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Abstract
Purpose  Respiratory rate can provide auxiliary information on the physiological changes within the human body, such 
as physical and emotional stress. In a clinical setup, the abnormal respiratory rate can be indicative of the deterioration of 
the patient's condition. Most of the existing algorithms for the estimation of respiratory rate using photoplethysmography 
(PPG) are sensitive to external noise and may require the selection of certain algorithm-specific parameters, through the 
trial-and-error method.
Methods  This paper proposes a new algorithm to estimate the respiratory rate using a photoplethysmography sensor signal 
for health monitoring. The algorithm is resistant to signal loss and can handle low-quality signals from the sensor. It com-
bines selective windowing, preprocessing and signal conditioning, modified Welch filtering and postprocessing to achieve 
high accuracy and robustness to noise.
Results  The Mean Absolute Error and the Root Mean Square Error of the proposed algorithm, with the optimal signal 
window size, are determined to be 2.05 breaths count per minute and 2.47 breaths count per minute, respectively, when 
tested on a publicly available dataset. These results present a significant improvement in accuracy over previously reported 
methods. The proposed algorithm achieved comparable results to the existing algorithms in the literature on the BIDMC 
dataset (containing data of 53 subjects, each recorded for 8 min) for other signal window sizes.
Conclusion  The results endorse that integration of the proposed algorithm to a commercially available pulse oximetry device 
would expand its functionality from the measurement of oxygen saturation level and heart rate to the continuous measure-
ment of the respiratory rate with good efficiency at home and in a clinical setting.

Keywords  Photoplethysmography · Respiratory rate · Adaptive estimation · Wearable sensors · Health monitoring · 
Algorithms

1  Introduction

In recent years, respiratory rate (RespR), blood pressure 
(BP) and heart rate (HR) monitoring are considered essen-
tial for continuous and primary assessment of the patient’s 
well-being [1]. The inhalation and exhalation process can 
increase or decrease the blood flow within the body. There-
fore, respiratory rate can be determined by measuring the 
changes in the heartbeats or blood flow [2–5]. There is sig-
nificant evidence in the literature to suggest that irregular 
respiration is an imperative indicator of some serious ill-
ness [6–8]. The normal range of respiratory rate for children 
(1–5 years) is above 24 and less than 40 breaths per min 
while above 5 years, the normal range is between 12 and 25 
breaths per minute. Any deviation from the normal range 
is an indicator of respiratory distress and requires instant 
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clinical intervention [9, 10]. According to the World Health 
Organisation (WHO), elevated respiratory rate is observed in 
the cases of chronic obstructive pulmonary disease, asthma, 
hypoxia, and pneumonia [11, 12].

In hospitals, respiratory rate is monitored using tho-
racic/abdominal plethysmography belts, oral/nasal pressure 
transducers, capnography, and transthoracic impedance 
pneumography [13, 14]. However, these devices are not 
as user-friendly as mobile wearable devices. Most smart-
watches use a photoplethysmography signal to extract only 
the heart rate even though the PPG signal can also be used 
to extract RespR [15, 16]. While algorithms have been pro-
posed in the literature to extract respiratory rates from PPG 
signals, each algorithm has certain limitations. Estimation 
of respiratory rate from a PPG signal can be achieved by 
using digital signal processing (DSP) techniques. Among 
these techniques, digital filters are commonly used to remove 
noise and extract variables of interest from the raw signals. 
However, the performance of DSP filters is highly depend-
ent on the cut off frequency of the filter. Other techniques 
include analytical methods, which are very sensitive to noise 
and result in very poor respiratory rate detection in presence 
of motion artefacts. Time–frequency analysis-based methods 
such as Wavelet transform addresses most of the common 
problems of filtering and analytical methods. It is less sensi-
tive to noise and motion artefacts but requires the selection 
of more than one parameter, such as mother wavelet func-
tion and the total number of decomposition levels, which in 
practice are unknown [17, 18]. A list of various categories 
of respiratory rate estimation methods and their limitations 
is provided in Table 1.

One of the major challenges in respiratory rate esti-
mation from PPG signal is respiratory induced amplitude 
variation [19]. During the inhale cycle, the intra-thoracic 
pressure changes cause decreased stroke volume of the left 
ventricle, which leads to a smaller PPG amplitude. Simi-
larly, during expiration, the left ventricle stroke volume 
increases, which results in increased pulse amplitude. In 

the literature, a variety of methods have been proposed 
for the estimation of RespR from a PPG signal. Liu et al. 
[15] have highlighted the merits and demerits of different 
respiratory rate estimation algorithms. Another key chal-
lenge in developing a respiratory rate extraction algorithm 
is the estimation of optimal window size for the segmenta-
tion of the signal. A shorter time window provides high 
resolution, low computational cost, and better real-time 
performance. In contrast, a longer window size provides 
better estimation accuracy [20]. The proposed algorithm is 
developed considering all the major limitations including 
noise and poor signal quality, the effect of window size, 
and cut-off frequencies of the filters.

For evaluation of the proposed algorithm, the estimated 
respiratory rate is compared with the reference respira-
tion data provided in the publicly available dataset called 
BIDMC dataset. The dataset is available at PhysioNet 
[21] while for filtering and signal process an open-source 
toolkit Heartpy [22] with some modification was used. The 
performance of the proposed algorithm was benchmarked 
using accuracy assessment metrics against published 
results of existing algorithms. The rest of the paper is 
organized as follows: Sect. 2 provides an overview of the 
methods for preprocessing, signal processing and post-pro-
cessing steps of the proposed algorithm; Sect. 3 presents 
a brief discussion of the BIDMC dataset and evaluation 
metrics used to validate the proposed algorithm. Section 4 
shows the results and discussion, while conclusions are 
provided in Sect. 5.

2 � Proposed Algorithm

Figure 1 shows the pre-processing, signal analysis and 
post-processing steps of the proposed respiratory rate 
estimation algorithm.

Table 1   Respiratory rate estimation methods and their limitations

Methods Limitations

Digital method Digital technique (FFT, Welch, Notch) [23, 24] Highly dependent on the selection of cut-off frequencies
Wavelet methods Wavelet transforms [25, 26] Requires the selection of more than one parameter such as the mother 

wavelet function and the total number of decomposition levelsSmart fusion [20]
Adaptive estimations Adaptive respiratory rate estimators [23, 27] Very sensitive to noise and results in very poor respiratory rate esti-

mation if there are any motion artefacts in the signalEmpirical mode decomposition (EMD) [28, 29]
Analytical methods Autoregression [30, 31] Often requires a relatively long time to converge and give an accurate 

estimation of respiratory rateArtificial neural networks [32]
Principal component analysis (PCA) [33]
Complex demodulation [34],
Independent component analysis (ICA) [35]
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2.1 � Pre‑processing Steps

For pre-recorded datasets, there is one additional step of 
signal interpolation included in the pre-processing stage, as 
explained below. All the other steps are shown in Fig. 1 and 
the same for pre-recorded as well as real-time PPG signals.

2.1.1 � Signal Interpolation

The first step in the pre-processing stage for a pre-recorded 
dataset is to extract the raw PPG signal values from the data-
set and reference respiratory rate values. In the literature, 
several techniques have been proposed to address the prob-
lem of a missing signal [36, 37]. The simplest and easiest 
way to tackle this problem is to remove the signal points 
with missing values. However, it is recommended to interpo-
late for missing data as eliminating or inserting zeros causes 
a complete loss of the data (information or signal) [38]. This 
loss of data might play an important role in deriving con-
clusions or in determining any statistical outcome. Thus, 
replacing the missing signal, generally marked as NaN (not 
a number), by the mean value of two neighbouring signal 

samples, might not affect the overall signal behaviour and 
derived conclusions/results can be considered valid [39].

2.1.2 � Digital Filtering

The raw PPG signal has information on heart rate and res-
piratory rate as well as noise. The digital filtering method is 
used to remove the noise and extract the relevant informa-
tion. The raw PPG signal is passed through a bandpass But-
terworth filter to allow only the frequencies within the range 
of minimum and maximum respiratory rate (i.e., 0.1–0.4 Hz 
or 6–24 breaths per minute), as shown in Fig. 2.

2.1.3 � Peak Enhancement

To enhance the signal to noise ratio and to get better detec-
tion of the peaks, the algorithm performs peak enhancement 
using the peak enhancement algorithm. This is a crucial 
step as all the further calculations will be dependent on the 
detected peak. Thus, accurate detection of peaks will play 
a significant role in this algorithm. This function makes the 
higher peaks more dominant while suppressing the smaller 
peaks, for better detection of the peaks. This function scales 

Fig. 1   Pre-processing, Signal 
analysis and Post-processing 
steps of the respiratory rate 
estimation algorithm
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the signal to the specified lower and upper range. The for-
mula is as in Eq. (1):

where Penh is peak enhancement, x is the raw signal, rb is the 
range of upper limit and l_lt (lower limits), given by the user 
(by default it is set at 1024 and 0, respectively). The range(x) 
is a valued range calculated by subtracting the maximum 
value of the analysed signal from the minimum value.

2.1.4 � Outlier Detection

Most of the time, PPG devices have loose contact with 
the body causing abrupt changes, possibly due to sudden 
moves of the finger or by other unknown reasons, in the raw 
signal. Outlier detection function is required to eliminate 
these baseline abrupt changes. These changes could not be 
completely removed by general digital filters as they contain 

(1)Penh = rb ∗ ((x − min(x))∕range(x)) + l_lt

wide-band frequency components. In the developed algo-
rithm, the outlier can be removed using the Hampel filtering 
technique [40, 41].

The goal of the Hampel filter is to identify and replace 
outliers in each window analysed. It uses a sliding window 
of configurable width to go over the signal. The median and 
the standard deviation is calculated for each window, of x 
seconds, and expressed as the median absolute deviation 
(MAD). For each sample of x, the algorithm computes the 
median of a window composed of the sample and its six sur-
rounding samples (if window size = 6), three per side. If a 
sample differs more than the median + three standard devia-
tions, it is replaced with the median. As the algorithm uses 
6 neighbouring samples (data point + 3 per side) to cover 
most of the signal, only the last three sample/data points are 
left at the end.

To ensure those points are included for outlier detec-
tion, three points (mean value of the signal) are padded at 
the end of the signal. The sliding window is moved until 

Fig. 2   Extraction of respiratory rate signal from raw PPG signal. 
a shows the raw PPG signal imported from the dataset b is the fre-
quency domin signal of the same raw PPG signal (clipped to fre-
quency = 5  Hz) c illustrates the filtered signal passed through band 

pass butterworth filter with cutoff frequency of 0.1–0.4 Hz while d is 
the frequency domain representation of the filtered signal. Note that 
only the frequencies between 0.1 and 0.4 are passed and all other are 
blocked (showing flat line)
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the last sample of the signal. Figure 3 shows a sample 
example of how outlier removal works. Figure 3a exem-
plifies an outlier present in a PPG signal, Fig. 3b demon-
strates padding of additional three-points in a PPG signal 
while Fig. 3c shows the output of the Hampel filter and 
interpolated PPG signal after the removal of the outlier.

2.1.5 � Entropy‑Based Signal Quality Index (ESQI)

One of the objectives of the proposed algorithm is to 
accurately extract the respiratory rate even from a low-
quality signal. Entropy Signal Quality Index (ESQI) scor-
ing was proposed by Selvaraj et al. [42]. It quantifies the 
difference of the probability distribution (PDF) of raw 
signal from the uniform (normal) distribution and pro-
vides a measure of uncertainty present in the analysed 
signal [43]. The equation to calculate ESQI is as:

In Eq. 2, x is the raw PPG signal and N is the num-
ber of points within the analysed raw PPG signal. The 
signal quality assessment revealed that for some portion 
of the signal, x[i]2 → 0(no or fewer fluctuations) then 
loge

(
x[i]2

)
→ nan . Thus, the ESQI value returns as unde-

fined. The algorithm skips the further computation for 
respiratory rate estimation if the ESQI is undefined (nan).

(2)ESQI = −

N∑

i=1

x[i]2loge
(
x[i]2

)

2.2 � Signal Analysis and Respiratory Rate Estimation

2.2.1 � Peak Detection

The next step is to analyse the signal. The algorithm detects 
peaks within the peak enhanced signal. This is a crucial 
step as all the further calculations will be dependent on the 
detected peak. Once peaks are detected, the algorithm calcu-
lates the systolic peak interval or RR interval. Peak detection 
can be done by using a moving average. An intersection 
threshold is made, and Region of Interest (ROI) is selected 
between two intersection points where the signal amplitude 
is the highest, as shown in Fig. 4a. If the raw PGG signal had 
a clipped signal, the algorithm uses cubic spline interpola-
tion to interpolate the missing signal before peak detection 
which is shown in Fig. 4b. The red circles in Fig. 4a marks 
ROI and two intersecting points are used to determine the 
peak while in Fig. 4b they show the clipped signal (in blue) 
and cubic spline interpolated signal (in black).

2.2.2 � Respiratory Rate Estimation

The peak detection algorithm may also detect some false 
peaks [44, 45]. The proposed algorithm ensures that the 
algorithm detects only true peaks by removing the false 
peaks. The peak is considered to be a false peak if the R–R 
interval between two adjacent R-peaks is less than 30% of 
the mean R–R interval of the analysed signal, as mentioned 
in [22] and any false peak is dropped. The R–R intervals 
are calculated again after dropping any false peaks. The 
new values of the RR interval are then used to calculate 

Fig. 3   Outlier removal using Hampel filter with window size = 6
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different time-series measurements. These measurements 
include heart rate in beats per minute (BPM), RR-intervals 
or inter-beat interval (IBI) and estimated respiratory rate 
in breaths per min. The respiratory rate is calculated using 
Welch’s method [46, 47]. Welch’s method divides the inter-
beat intervals (signal) into overlapping segments and com-
putes a modified periodogram for each segment. Then an 
average of all periodograms along with an array of frequen-
cies are returned at the output. The respiratory rate is the 
maximum frequency within the frequency band (Hz) that is, 
where PSD is maximum. To calculate the final respiratory 
rate (RespR) the frequency is multiplied by 60 to convert the 
respiratory frequency band from Hz to breaths per minute. 
Mathematically it is represented as,

In Eq. 3, f is the frequency while P is power spectral 
density calculated by the welch method. Table 2 describes 
the parameters initialization values used in the proposed 
algorithm.

2.3 � Post‑processing Steps

Usually, the PPG waveform varies in-synchrony with the 
respiratory cycle [48]. During the inhale cycle, the intra-
thoracic pressure changes causing decreased stroke volume 

(3)RespirationRate = f × ������
i

P(i) × 60

of the left ventricle, which leads to a smaller amplitude 
(PPG) pulse. Similarly, during expiration, the left ventricle 
stroke volume increases, which increases the pulse ampli-
tude. This phenomenon is known as amplitude modulation 
of cardiac synchronous pulsatile waveform or respiratory 
induced amplitude variation [19].

As in the prior stages, the proposed algorithm does not 
account for amplitude variation, due to active filtering and 
peak enhancement steps, which is essential for accurate peak 
detection; In the post-processing stage, the estimated res-
piratory rate is scaled based on the variation (changes) in 
the amplitude of the PPG signal. The scaling is essential 
as the proposed (and most of the existing algorithms) does 
not account for amplitude variation in the pre-processing 
stage. Thus, a separate scaling is applied to the estimated 
respiratory rate. This scaling factor depends on the range 
(difference between maximum and minimum value) of the 
signal and defined window size (of x seconds).

The proposed scaling method is generalisable and can 
work for a variety of PPG datasets. Nevertheless, there might 
be scenarios where some fine-tuning may be required for 
better estimation. As the last step, the algorithm makes sure 
the estimated values of the respiratory rate are within a spe-
cific threshold and do not exceed the maximum physiologi-
cally possible breathing rate.

3 � Validation of Proposed Algorithm

To validate the proposed algorithm and assess its perfor-
mance, a publicly available dataset, known as Berth Israel 
Deaconess Medical Centre (BIDMC) dataset, was used. 
The proposed algorithm was applied to the PPG data in 
the BIDMC dataset for estimation of respiratory rate and 
the performance was benchmarked against various existing 
algorithms using the most common performance evaluation 
metrics.

Fig. 4   Peak detection and interpolation of the clipped signal

Table 2   Welch filter parameters for determining respiratory rate

S. No Parameter Value/Method

1 Sampling frequency 125
2 Window Hann Window
3 Number of overlapping points 50%
4 Length of FFT Length of data
5 Scaling Density
6 Averaging periodogram Mean
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3.1 � BIDMC Dataset Overview

The dataset consists of the electrocardiogram (ECG), 
photoplethysmogram (PPG) and impedance pneumogram 
respiratory signals of patients in the intensive care unit at 
Berth Israel Deaconess Medical Centre (BIDMC), Bos-
ton, USA [21, 49]. The presented dataset was proposed to 
evaluate the performance of any newly developed respira-
tory rate algorithm and reflect its potential usability in a 
real-world critical care environment. Table 3 shows the 
key statistical features of the BIDMC dataset. The data-
set is comprised of 53 patients’ recordings, each of 8-min 
duration, containing:

•	 Physiological signals; were sampled at 125 Hz.
•	 Physiological parameters; such as respiratory rate, blood 

oxygen saturation levels and heart rate sampled at 1 Hz.
•	 Age and gender; are fixed parameters.
•	 Manually annotated individual breaths, annotated inde-

pendently by two researchers.

3.2 � Performance Evaluation Metrics

For evaluation of the developed algorithm, Mean Abso-
lute Error (MAE) and Root Mean Square Error (RMSE) 
metrics were used, and the performance of the proposed 
algorithm was compared with existing algorithms.

•	 The mean absolute error (MAE) is an average measure 
of difference (error) between the reference value and the 
algorithm’s estimated value of that observation. Math-
ematically, MAE is calculated using Eq. 4 and is as fol-
lows:

(4)MAE =
1

N

∑N

i=1
|
|xi − x̂i

|
|

where xi is reference value and x̂i is an estimated value 
of the signal and N is the total number of samples in the 
signal.

•	 The root means square error (RMSE) is a square root of 
the mean of the square of estimation error. The RMSE 
shows the standard deviation of the estimation error and 
is considered a good measure of accuracy. Equation 5 
illustrates RMSE mathematically.

where xi is reference value and x̂i is an estimated value of 
the signal and N is the total number of samples in the signal.

In Eqs. 4 and 5, the reference value denotes the real res-
piratory rate reported in the BIDMC dataset while the esti-
mated value denotes the calculated respiratory rate.

4 � Results and Discussion

To estimate the respiratory rate and perform estimation error 
analysis, data of 51 patients in the BIDMC dataset were 
used, discarding the two outliers mentioned in Table 3. The 
two patients that are excluded in this study are patient 13 
and patient 33. Reference respiratory rate values of patient 
13 are missing in the dataset while the raw data of patient 33 
are too distorted to extract any meaningful information. The 
respiratory rate was calculated using window sizes of 10, 
20, 30, 45, 60, 90, and 120 s, defined at pre-processing step. 
For comparison of the developed algorithm with other state-
of-the-art algorithms [20, 49–51], a window size of 32 and 
64 s was also used to estimate the respiratory rate to match 
the window sizes with the previously published algorithms.

The smaller window size yields less processing and com-
putation time, but it can give inaccurate readings of respira-
tory rate. While using a larger window size, the overall accu-
racy of the estimation can be improved but it is difficult to 
estimate the lowest detectable respiratory rate [20]. Thus, a 
careful trade-off is needed while selecting any specific win-
dow size for the analysis.

4.1 � Performance Evaluation

The proposed algorithm was able to estimate the respiratory 
rate accurately for all the subjects within the BIDMC dataset 
excluding subject 18, see supplementary tables S1 and S2. 
Figure 4 shows the error in the estimation of respiratory 
rate using different window sizes with and without Entropy-
based signal quality (ESQI) assessment. ESQI is generally 
used in off-line data processing to select good quality signals 
from raw data, and it improves estimation accuracy, as the 
poor-quality data is rejected. However, ESQI will result in 

(5)RMSE =

√
1

N

∑N

i=1
|
|xi − x̂i

|
|
2

Table 3   Key statistical features of the respiratory rate in BIDMC 
dataset (unit = breaths per minute)

N Validated 53
Outlier 2 (Subject 13 and 33)

With outlier Without outlier
Mean 17.42 17.63
Median 17.89 17.89
Standard Deviation 3.22 2.62
Variance 10.39 6.86
Minimum 3.71 10.47
Maximum 24.67 24.67
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loss of data in online/real-time applications and may not be 
applicable in many cases. In this study, ESQI is performed 
to assess the estimation result of the proposed algorithm 
and determine whether the proposed algorithm can pro-
duce acceptable results without ESQI or not. The MAE and 
RMSE values (in terms of breaths counts per minute) are 
close to each other endorsing the claim of accurate estima-
tion of respiratory rate even using a low-quality signal.

From Fig. 5, it can also be noticed that the minimum 
mean absolute error (MAE) and root mean square error 
(RMSE) is achieved by using a window size of 90 s for all 
the subjects. The error rate continues to decrease till window 
size = 90 s (highlighted by the red box) and increases for a 
window size of 120 s.

4.2 � Selection of Best Window Size

The best window size for respiratory rate estimation varies 
subject to subject. In the real-world scenario, the user can 
calibrate the respiratory rate monitoring device beforehand 
by taking regular breaths and manually entering it into the 
device. The device will then compare the estimated respira-
tory rate with the manually entered value and determine the 
suitable window size for respiratory rate estimation.

When MAE and RMSE are calculated using the best 
window size for each subject, the overall error decreases 
from 3.32 (breaths count per minute) and 3.67 (breaths 
count per minute) to 2.15 (breaths count per minute) and 
2.56 (breaths count per minute) (without any signal quality 
assessment) while from 3.29 (breaths count per minute) 
and 3.59 (breaths count per minute) to 2.05 (breaths count 
per minute) and 2.47 (breaths count per minute) (with 

ESQI assessment), respectively, as shown in Table 4. This 
improvement results in an over 35% reduction in mean 
estimation error.

4.3 � Comparison with State‑of‑the‑Art Respiratory 
Rate Estimation Algorithms

The performance of the proposed algorithm was compared 
with Karlen et al. [20], Pimentel et al. [49], Nilsson et al. 
[50] and Fleming et al. [51]. These algorithms are repre-
sentative of key studies that are either state-of-the-art or 
being considered benchmark investigations. Table 5 shows 
the values of MAE for each algorithm using a window size 
of 32 and 64 s. The proposed algorithm gives compatible 
accuracy to the existing algorithms with the MAE of 3.97 
(breaths count per minute) and 3.35 (breaths count per 
minute) for each window, respectively. The algorithm also 
gives the lowest MAE value i.e., 2.05 if the best window 
size for each subject is used.

Fig. 5   Error analysis of estimated respiratory rate (breaths count per minute) using different window sizes, with and without ESQI

Table 4   Error in respiratory rate estimation using 90 s and best-suited 
window sizes (unit for MAE and RMSE = breath counts per minute)

Metrics (without ESQI criteria) Metrics (with ESQI criteria)

Window 90 s Best suited Window 90 s Best suited

MAE 3.32 2.15 MAE 3.29 2.05
RMSE 3.67 2.56 RMSE 3.59 2.47
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5 � Conclusion

In this paper, we proposed an algorithm to extract the res-
piratory rate from a PPG signal. The algorithm is based on 
three steps that are pre-processing, signal analysis, and post-
processing. In the pre-processing stage, the signal is ana-
lysed for required signal extraction, filtration of the signal 
above and below the expected range, and peak enhancement 
for increasing the signal to noise ratio. In the signal analysis 
stage, peak detection, peak to peak interval, error in peak 
detection and correction, updated peak to peak interval, 
calculation of different time-series measurements and esti-
mation of respiratory rate is done. As the amplitude of the 
PPG signal is affected by respiratory rate, in the final stage, 
scaling is performed based on amplitude variation.

For the validation of the proposed algorithm, we used the 
BIDMC signal set and calculated the mean absolute error 
and root mean squared error. One of the aims of this study 
was to determine the impact of different window sizes on 
the calculation of respiratory rate in real-time. The results 
in Fig. 4 suggest that a window size of 90 s is best for esti-
mation of respiratory rate using the BIDMC signal set, as 
it gives minimum MAE and RMSE values. The best win-
dow size to estimate the respiratory rate differs from person 
to person. If the best window size for each subject is used 
for the error analysis, then the maximum MAE and RMSE 
of our algorithm decrease to 2.05 (breaths count per min-
ute) and 2.47 (breaths count per minute), respectively (see 
Table 4).

In the future, the scaling technique will be improved 
which will eventually improve the estimation accuracy 
furthermore. The scaling value is the only hyperparameter 
that might need to be determined empirically. The default 
method of scaling does work for most of the PPG data but 

may require improvement in some cases. To solve this 
problem, the algorithm needs to be evaluated on different 
datasets to determine a more generalizable scaling value to 
estimate the respiratory rate accurately.

The developed algorithm can estimate the respiratory rate 
from the PPG signal collected through a pulse oximeter to 
provide a simple, cheap, and signal-sensor solution. Integra-
tion of the proposed algorithm to a commercially available 
pulse oximetry device would expand its functionality from 
the measurement of oxygen saturation level (SpO2) and 
heart rate to the continuous measurement of the respiratory 
rate with great efficiency in the clinical setting as well as in 
the ambulatory home-based environment.

Appendix

In the supplementary files, Fig. S1 to Fig. S9 shows the 
Bland–Altman plot of all the subjects using a window size of 
10, 20, 30, 32, 45, 60, 64, 120 and best window in seconds. 
According to the United States Food and Drug Administra-
tion (FDA), repeated measurements through a device must 
lie within the allowed 3Ϭ (± 3* standard deviation) range to 
be classified as a Class II medical device [52]. In the pro-
posed case, the bias values of all the Bland–Altman plots in 
the supplementary files are near zero while 95% of the data 
lies within the limits of agreement (± 1.96 * standard devia-
tion), Tabulated in Table A1. These results endorse that the 
developed algorithm can estimate respiratory rate close to 
the reference respiratory rate and thus can be implemented in 
the commercially available devices that collect PPG signals 
for long-term continuous respiratory rate measurements.

Table 5   Comparison of proposed respiratory rate estimation algo-
rithm: Mean Absolute Error (MAE) and Window Sizes

a Calculation is done using best window size for each subject; see 
Table S2 (in supplementary file)

Algorithm MAE (breaths count 
per minute)

Window size

Karlen et al. [20] 5.80 32
Pimentel et al. [49] 4.00
Nilsson et al. [50] 5.40
Fleming et al. [51] 5.20
Proposed 3.97
Karlen et al. [20] 5.70 64
Pimentel et al. [49] 2.70
Nilsson et al. [50] 4.60
Fleming et al. [51] 5.50
Proposed 3.35
Proposed 2.05 Best window sizea

Table A1   Bland–Altman plot: bias values along with upper and lower 
limits of agreement

The negative bias value indicates the average reference respiratory 
rate was higher than the average estimated respiratory rate

Window size Bias value Standard 
deviation of 
bias

Limit of agree-
ment

Lower Upper

10 3.49 6.90  − 10.03 17.01
20 2.38 5.69  − 8.77 13.52
30 1.62 4.99  − 8.06 11.40
32 1.55 4.91  − .07 11.17
45 0.87 4.72  − 8.38 10.13
60 0.38 4.63  − 8.68 9.45
64 0.21 4.56  − 8.73 9.15
90 − 0.45 4.47  − 9.20 8.31
120 − 1.60 4.20  − 9.83 6.64
Best window sizes 0.25 3.11  − 5.84 6.35
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