety of bulk and thin-film device
applications including ultra-high-sensitivity magnetic field sen-
sors13–16, cantilever-based mechanical logic devices17,18, and
voltage-controlled nanoscale magnetic domain memories19. They
take advantage of mechanical transduction through strain trans-
fer between materials of similar Young’s moduli20.

In this work, we demonstrate the utility of multiferroic cooling
devices enabled by elastic coupling of a magnetostrictive material
with a superelastic SMA for the first time. In particular, we employ
magnetostrictive strain to induce elastocaloric cooling in a compo-
site configuration. Our multiferroic devices consist of TbxDy1−xFe2
(x ~ 0.3, Terfenol-D), which can provide strain with load stress
as large as 880MPa21 and a Copper–Aluminum–Manganese
(Cu–Al–Mn) SMA whose adiabatic temperature change, ΔTad, can
be as large as 12.8 K22. The magnetic-field-induced elastocaloric
(which we call magneto-elastocaloric (M-eC) for short) cooling
devices achieve cooling ΔTad of 4 K with 0.16 T, which can open up
possibilities for an entirely new class of compact and remote cooling
applications.

Results
Magneto-elastocaloric pathway using multiferroic composites.
The functionality of our composite multiferroic devices corre-
sponds to the red arrow path in the modified Heckmann diagram
(Fig. 1a), which includes temperature and entropy as a field and a
conjugate response parameter, and it is effectively an alternative
route to achieve the magnetocaloric effect (black arrow). A well-
known issue of intrinsic magnetocaloric materials is the relatively
large magnetic field they require to achieve adiabatic cooling. For
instance, magnetic field as large as 2 T is needed to induce ΔTad of
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Fig. 1 Magneto-elastocaloric multiferroic composite. a A modified Heckmann diagram illustrating the pathway leveraging magnetic field for cooling in a
multiferroic composite. Symbols: magnetic field (H), magnetization (M), stress (σ), strain (ε), temperature (T), and entropy (S). Red arrow is the composite
magneto-elastocaloric pathway demonstrated in this work, while black and blue arrows are intrinsic magnetocaloric and mechanocaloric (elastocaloric under
uniaxial σ or barocaloric under isotropic σ) pathways, respectively. b Schematic of the magneto-elastocaloric (M-eC) device, in which a magnetostrictive
material (Terfenol-D) and a single crystal Cu–Al–Mn shape memory alloy (SMA) are elastically coupled to generate cooling under magnetic field. Terfenol-D
displays extension when magnetic field is applied along the length of Terfenol-D and retraction upon removal of the magnetic field. The SMA generates an
isothermal entropy change at a small strain rate and an adiabatic temperature change at a large strain rate through elastocaloric effect
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5.4 K in gadolinium23. In contrast, we use Terfenol-D whose
magnetostrictive strain can be as large as 2000 ppm at <1 T to
mechanically load single crystal Cu–Al–Mn SMA, which under-
goes transformation with a relatively small stress of ≈100MPa.

The schematic of the M-eC device is shown in Fig. 1b. The
frame of the device acts as fixed constraints against the overall
extension of the multiferroic composite so that mechanical load is
transferred from Terfenol-D to Cu–Al–Mn SMA. We use a
tabletop electromagnet to generate magnetic field, and a
Lakeshore Hall probe is used to measure its magnitude at
the surface of Terfenol-D. The temperature change of the
Cu–Al–Mn SMA piece in the M-eC device is measured by an
infrared camera.

Cooling by exploiting low magnetic fields. We first investigate
the basic properties of components of the M-eC device and then
characterize the cooling of the composite device. A typical
stress–strain curve of the Cu–Al–Mn SMA piece measured in a
conventional servohydraulic load frame is shown in Fig. 2a. The
strain is fully recoverable, and it is the transformation volume
fraction that determines the released (and absorbed) latent heat,
which in turn controls the ultimate cooling ΔTad in the SMA.
Different ΔTad (Fig. 2b) are attained by rapidly unloading from
different strain levels. Terfenol-D is known to display a saturated
magnetostrictive strain up to 2000 ppm13. Here we focus on the
low-magnetic-field effect: it shows a magnetostriction of 930 ppm
at 0.16 T (Fig. 2c), which can be used to attain ΔTad in the M-eC

device as large as 4.4 K (Fig. 2d). A ΔTad of 4.4 K corresponds to a
strain of 3.7% in the SMA according to Fig. 2a, b, which is smaller
than the directly measured strain (~5%) in the device due to
magnetostriction at 0.16 T (Fig. 2c). We have estimated con-
tribution to the strain due to the compliance of the device
frame to be about 1%, which can account for the difference
(See Methods section for detailed calculations). We expect to
be able to obtain larger ΔTad by incorporating a more rigid device
frame in the future. Out of different Terfenol-D lengths and
pre-stress configurations we have looked at (Fig. 2d), a longer
Terfenol-D piece naturally gives rise to a larger strain, and a pre-
loaded stress to the Cu–Al–Mn piece also leads to a larger strain,
resulting in larger observed ΔTad.

We performed a series of measurements of the low-magnetic-
field M-eC effect using a 115-mm-long Terfenol-D rod with a
pre-loaded stress of 125MPa. Rapid application and rapid
removal of field with positive and negative values (Fig. 3a) leads
to a heating and a cooling, respectively, both followed by a natural
settling back to room temperature (Fig. 3b). The magnetic field of
0.02 and 0.168 T (Fig. 3c) results in a cooling ΔTad (nearly the
same as heating ΔTad) of 0.2 and of 4.4 K, respectively (Fig. 3d).
ΔTad increases linearly with increasing magnitude of magnetic
field.

Magnetic-field-dependent cooling strength. Thus these M-eC
devices are functionally able to achieve low magnetic-field-
induced cooling. For comparison, we plot ΔTad versus applied
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Fig. 2 Tailoring low-field adiabatic cooling. a, b Compressive stress, σ, at slow loading-unloading (a) and measured cooling ΔTad upon rapid unloading (b) in
the Cu–Al–Mn shape memory alloy (SMA) piece as a function of strain, ε, tested in a servohydraulic load frame. c, d Magnetostrictive strain, λ, of the
Terfenol-D (c) and cooling ΔTad of the Cu–Al–Mn SMA (d) in the magneto-elastocaloric (M-eC) device as a function of magnetic field, μ0H (which is
removed rapidly for cooling) for two different pre-stresses, σ0, applied to the SMA for two different lengths, LT, of Terfenol-D used in the device. The pre-
stress, σ0, signifies the stress level at the onset of applying the strain from magnetostriction of Terfenol-D, εApplied, to SMA as indicated by arrows in
a. Magnetostriction of Terfenol-D at various pre-loaded stresses is shown in Supplementary Figure 1. The dashed lines denote the correspondence of ΔTad
and λ for the same applied field in the M-eC device
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magnetic field for our devices and selected conventional magne-
tocaloric materials (Fig. 4a). Our M-eC devices can attain a ΔTad
of 4 K with a field of 0.16 T; in contrast, FeRh would require 0.6 T
to achieve 4 K, and fields much >1 T are needed for Mn–Fe–P–As
and Ni–Mn–In. We define magnetic-field-induced cooling
strength to be ΔTad/μ0ΔH and use it as a metric of magnetic-field-
induced cooling (Fig. 4b). Among various materials systems,
ΔTad/μ0ΔH of the composite devices here is three times
larger than that of FeRh, an intrinsic magnetocaloric material
with the highest magnetocaloric magnetic-field-induced cooling
strength28,29.

Design of compact cooling devices. In addition to the high
magnetic-field-induced strength, another major advantage of the
M-eC devices is their compactness. By enlisting magnetostrictive
strain, we have removed cumbersome, large-stress actuation
mechanisms to achieve elastocaloric cooling. To illustrate design
flexibilities and the straightforward implementation of the M-eC
effect, we have demonstrated several geometries where simple
relative motion of the device with respect to permanent magnets
is used to achieve cooling. In the schematics shown in Fig. 5, the
device is inserted in and out of stacked ring magnets (Fig. 5a) or
rotated above the plane of magnets in and out of the field axis
(Fig. 5b). Figure 5c, d show the resulting heating and cooling
achieved using ferrite magnets, and Fig. 5e, f show the magneto-
elastocaloric effect achieved with Nd–Fe–B magnets. In all
instances, the achieved ΔTad is consistent with the magnetic field
(insets of Fig. 5c–f) measured at the surface of Terfenol-D in the
M-eC device.

Discussion
The demonstrations with the permanent magnets indicate that,
with proper designs, the M-eC devices can be even more compact.
By implementing a design where the permanent magnet is placed
even closer to the surface of the Terfenol-D piece, we would be
able to attain larger magnetostriction and consequently larger
ΔTad in the Cu–Al–Mn piece. As an alternative to magnetos-
triction (magnetic-field-induced strain), it is also possible to use
piezoelectric materials to construct another type of multiferroic
composites for inducing elastocaloric cooling. In particular,
recent development in advanced piezoelectric single crystals30,31

indicates that compact piezoelectric/superelastic SMA composite
is a promising option for achieving the electric-field-induced
elastocaloric effect or the electro-elastocaloric effect. A similar
electric-field-induced mechanocaloric effect concept has been
previously mentioned32.

We note that functionally our magnetic-field-induced elasto-
caloric effect (which we call magneto-elastocaloric effect) is fun-
damentally different from the previously reported multicaloric
effects in intrinsic materials such as FeRh and Ni–Mn–Sn(Cu)
where magnetic field and stress are both applied to the material to
induce ΔS33,34.

The efficiency of magnetostrictive Terfenol-D is typically
measured at a resonant frequency (~500 Hz), and it can poten-
tially be 50–70%13. In this work, Terfenol-D is used at a much
lower frequency, and we believe its efficiency is ≈20% based on
references on similar materials13,35. We have previously reported
on the high efficiency (materials coefficient of performance) of
elastocaloric SMAs2. The high efficiency, however, is contingent
on being able to implement a system incorporating work
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Fig. 3 Adiabatic temperature change under low magnetic fields. a, bWaveform of applied magnetic field, μ0H (a) and corresponding adiabatic temperature
change, ΔTad, of the Cu–Al–Mn shape memory alloy (SMA) in the magneto-elastocaloric (M-eC) device (b) under rapid application and removal of
positive and negative magnetic fields. Black squares indicate the heating part of the data and blue circles mark the cooling part of the data. The red dashed
lines in a and b indicate that measured heating ΔTad and cooling ΔTad are in direct response to the magnetic field change. c, d Increasing magnitude of
magnetic field (c) and resulting increase in heating and cooling in Cu–Al–Mn SMA (d) in the M-eC device
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recovery. We have previously demonstrated work recovery in
elastocaloric cooling systems by stacking two sets of SMAs line-
arly and operating the sets in a reciprocating manner7,36. In such
previous embodiments, actuators are used to facilitate loading/
unloading involved in work recovery. While yet to be physically
demonstrated herein, it is straightforward to extend the same
actuation design: we would replace an actuator with a pair of
aligned Terfenol-D pieces (one on each side of a mechanical
load), and by applying the magnetic field on and off in an
alternating manner to the pair, work recovery can be
implemented.

We envision M-eC devices being deployed for a variety of
remote and compact applications including cooling of electronic
components, photon detectors, sonar sensors, and micro-
refrigerators. An intriguing possibility is to use it for local brain
cooling to treat epileptic seizures37,38. We believe the non-con-
tact, wireless nature of the compact magnetostrictive–SMA
composite can be competitive in many application arenas where
miniature Peltier cooling devices currently dominate the market.
It is important to note that our devices can be operated in the
cooling-only mode under isothermal loading and adiabatic
unloading (by slowly increasing the magnetic field followed by
rapid removal as shown in Supplementary Figure 2) to curtail
heating. For these local cooling applications, the key is not to raise
the temperature of the surrounding (the body of the device/
material) during loading. The loading speed that can keep the
device and the environment/reservoir isothermal depends on the
heat capacity of the surrounding. Alternatively, the device can be

used in the single shot at a time mode, where loading part of the
cycle is performed elsewhere beforehand, and the device is then
placed at a location to be cooled, ready to deliver adiabatic
cooling as described in a U.S. patent39. Naturally, such an
operation mode is desirable for a multitude of localized cooling
applications.

We also envision our devices to be configured in an array
geometry to operate in more conventional cooling applications
together with heat exchangers and other standard accessories
including a reciprocating work recovery mechanism. In such
systems, exothermic heat would be handled in a standard heat-
rejection part of the cycle. While the detailed analysis of such
proposed systems is outside the scope of the current work, we
believe the unique design of our device would again enable
compact applications with no need for large actuators7.

For long-term operation of devices and systems, fatigue life is a
concern. Generally speaking, Cu-based SMAs are not as good as
NiTi with regard to their fatigue behavior. There are a number of
strategies that can be implemented for extending their fatigue
life7: although they require a more elaborate synthesis process,
single crystal Cu–Al–Mn alloys have good fatigue resistance
compared to polycrystalline counterparts40; a compressive mode
is known to lead to substantially extended fatigue life compared
to when tension is used; and applying smaller strains is able to
extend fatigue life. We are currently performing a long-term
fatigue test on our Cu–Al–Mn single crystal piece. To date, after
~10,000 cycles under compression (with a strain of 4%), we have
observed minimal sign of fatigue in the cooling behavior7. For the
remote cooling device applications mentioned above, 10,000
cycles are more than sufficient. For conventional cooling systems
applications, the cycle number required is in millions, numbers
recently observed in NiTi thin films41 as well as in bulk NiTi42.
With proper microstructure and composition control as well
as operational practices, we believe it is also possible to develop
Cu-based SMAs for extended operation in the near future.

Methods
Fabrication and characterization of materials. Cu–Al–Mn alloys with a nominal
composition of Cu72Al17Mn11 (at.%) were prepared by induction heating of ele-
mental powders with a purity of 99.9 at.% followed by abnormal grain growth via
thermal processing to attain single crystal specimens. Details of the preparations
are available in previous publications43,44. The single crystalline structure was
confirmed by X-ray diffraction, and the composition was determined using
wavelength dispersive spectroscopy with calibrated standards. The transformation
temperatures were analyzed by differential scanning calorimetry (DSC Q100, TA
Instrument Inc.), and they were found to be Ms= 271 ± 1 K, Mf= 251 ± 1 K, As=
270 ± 1 K, and Af= 283 ± 1 K. The latent heat was found to be ΔHA→M= 4.1 J g−1

and ΔHM→A= 5.3 J g−1. Standard stress–strain tests were carried out on a MTS
810 servohydraulic load frame at a strain rate of 0.0002 s−1 for isothermal
loading–unloading and at a loading strain rate of 0.0002 s−1 and an unloading
strain rate of 5 s−1 for adiabatic cooling.

Terfenol-D alloy (purchased from ETREMA Products, currently TdVib LLC)
had a composition of Tb0.3Dy0.7Fe1.92. The linear magnetostrictive strain of the
Terfenol-D was estimated to be 800–1200 ppm. In this work, two Terfenol-D rods
with a diameter of 6 mm were machined by electrical discharge machining, one
with the length of 77 mm and the other with the length of 38 mm. Both ends of
each Terfenol-D rod were fine cut for obtaining smooth surfaces to mechanically
interface with Cu–Al–Mn SMA for assembling a multiferroic composite.

To house the multiferroic composite, a high-strength aluminum frame was
customized with an outer diameter of 28.0 mm and an inner diameter of 19.2 mm
with two ends capped with Brass knobs, which can be tightened/untightened by an
Allen wrench for adding/reducing the pre-stress load to the multiferroic composite.
A polyimide ring inside the frame was used to guide the multiferroic composite for
avoiding lateral deformation, and ceramic disks were inserted to insulate
Cu–Al–Mn SMA from surrounding thermal mass.

The load generated by the Terfenol-D was sufficient to actuate the Cu–Al–Mn
SMA. We estimated the 115-mm-long Terfenol-D rod (with a diameter of 6 mm
and a cross-sectional area of 28.2 mm2) produced a load of 300 N under the
constraint by the frame of the M-eC device (Fig. 1b). This load was able to initiate
the phase transformation in the Cu–Al–Mn SMA piece in the M-eC device with a
transformation stress of ≈100MPa, which required the cross-sectional area of the
SMA specimen to be ≈3 mm2 at most. We thus used rectangular Cu–Al–Mn
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specimens with 2 mm × 1mm× 2mm in dimensions: the cross-sectional area that
came in contact with a Terfenol-D rod was 2 mm2, and the 2-mm length was along
the crystallographic orientation [110]. When the Terfenol-D was placed with
Cu–Al–Mn under a preload of 300 N, we characterized the magnetostriction of
Terfenol-D with an attached strain gauge read by a strain indicator (Vishay
Measurements Model P-3500) to be 930 ppm at 0.16 T (see Supplementary
Figure 1). In our M-eC device, we were able to achieve a displacement of 0.106 mm
from the 115-mm-long Terfenol-D rod, which would have generated 5.3%
compressive strain in the Cu–Al–Mn piece. We noted, however, under the working
load cycle of 0−300 N, that there was mechanical compliance in various
components of the device frame, which consisted of parts made of aluminum and
brass, given their finite rigidity. For instance, an aluminum fixture in the device
under this load was expected to experience deformation that was equivalent to a
fraction of a percent in the strain in the Cu–Al–Mn piece. Other compliance
contributions of similar order were also expected from bolts and threads, as well as
non-linear response of contact surfaces within the device. Together, we expected
the overall compliance of the device frame to be ⪆ 1% in equivalent strain to the
SMA piece, accounting for the observed difference in the strain between 5.3%
and 3.7%.

Electromagnet setting and in situ thermal imaging. Magnetic fields were gen-
erated and precisely controlled by an H-frame electromagnet (Micro-Now
Instrument Inc.) equipped with a power supply (Model BOP 50-20 MG, Korea
Electric Power Corporation) at a maximum output of 50 V and 20 A. The center of
the pole caps of the electromagnets was aligned to the longitudinal axis of the
composite device, and the space between the pole caps was set to exactly fit the
device without gaps to attain highest possible fields to be experienced by the
Terfenol-D rods in the device. The magnetic fields were measured using a Lake-
shore Hall probe placed in the middle of the device.

During application and removal of magnetic field, the temperature of
Cu–Al–Mn piece in the device was directly monitored using an infrared camera
(T450sc, FLIR Systems, Inc.) by collecting thermal videos at a frame rate of 10 Hz, a
spatial resolution of 0.00136 rad, and a thermal sensitivity of 0.03 K at 303 K after
calibrations with real-time temperature. We compared measurements of
temperature changes at 10 Hz frame rate and higher frame rate, and we found that
there was no observable difference as shown in Supplementary Figure 3. A spot
meter detected the temperature for an area of 2 × 2 mm2 on the Cu–Al–Mn piece
in the device during recording of videos, from which thermal images of 320 × 240
pixels were extracted for time-wise analysis of the temperature change. The
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temperatures were averaged over 3-by-3 pixels at a distance of ~0.4 m to focus on
the 2-by-2 mm2 area of the single crystal Cu–Al–Mn piece (see Supplementary
Figure 4). A thin coating of graphite with an emissivity coefficient of 0.95 was
sprayed on the surface of Cu–Al–Mn SMA to increase its thermal emissivity. The
procedure of recording, extracting, and analyzing was repeated for each
combination of the experimental parameters, including magnetic field, preloaded
stress, and length of Terfenol-D.

Permanent magnet setting and motion-related cooling. Commercially available
permanent magnets (ring and bar magnets of ferrite and Nd–Fe–B) were used as
the source of low magnetic field. The gray ferrite and the silver Nd–Fe–B ring
magnets had an outer diameter of 115.3 and 76.2 mm, an inner diameter of 44.5
and 38.1 mm, and a thickness of 10.2 and 12.7 mm, respectively. The gray ferrite
and the silver Nd–Fe–B bar magnets had a length of 76.2 and 76.2 mm, a width of
50.8 and 12.7 mm, and a thickness of 25.4 and 6.4 mm, respectively, and they were
stacked vertically or horizontally. A calibrated thermocouple was used to record the
temperature of the SMA piece.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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