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Abstract 

Objective:  To evaluate the value of ultrasound-based radiomics in the preoperative prediction of type I and type II 
epithelial ovarian cancer.

Methods:  A total of 154 patients with epithelial ovarian cancer were enrolled retrospectively. There were 102 unilat‑
eral lesions and 52 bilateral lesions among a total of 206 lesions. The data for the 206 lesions were randomly divided 
into a training set (53 type I + 71 type II) and a test set (36 type I + 46 type II) by random sampling. ITK-SNAP soft‑
ware was used to manually outline the boundary of the tumor, that is, the region of interest, and 4976 features were 
extracted. The quantitative expression values of the radiomics features were normalized by the Z-score method, and 
the 7 features with the most differences were screened by using the Lasso regression tenfold cross-validation method. 
The radiomics model was established by logistic regression. The training set was used to construct the model, and 
the test set was used to evaluate the predictive efficiency of the model. On the basis of multifactor logistic regression 
analysis, combined with the radiomics score of each patient, a comprehensive prediction model was established, the 
nomogram was drawn, and the prediction effect was evaluated by analyzing the area under the receiver operating 
characteristic curve (AUC), calibration curve and decision curve.

Results:  The AUCs of the training set and test set in the radiomics model and comprehensive model were 0.817 and 
0.731 and 0.982 and 0.886, respectively. The calibration curve showed that the two models were in good agreement. 
The clinical decision curve showed that both methods had good clinical practicability.

Conclusion:  The radiomics model based on ultrasound images has a good predictive effect for the preoperative 
differential diagnosis of type I and type II epithelial ovarian cancer. The comprehensive model has higher prediction 
efficiency.
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Introduction
Ovarian cancer is the deadliest cancer of the female 
reproductive system [1, 2]. Approximately 13,940 women 
in the United States died of the disease in 2020 [3]. 
According to the female reproductive organ tumor classi-
fication system published by the World Health Organiza-
tion in 2014 [4], type I epithelial ovarian cancer includes 
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low-grade serous carcinoma, endometrioid carcinoma, 
clear cell carcinoma, mucinous carcinoma and malig-
nant Brenner tumor. Type II epithelial ovarian cancer 
includes high-grade serous carcinoma, carcinosarcoma 
and undifferentiated carcinoma. Epithelial ovarian cancer 
has the highest fatality rate among malignant tumors of 
the female reproductive system, and different types are 
closely related to prognosis. The overall prognosis of type 
I is good, while that of type II is poor [5]. Therefore, it is 
of great clinical significance to improve the accuracy of 
preoperative diagnosis [3, 6]. Early identification of epi-
thelial ovarian cancer subtypes is of great importance 
[7–9].

Traditional imaging is the main means of detecting 
ovarian tumors [7], but this method largely depends on 
the doctor’s personal experience [10], and some tumor-
specific imaging features cannot be recognized by the 
naked eye, resulting in clinical diagnosis inefficiencies. 
Radiomics is more objective than traditional imaging 
methods. It extracts high-throughput image features 
from traditional medical images to quantitatively analyze 
diseases and provides new insights into the clinical diag-
nosis and treatment of ovarian tumors [11, 12].

Radiomics, first proposed by Lambin et al. in 2012 [11], 
has developed rapidly in recent years [13]. It provides a 
noninvasive method for diagnosing and predicting dis-
eases. Gulshan V et  al. diagnosed diabetic retinopathy 
by analyzing 128,175 retinal images [14–16]. Yin et  al. 

established a radiomics model using MR images and 
effectively identified chordomas, giant cell tumors and 
metastatic tumors before operation [17]. Peng et  al. 
developed a radiomics model for the preoperative rec-
ognition of HCC and non-HCC using ultrasound images 
[18]. It is widely regarded as a step in the development of 
radiomics for personalized cancer management [13].

At present, there is a lack of ultrasound-based radiom-
ics methods for distinguishing different subtypes of epi-
thelial ovarian cancer before surgery [19]; therefore, the 
purpose of this study was to establish and verify an objec-
tive ultrasound-based radiomics evaluation model for 
the preoperative prediction of type I and type II epithe-
lial ovarian cancer. Accurate prediction of tissue classifi-
cation of epithelial ovarian cancer before operation can 
provide more accurate treatment plan for clinic and bet-
ter decision-making for patients.

Materials and methods
Research population
The Ethics Committee of the First Affiliated Hospital of 
Guangxi Medical University approved this retrospec-
tive study (approval number: NO.2022 -KY-E-(056). 
Informed consent was waived. Patients with epithelial 
ovarian cancer diagnosed by pathology after surgery at 
the First Affiliated Hospital of Guangxi Medical Univer-
sity from January 2017 to September 2021 were enrolled 
(Fig. 1). The inclusion criteria were as follows: (1) primary 

Fig. 1  Flow chart of research population screening
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epithelial ovarian cancer; (2) lesions confirmed by opera-
tion and pathology; (3) transvaginal ultrasound exami-
nation of ovaries within 14  days before operation; and 
(4) clear ultrasound images. The exclusion criteria were 
as follows: (1) preoperative anticancer therapy; (2) poor 
image quality; and (3) incomplete clinical data. Finally, a 
total of 154 patients were included, with an average age of 
50.15 ± 10.80 years and a range of 21–76 years.

Instruments and methods of ultrasonic examination
Using a GE Volusion E10 and E8 ultrasonic diagnos-
tic apparatus, the transvaginal probe type was RIC5-9 
Mel D, and the frequency was 5–9  MHz. Transvaginal 
ultrasonography was used to scan ovarian tumors from 

multiple sections and angles to understand the overall 
information. Then, we carefully scanned and observed 
the size, shape and echo of the tumor, selected the largest 
section of the tumor with the clearest imaging, and saved 
the image in medical digital imaging and communica-
tion format to maximize the preservation of the image 
information.

Image segmentation and feature extraction
The image was imported into ITK-SNAP software (ver-
sion 3.8) to manually draw the tumor boundary and 
determine the tumor area of interest (ROI) (Fig. 2). The 
ultrasonographic manifestations of ovarian cancer can be 
divided into two types, one is solid, the other is mixed. 

Fig. 2  Schematic outline of the region of interest (ROI) of epithelial ovarian cancer. A,D,G The biggest section of the ultrasound image of epithelial 
ovarian cancer. B, E, H The red line delineates the ROI along the edge of the lesion. C, F, I Schematic of the cut image. A, B, C show a case of ovarian 
clear cell carcinoma. D, E, F show a case of low-grade serous carcinoma of the ovary. G,H,I show a case of high-grade serous carcinoma of the ovary
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Our standard for drawing ROI is to draw along the edge 
of the tumor, if it is a solid mass, we will outline the whole 
solid part, if it is a mixed mass, we will outline the whole 
edge of the mass, including the solid part and the liquid 
part. All tumor areas of interest were delineated under 
the supervision of an ultrasound doctor with 10  years 
of ultrasound diagnosis experience and another ultra-
sound doctor with 15  years of experience in ultrasound 
diagnosis. Neither ultrasound doctor knew the pathology 
results. Also, 50 images were randomly selected from all 
the images and drawn independently by two doctors to 
evaluate consistency between different observers. 171fea-
tures were selected from 50 images for repeated verifica-
tion. Figure  3 showed the repeatability of standardized 
imaging features through histograms. Using the lower 
bound of 95% confidence interval, the intra-class correla-
tion coefficient of absolute consistency of features (differ-
ence < 0.50; moderate: 0.50–0.75; advantages: 0.75–0.90; 
excellent > 0.90). The bar chart shows that the features 
extracted by the ROI sketched by the two doctors are 
highly repetitive.

IntelligenceFoundry software (GE Healthcare, ver-
sion 1.3) was used to analyze and extract radiomics fea-
tures. Feature types included first-order features (energy, 
mean, skewness, kurtosis, etc.), shape features (minor 
axis length, major axis length, extension, etc.), wavelet 
features and texture features [gray co-occurrence matrix 
(GLCM) features, gray run length matrix (GLRLM) fea-
tures, etc.]. A total of 4976 high-throughput features were 
extracted in this study. The feature parameters extracted 
by the Intelligence Foundry software were based on the 
algorithm provided by the pyRadiomics package, which 
calculates radiomics features according to the feature 

definition described in the Image Biomarker Standardi-
zation Initiative (IBSI) version 2016 [20, 21]. The median 
was used to fill in the missing extracted eigenvalues and 
replace the outliers. The Z-score normalization method 
was used to convert different data into the same order of 
magnitude, and the calculation formula was as follows: 
y = (x μ)/σ, where μ is the mean and σ is the standard 
deviation.

Data preprocessing
Patients with epithelial ovarian cancer were marked with 
different labels according to their histological types. Type 
I epithelial ovarian cancer was labeled "0", and type II 
epithelial ovarian cancer was labeled "1". Then, using the 
method of stratified sampling, patients with two histo-
logical types of epithelial ovarian cancer were randomly 
divided into two groups according to a 6:4 (training 
set:test set) ratio. The training set was used to build the 
model, and the test set was used to verify the effective-
ness of the model.

Ultrasonic parameters
In this study,all patients were diagnosed with GEVolusion 
ultrasound and were examined under the transvaginal 
probe.We collected the important ultrasonic parameters 
of all the pictures in this study, including gain,mechanical 
index,depth,angle. After analysis, we found that these 
important parameters were not statistically significant in 
the two types of ovarian cancer (P > 0.05). (Table 1).

Feature selection
In this study, a total of 4976 features were extracted from 
ultrasound images.To increase the comparability of quan-
titative radiomic features, we performed Z-score nor-
malization for quantitative features in training and test 
sets. In order to reduce the influence of high-dimensional 
features on the model, we use lasso regression method to 
downscale features, and select the optimal feature subset 
through ten-fold cross-validation. (Figs. 4 and 5). Finally, 
seven features with the most differences were obtained 
in this study. The scatter plot showed significant differ-
ences between type I and type II epithelial ovarian cancer 
(Fig. 6). According to the heatmap, the correlation of the 

Fig. 3  showed the repeatability of standardized imaging features 
through histograms. Using the lower bound of 95% confidence 
interval, the intra-class correlation coefficient of absolute consistency 
of features (difference < 0.50; moderate: 0.50–0.75; advantages: 0.75–
0.90; excellent > 0.90). Figure 3 showed that the features extracted by 
the ROI sketched by the two doctors were highly repetitive

Table 1  The ultrasound parameter of the type I and the type II 
are shown in

Variable Type I (n = 89) Type II (n = 117) P

Gain (dB) 6.00 (2.00–10.00) 5.00 (2.00–10.00) 0.248

Mechanical index 0.80 (0.70–1.00) 0.80 (0.70–1.00) 0.820

Depth (cm) 8.00 (7.70–10.10) 8.00 (7.70–10.10) 0.387

Angle (°) 179.00 (178.00–
180.00)

179.00 (178.00–
180.00)

0.255
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seven selected features was small, and the influence of 
multicollinearity was eliminated (Fig. 7).

Image group model and evaluation
The seven radiomics features selected were introduced 
into the classifier to establish a model for evaluating two 
different histopathological types of epithelial ovarian 
cancer. We used six machine learning methods (random 
forest, linear judgment analysis, support vector machine, 
logistic regression, naive Bayesian, limit gradient lift-
ing algorithm) to construct the model learning method 
(Fig. 8). Finally, the method with the highest AUC value 
was selected, and the optimal radiomics model (logistic 
regression model) was established (Fig.  9). Each feature 
was multiplied by its regression coefficient and summed. 
The result was the radiomics score of each patient.

Clinical parameter processing
Basic information (age, BMI), menopausal status, maxi-
mum tumor diameter, serum tumor marker levels, ascites 
and histopathological classification were collected. Serum 
tumor markers included carcinoembryonic antigen, gly-
cosyl antigen 125, glycosyl antigen 153, glycosyl antigen 
199, squamous cell carcinoma-associated antigen, serum 
human chorionic gonadotropin, human epididymal 

Fig. 4  Bottom x-axes represent the value of the parameter Log (λ) of the lasso regression model, top x-axes represent the number of corresponding 
non-zero coefficients, and the ordinate is Binomial Deviance (binary classification anomaly), which indicates the error of the model. There are two 
numerical dotted lines in the picture, the line with the lowest error on the left and the line with few features on the right. We should choose the 
model corresponding to λ with as few variables and errors as possible. The right vertical dashed line is the best value of the logarithm, and the 
number of features corresponding to this value is 7

Fig. 5  Minimum absolute contraction were used to screen the 
optimal features. Bottom x-axes represent the value of λ in the lasso 
regression model, and top x-axes represent the number of non-zero 
coefficients in the corresponding model at this time. With the change 
of the value of λ, the later the coefficient is compressed to 0, the 
more important it is
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epithelial secretory protein 4, alpha-fetoprotein, the 
Premenopausal ROMA index and the Postmenopausal 
ROMA index. The above data were detected within two 
weeks before the operation. The markers selected by the 
LASSO method were analyzed by multivariate analysis, 
and the markers with P < 0.05 were selected to establish 
the prediction model.

Comprehensive model establishment
The selected features were used to construct a radiomics 
model by logistic regression, and a comprehensive pre-
diction model was obtained by combining the radiomics 
score with clinical parameters (Fig.  9). The comprehen-
sive prediction model is displayed in the form of nomo-
gram (Fig.  10). Finally, the test group evaluation model 
was used, and the evaluation indicators were AUC, accu-
racy, sensitivity and specificity. Calibration curves were 
used to evaluate the consistency of the model (Fig.  11), 
and decision curve analysis (DCA) was used to assess the 
clinical significance of the model by quantifying the net 
benefits under different threshold probabilities (Fig. 12).

Statistical analysis
R software (version 3.6.0) and SPSS software (version 
22.0) were used for statistical analysis. For the measure-
ment data of normal distribution, the t test of complete 
random design was used to compare the two samples, 
and the analysis of variance was used to compare several 
independent samples. The variables were summed as the 
mean ± standard deviation (SD). For the skewness dis-
tribution measurement data, the rank sum test was used 
for the progressive nonparametric test, and the variables 

were summed as M (Q1 ~ Q3). The counting data were 
tested by the chi-square test, and the variables are pre-
sented as percentages.

Results
Clinical data
At the end of this study, 154 patients with epithelial 
ovarian cancer were enrolled, with an average age of 
50.15 ± 10.80 years, ranging from 21 to 76 years old. Sev-
enty-three patients (mean age 48.55 ± 12.17 years; range 
24–76  years) were confirmed to have type I epithelial 
ovarian cancer by postoperative pathology; 33 of these 
patients had low-grade serous carcinoma, 20 had clear 
cell carcinoma, 9 had endometrioid carcinoma, and 11 
had mucinous carcinoma. Eighty-one patients (mean age 
51.36 ± 9.50 years; range 21–74 years) were confirmed to 
have type II epithelial ovarian cancer by postoperative 
pathology; 80 of these patients had high-grade serous 
carcinoma, and 1 of these patients had undifferentiated 
carcinoma. Among the 154 patients, 102 had unilat-
eral lesions, and 52 had bilateral lesions; of the 206 total 
lesions, 89 were type I epithelial ovarian cancer, and 117 
were type II epithelial ovarian cancer.

Radiomics data
Among the 154 patients with epithelial ovarian cancer, 
the training set included 93 patients, with 62 unilat-
eral lesions and 31 bilateral lesions. The total number of 
lesions in the training set was 124, and the number of 
type I and type II epithelial ovarian cancer lesions was 
53 and 71, respectively. The test set included 61 patients, 
with 40 unilateral lesions and 21 bilateral lesions. The 

Fig. 6  a show a scatter plot for train. b show a scatter plot for train.test. The scatter plot shows significant differences between type I and type II 
epithelial ovarian cancer. Negative represents type I epithelial ovarian cancer. Positive represents type II epithelial ovarian cancer
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total number of lesions in the test set was 82, and the 
number of type I and type II epithelial ovarian cancer 
lesions was 36 and 46, respectively. The clinical param-
eters of the training set and the test set are shown in 
Table 2. There was no significant difference in the distri-
bution of the clinicopathological features, including age, 
BMI, maximum tumor diameter, serum tumor marker 
levels, HE4, ROMA index, pathological subtypes, meno-
pausal status and ascites, between the two groups.

Radiomics feature extraction
A total of 4976 features were extracted and normalized. 
The features with differences were screened by Lasso 
regression tenfold cross-validation and minimum abso-
lute shrinkage (Figs. 4, 5). Finally, 7 optimal features were 
obtained. The heatmap is shown in Fig.  7. The correla-
tion between features is represented by color. The redder 

the color is, the higher the correlation is. In contrast, the 
bluer the color is, the lower the correlation is. The heat-
map shows that the correlation of the selected seven 
features is very small, eliminating the effect of multicol-
linearity. The scatter plot shows that the seven optimal 
features selected were quite different between type I and 
type II epithelial ovarian cancer (Fig. 6).

Model construction and evaluation
The radiomics model has a high overall classification per-
formance in identifying epithelial ovarian cancer types I 
and II, with AUC values of 0.817 and 0.731 in the training 
set and test set, respectively (Fig. 9).

Combined with the results of multivariate logistic 
regression analysis (Table  3), a comprehensive predic-
tive model was constructed by combining menopausal 
state,ascites, CA125, SCC, HE4, Premenopausal ROMA, 

Fig. 7  The redder the color, the higher the correlation; the bluer the color, the lower the correlation. According to the heatmap, the correlation of 
the seven selected features is small and the influence of multicollinearity is eliminated
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Postmenopausal ROMA and Radiomics score. The 
AUC values in the training set and test set were 0.982 
and 0.886, respectively (Fig.  9). The difference in per-
formance between the simple radiomics model and the 
complete nomogram is statistically significant(P < 0.05).

The nomogram based on the comprehensive prediction 
model is shown in Fig. 10, which quantifies the factors of 
each patient and can be used to predict type I and type 
II epithelial ovarian cancer more intuitively before opera-
tion. The calibration curve shows that the radiomics 

Fig. 8  a show ROC for train. b show ROC for test. Six machine learning methods are used to construct the model (Logit: logistic regression, LDA: 
linear judgment analysis, SVM: support vector machine, RF: random forest, NB: naive Bayesian, XGB: limit gradient lifting algorithm)

Fig. 9  a show ROC for train. b show ROC for test. The red curve represents the radiomics model. The green curve represents the clinical model. The 
blue curve represents the comprehensive model. AUC, area under the receiver-operating-characteristics curve
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model is in good agreement with the comprehensive 
model, as shown in Fig.  11. The decision analysis curve 
shows that both models have good clinical practicability, 
as shown in Fig. 12.

Discussion
The ultrasound images of 154 patients with epithelial 
ovarian cancer were included in this study. The quan-
titative expression values of imaging features were 

Fig. 10  A comprehensive model nomogram is developed for the prediction of EOC type II with rad score, menopausal 
state,ascites,CA125,SCC,HE4,pre ROMA and post ROMA. To use this nomogram, first locate the patient’s rad score, and then draw a line straight up 
to the points axis on the top to obtain the score associated with rad score. Repeat the process for the other covariates (from ascites to post ROMA). 
Add the score of each covariate together and locate the total score on the total points axis just below the last covariate—Bovine arch axis. The 
values of Points corresponding to each variable were all added as the values of Total Points, and the corresponding value of Total Points is the risk 
value for predicting type II epithelial ovarian cancer

Fig. 11  a show calibrate for train. b show calibrate for test.Calibration curves is used to evaluate the consistency of the comprehensive prediction 
model and the radiomics model. The results show that both models have excellent evaluation performance
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normalized with the Z-score method, and the 7 most 
different features were screened by using the Lasso 
regression tenfold cross-validation method. Then, six 
machine learning methods (random forest, linear judg-
ment analysis, support vector machine, logistic regres-
sion, naive Bayesian, limit gradient lifting algorithm) 
were used to construct the model, and the method with 
the highest AUC value was selected to establish the logis-
tic regression radiology model. The AUCs of the training 
group and test group were 0.817 and 0.731, respectively. 
In addition, combined with the clinical indexes of the 
patients, the data regarding serum tumor markers moni-
tored two weeks before operation were collected and 
analyzed by multivariate logistic regression analysis. 
Finally, menopausal state,ascites, CA125, SCC, HE4 and 
Premenopausal and Postmenopausal ROMA were iden-
tified as independent factors. The above indexes were 
combined with the radiomics score to create a compre-
hensive prediction model, and the AUCs in the training 
group and test group were 0.982 and 0.886, respectively. 
The nomogram of this study quantifies the value of each 
factor of the patient and visually shows the efficiency of 
the comprehensive model in predicting two kinds of epi-
thelial ovarian cancer. From the value of AUC, the effi-
cacy of comprehensive prediction model is higher than 
radiomics model. After analysis, the following factors 
were obtained. Firstly, this study collected a lot of clini-
cal indicators, including maximum tumor diameter,as
cites,carcinoembryonic antigen, glycosyl antigen 125, 

glycosyl antigen 153, glycosyl antigen 199, squamous 
cell carcinoma-associated antigen, serum human chori-
onic gonadotropin, human epididymal epithelial secre-
tory protein 4, alpha-fetoprotein, the Premenopausal 
ROMA index and the Postmenopausal ROMA index. The 
two indexes of maximum tumor diameter,ascites came 
from ultrasonic testing. Therefore, these indexes are not 
only simple blood test indexes, but also comprehensive 
indexes of patients’ basic information, blood biochemis-
try and ultrasonic examination. Ultrasound has certain 
advantages in daily work.Ultrasonic operation is con-
venient, simple and non-invasive. It can also monitor 
the size of the mass and the presence of ascites. There-
fore, ultrasound is a common method to detect ovarian 
tumors in clinical work. At the same time, radiomics also 
provides a new evaluation method for clinic, which has a 
certain potential value. In this study, the clinical decision 
curve shows that both the imaging model and the joint 
model are located above the None line and the All line, 
indicating that both models are valuable in predicting 

Fig. 12  Decision curve analysis is used to assess the clinical 
significance of the model by quantifying the net benefits under 
different threshold probabilities. The blue curve represents the 
radiomics model, The red curve represents the comprehensive 
model. Both models have higher clinical benefit values

Table 2  The clinical parameters of the training set and the test 
set are shown in

# The counting data

Pre ROMA, Premenopausal ROMA; Post ROMA, Postmenopausal ROMA

Variable Training set 
(n = 124)

Test set (n = 82) P

Age(years) 50.00 (43.00–56.00) 52.50 (46.00–59.00) 0.114

BMI 22.69 (20.25–25.19) 22.03 (19.92–24.20) 0.161

Maximum diameter 
of tumor (mm)

80.00 (53.00–105.00) 94.50 (57.00–115.00) 0.124

CEA (ng/ml) 1.70 (0.90–2.60) 1.71 (1.12–2.89) 0.431

CA125 (IU/ml) 692.00 (164.50–
1384.6)

561.70 (143.50–
1296.5)

0.431

CA153 (IU /ml) 34.54 (15.50–72.20) 36.35 (16.36–95.05) 0.776

CA199 (IU/ml) 12.28 (4.32–108.44) 17.32 (4.24–73.34) 0.694

SCC (ng/L) 0.70 (0.50–1.10) 0.60 (0.50–1.20) 0.830

HCG (mIU/ml) 0.56 (0.10–1.88) 1.02 (0.10–2.14) 0.149

HE4 172.70 (76.10–
498.50)

159.60 (73.20–
519.90)

0.602

AFP(ng/ml) 2.34 (1.79–3.27) 2.43 (1.58–3.35) 0.983

pre ROMA 69.33 (19.41–96.68) 60.97 (18.34–97.53) 0.630

post ROMA 79.61 (46.90–99.96) 76.96 (45.97–99.84) 0.502

Menopausal.state # 0.993

NO 53 (42.75) 35 (42.68)

YES 71 (57.25) 47 (57.32)

Ascites # 0.309

NO 45 (36.29) 36 (43.90)

YES 79 (63.71) 46 (56.10)

Figo stage # 0.106

I-II 50 (40.32) 24 (29.27)

III-IV 74 (59.68) 58 (70.73)
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the classification of epithelial ovarian cancer, and the net 
return of the combined model is higher than that of the 
radiomics model. Because the progression of type I and 
type II epithelial ovarian cancer is different, it is of clini-
cal significance to correctly predict the two types.

Radiomics, first proposed by Lambin et al. in 2012 [11], 
has developed rapidly in recent years [13]. It provides a 
noninvasive method for diagnosing and predicting dis-
eases and is widely regarded as a step in the development 
of radiomics for personalized cancer management. At 
present, most studies are based on CT and MR images. 
Qian et al. retrospectively analyzed 65 patients with epi-
thelial ovarian cancer using conventional MRI images to 
compare the differences between radiomics models and 
traditional models in identifying early and advanced epi-
thelial ovarian cancer [22]. Zhu et  al. performed a ret-
rospective analysis of 101 patients with ovarian cancer 
based on CT images and established a model to distin-
guish epithelial ovarian cancer from nonepithelial ovar-
ian cancer by radiology combined with a clinical model 
[23]. Compared with the above studies, the purpose of 
our study was more precise, specifically for the preop-
erative prediction of pathological subtypes of epithelial 
ovarian cancer, which may provide a new approach for 
the current accurate medical treatment. In addition, our 
study had more patients and features, including a total 
of 154 patients and extracting 4976 radiomic features. 

Compared with CT and MRI, ultrasound has the advan-
tages of being simple operate and providing real-time 
observation, and it plays an important role in the diagno-
sis and treatment of ovarian tumors [24–26]. Therefore, 
with the remarkable progress of computer technology, 
the attempt to apply artificial intelligence to clinical 
practice has become increasingly feasible, and there will 
certainly be important breakthroughs in the future [13, 
27–30].

However, our research also has some limitations. 
First, all the ultrasound imaging data came from a single 
center, and the study was retrospective, so it was neces-
sary to conduct a multicenter prospective study. Second, 
our study only included epithelial ovarian cancer, exclud-
ing benign, borderline, sex cord interstitial and germ cell 
tumors of the ovary. We will add data on other types of 
ovarian tumors in future studies to optimize the univer-
sality and clinical value of the model. In addition,We are 
also trying to use radiomics to distinguish benign and 
malignant ovarian tumors, hoping that it can provide us 
with new ideas in differential diagnosis.

Conclusions
In summary, we developed and validated a radiom-
ics model based on ultrasound to distinguish differ-
ent histopathological types of epithelial ovarian cancer. 
Thus, it provides clinicians with a new method for the 

Table 3  The markers selected by the LASSO method are analyzed by multivariate analysis

*For log

Pre ROMA, Premenopausal ROMA; Post ROMA, Postmenopausal ROMA

Variable Univariate Multivariate

OR (95%CI) P OR (95%CI) P

Age(years) 1.021 (0.986–1.057) 0.244 –

Height(cm) 0.980 (0.907–1.059) 0.604 –

Weight(kg) 0.999 (0.971–1.028) 0.955 –

BMI 1.003 (0.933–1.077) 0.940 –

Menopausal state 0.987 (0.976–0.999) 0.857 13.347 (2.108–84.522) 0.006

Maximum diameter of tumor 
(mm)

1.103 (0.938–1.298) 0.036

Ascites 22.333 (8.599–58.007) 0.000 189.06 (17.679–2021.839) 0.000

CEA(ng/m)* 1.116 (0.761–1.636) 0.575 –

CA125(IU/ml)* 3.621 (2.315–5.663) 0.000 10.357 (3.543–30.275) 0.000

CA153(IU/ml)* 1.976 (1.342–2.908) 0.001 –

CA199(IU/ml)* 0.939 (0.782–1.128) 0.504 –

SCC(ng/L)* 0.767 (0.4–1.468) 0.422 0.131 (0.032–0.528) 0.004

HCG(mIU/ml.)* 0.928 (0.796–1.081) 0.338 –

HE4* 1.278 (0.954–1.711) 0.100 0.262 (0.097–0.709) 0.008

AFP(ng/ml)* 1.563 (0.868–2.814) 0.137 –

Pre ROMA* 1.602 (1.089–2.358) 0.017 20.908 (2.6–168.14) 0.004

Post ROMA* 2.281 (1.163–4.474) 0.016 0.001 (0–0.097) 0.003
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noninvasive preoperative identification of type I and type 
II epithelial ovarian cancer.
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