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ABSTRACT

Background: Urinary tract infection (UTI) is a common disease in sows due to intensification of
pig production. Despite direct economic losses, UTl prevalence and respective microbial

identification are still poorly studied.

Objective: The aims of this study were to identify the causative agents of UTI in sows through
MALDI-TOF MS and to characterize their antimicrobial resistance profiles.

ARTICLE HISTORY
Received 17 July 2017
Accepted 23 October 2017

KEYWORDS
Porcine; swine; urine;
infection; MALDI-TOF;

Materials and Methods: Urine samples from 300 sows of three herds from Sao Paulo State
(Brazil) were screened for UTI; suggestive samples were submitted to bacterial isolation. Species
identification was performed by MALDI-TOF MS and susceptibility profiles were determined
using disc diffusion method.

Results: 128 samples suggestive of UTI were analyzed; 48% of the animals presented UTI caused
by a single pathogen, while the remaining 52% presented mixed infection. Escherichia coli stood
out with the highest frequency among both single and mixed infections. The Gram-positive
were exclusively associated with 27% of single infections. The mixed infections were further
classified into 49 profiles. The high frequency of multiresistant profiles stood out for most of the
studied isolates.

Conclusions: MALDI-TOF MS enabled the identification of rare pathogens related to UTI which
may represent higher risk for porcine health, especially considering high frequency of

antimicrobial resistance

multiresistant profiles.

1. Introduction

The intensification of pig production over the last few
decades has led to a high degree of system productiv-
ity. However, it has also increased the infection pres-
sure and, consequently, the manifestation of different
diseases. Among the most common diseases, urinary
tract infection demands attention. The pathogenic col-
onization of the urinary tract by one or more microor-
ganisms, which can affect both lower and upper
urinary tract, can further evolve to invasion with bac-
teremia and even sepsis (Merlini and Merlini 2011).

Considering that females are more predisposed to
urinary tract infection (UTI), the economic losses from
UTI in pig herds are significantly associated with sow
health: UTI associated with postparturient urogenital
disease decreases the farrowing rate and increases
abortion and sow mortality (Biksi et al. 2002; Drolet
and Dee 2006). Nevertheless, data on UTI prevalence
and respective microbial identification are still
limited.

In Brazil, the UTI incidence in commercial herds has
been reported varying from 30% to 45% (Sobestiansky
et al. 1995; Alberton et al. 2000; Porto et al. 2004).
Some of the main listed causative agents are Escheri-
chia coli, Actinobacullum suis, Streptococcus sp., Staphy-
lococcus sp. and Klebsiella sp. (Porto et al. 2004; Brito
et al. 2004; Menin et al. 2008; Merlini and Merlini 2011).

Thus, the wide variety of pathogens associated with
infection and the economic losses inherent to it rein-
forces the need to implement a specific, rapid and low-
cost method for microbial identification. Furthermore,
the identification of antimicrobial resistance profiles is
of great importance for treatment choice and resis-
tance monitoring in swine herds.

Therefore, the aim of this study was to identify the
causative agents of urinary tract infection in sows
through MALDI-TOF MS (Matrix Assisted Laser Desorp-
tion lonization — Time of flight mass spectrometry) and
to characterize their respective antimicrobial resistance
profiles.
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2. Material and methods
2.1. Sample collection and UTI screening

Three hundred urine samples from sows of three full
production cycle swine herds were analyzed. The
herds, selected by their history of recurrent urinary
infection, were located in different cities from Sao
Paulo State (Brazil) and were populated by the same
genetic lineage (Landrace, Large White and Pietrain
crossbred). Sows’ midstream urine samples were taken
in using a sterile universal sample collector after spon-
taneous micturition in the first hour of morning. The
urine samples with characteristics suggestive of urinary
tract infection based on dipstick test screening results
(leukocyturia, nitrite presence, proteinuria and pH
> 7.5) were selected for further analysis.

2.2. Bacterial isolation

The urine samples (10 mL) were centrifuged at 4,000 x
g for 10 min and the obtained pellet was plated in Mac-
Conkey, Chromagar Orientation™ and blood agar (5%
defibrinated sheep blood) (Difco-BBL, Sparks, MD,
USA). The agar plates were incubated under aerobic
and microaerophilic conditions for 24-48 h at 37 °C.
Each colony of interest was maintained at —86 °C in
brain-heart infusion (BHI) medium (Difco, Sparks, MD,
USA) with 30% of glycerol, supplemented with fetal
calf serum (5%) when necessary for fastidious patho-
gens, for further analysis.

2.3. Bacterial identification

The selected colonies were initially screened by matrix-
assisted laser desorption ionization—time of flight mass
spectrometry (MALDI-TOF MS) identification. MALDI-
TOF MS sample preparation, data processing and anal-
ysis were done as previously described by Hijazin et al.
(2012). Mass spectra were acquired using a Microflex™
mass spectrometer (Bruker Daltonik) and identified
with manufacturer’s software MALDI BioTyper™ 3.0.
Standard Bruker interpretative criteria were applied;
scores > 2.0 were accepted for species assignment
and scores > 1.7 but < 2.0 for genus identification.

For the species confirmation, specifically for the
strains from Streptococcus, Aerococcus, Globicatella and
Corynebacterium genus, 16S rRNA gene sequencing
was performed using Twomey et al. (2012) primers.
The obtained sequences were compared to the Gen-
Bank nucleotide non-redundant database through
BLAST analysis.

2.4. Antimicrobial susceptibility profiling

Susceptibility profiles were determined using disc
diffusion method according to the standardized

VET01-A4 supplement (CLSI 2013). The antimicrobial
agents tested included: ampicillin (10 ng), ceftiofur
(30 ug), sulfisoxazole (300 pg), trimethoprim-sulfa-
methoxazole (1.25/23.75 ug), tetracycline (30 wug),
enrofloxacin (5 ug), florfenicol (30 1g), spectinomycin
(100 wg), and gentamycin (10 ng); for Gram-negative
pathogens were also included amoxicillin/clavulanic
acid (20/10 wg), nalidixic acid (30 wg), norfloxacin
(10 pnq), ciprofloxacin (5 ©g) and streptomycin (10 1g),
while the Gram-positive bacteria were also tested for
penicillin (10 U), doxycycline (30 ug), neomycin
(30 ), clindamycin (2 g) and tilmicosin (15 ©Qg).

As quality control, the Escherichia coli ATCC 25922
and Staphylococcus aureus ATCC 25923 reference
strains were used. The interpretative breakpoints were
obtained in the supplements VETO1S (CLSI 2015),
VETO06 (CLSI 2017) and M100-519 (CLSI 2009).

2.5, Statistical analysis

The mixed infections were classified into profiles con-
sidering the identified species. The resistance profiles
were determined according to the observed results
(susceptible, intermediary, resistant) for the studied
antimicrobials. The cluster analysis for both mixed
infection and resistance profiles was performed with
Bionumerics 7.6 (Applied Maths NV, Sint-Martens-
Latem, Belgium); profiles were analyzed as categorical
data using different values coefficient and Ward
method. The multiresistance was determined accord-
ing to Schwarz et al. (2010).

Table 1. Infection characterization of studied urine samples
with characteristics suggestive of urinary tract infection.

Herd
Bacterial infection N (%) H1 H2 H3
One species 62 (48,4) 17 (54.8) 28 (38.9) 17 (68.0)
Two species 39 (30.5) 9(29.1) 24 (33.3) 6 (24.0)
Three species 25(19.5) 5(16.1)  18(25.0) 2(8.0)
Four species 2(1.6) 0 2(2.8) 0
Total 128 (100) 31 (100) 72 (100) 25 (100)

Table 2. Bacterial species associated with single urinary
infection.

Herd

Species N (%) H1 H2 H3

Escherichia coli 44 (71.0) 6(353) 23(82.1) 15(88.2)
Streptococcus hyovaginalis 6(9.7) 6(353) - -
Enterococcus faecalis 3(48) 2(11.8) - 1(5.9)
Enterococcus faecium 2(3.2) - 1(3.6) 1(5.9)
Globicatella sulfidifaciens 232 1(59 1(3.6) -
Aerococcus viridans 1(1.6) - 1(3.6) -
Corynebacterium confusum 1(1.6) 1(5.9) - -
Providencia rettgeri 1(1.6) - 1(3.6) -
Streptococcus dysgalactiae 1(1.6) - 1(3.6) -
Streptococcus pluranimalium 1(1.6) 1(5.9) - -
Total 62 (100) 17 (100) 28(100) 17 (100)
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Figure 1. Mixed infections cluster analysis with identification and characterization of infection profiles. The colors indicate the herd

of origin (green — H2, red — H1, blue — H3).
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Table 3. In vitro resistance rates of Gram-negative pathogens Table 4. Gram-negative pathogens resistance profile distribu-

(N=116) = N (%). tion according to the number of resistant antimicrobial classes.
Antimicrobial Susceptible  Intermediary  Resistant Resistance profile
Amoxicillin/clavulanic acid 99 (85.3) 15 (12.9) 2(1.7) Species 1-2 3-4 >5 Total
Ampicillin 31(26.7) 1(0.9) 84 (72.4) classes classes classes
Ceftiofur 102 (87.9) 11 (9.5) 3 (2,6) Acinetobacter _ 3 ('I 00) _ 3 (100)
Sulfadimethoxine 1(0.9) 4(3.4) 111 (95.7) calcoaceticus
Trimethoprim/ sulpham?®. 31(26.7) 3(2.6) 82 (70.7) Acinetobacter Iwoffi 1(25.0) 3(75.0) _ 4(100)
Tetracycll.ne 15(12.9) 10 (8.6) 91(784) Acinetobacter schindleri 1 (50.0) 1 (50.0) - 2 (100)
Norfloxacin 70(60.3) 12(103) 34(29.3) Acinetobacter towneri  1(200) 4 (80.0) - 5 (100)
Enrofloxacin 35(302) 27(233) 54 (46.6) Escherichia coli 2(20)  42(420) 56(56.0) 100 (100)
Clproﬂ(_)xacm 63 (54.3) 24 (20.7) 29 (25.0) Proteus vulgaris _ 1(100) _ 1(100)
FIorfeplcoI ) 15 (129) 3 (26) 98 (845) Providencia rettgeri _ 1 (100) _ 1 (100)
Spectlnomycm 85 (733) 11 (95) 20 (17.2) Total 5 (43) 55 (474) 56 (483) 116 (100)
Streptomycin 12 (10.3) 45 (38.8) 59 (50.9)

? Trimethoprim/sulphamethoxazole.
. -
] P E

L
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Figure 2. Resistance profiles cluster analysis of studied Gram-negative pathogens. The grey scale (black, grey and white) corre-
sponds to resistant, intermediate and sensitive status, respectively. The colored squares indicate the different Gram-negative bacte-
rial species.



Table 5. In vitro resistance rates of Gram-positive pathogens (N
=108) - N (%).

Antimicrobial Susceptible Intermediary Resistant
Penicillin 59 (54.6) 6 (5.6) 43 (39.8)
Ampicillin 60 (55.5) 3(2.8) 45 (41.7)
Ceftiofur 60 (55.5) 6 (5.6) 42 (38.9)
Tetracycline 52 (48.1) 6 (5.6) 50 (46.3)
Enrofloxacin 42 (38.9) 16 (14.8) 50 (46.3)
Sulfadimethoxine 79 (73.1) 3(2.8) 26 (24.1)
Trimet/sulfamet® 65 (60.2) 1(0.9) 42 (38.9)
Florfenicol 50 (46.3) 12(11.1) 46 (42.6)
Clindamycin 57 (52.8) 13 (12.0) 38 (35.2)
Gentamycin 46 (42.6) 3(2.8) 59 (54.6)
Neomycin 55 (50.9) 3(28) 50 (46.3)
Spectinomycin 55 (50.9) 18 (16.7) 35(32.4)
Tylosin 39 (36.1) - 69 (63.9)

? Trimethoprim/sulfamethoxazole.

3. Results

A total of 128 urine samples with characteristics sug-
gestive of urinary tract infection were analyzed. Among
these, 31 samples originated from herd 1 (H1), 72 from
herd 2 (H2) and 25 from herd 3 (H3). 48% (62/128) of
the animals presented urinary infection caused by a
single pathogen, while the remaining 52% (66/128)
presented mixed infection. Two to four different bacte-
rial species were isolated from samples of animals pre-
senting mixed infection (Table 1).

Seven Gram-negative and 25 Gram-positive species
associated with urinary infection were identified in this
study (Table S1). Among the bacterial species isolated
from single infection (Table 2), Escherichia coli stood
out with the highest frequency (71% - 44/62) and
Gram-positive agents were isolated in 27% (17/62) of
single infections, in which Streptococcus hyovaginalis
predominated (35%).

Considering the animals with mixed infections, E.
coli was present in 85% (56/66), of which 93% (52/56)
were associated to a Gram-positive bacterial species.
Only 12% (8/66) of mixed infections were caused exclu-
sively by Gram-positive bacteria. The mixed infections
were further classified into 49 profiles (P1 - P49)
(Figure 1). The higher frequency profiles were com-
posed of A. viridans and E. coli (P8) (9%), E. coli and E.
faecalis (P5) (6%), and E. coli and E. faecium (P15), pres-
ent in at least two of the studied herds (6%) (Figure 1).

In regard to the antimicrobial susceptibility of Gram-
negative pathogens, high resistance rates were
observed for tetracycline (78.4%), florfenicol (84.5%), sul-
fonamides (95.7% and 70.7%) and streptomycin (50.9%)
(Table 3). Among the 116 Gram-negative isolates stud-
ied, multiresistance was detected in 95.7% (Table 4).
Most E. coli isolates were classified as multiresistant
(98%) and even though Acinetobacter spp. isolates were
also multiresistant, they presented susceptibility to
B-lactams and tetracycline (Table 4, Figure 2).

The resistance profiles cluster analysis enabled the
differentiation of three main groups in which the first is
composed of most of Acinetobacter species and P. vulga-
ris, while the second consists mainly of E. coli isolates
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(Figure 2). No relation between resistance profiles and
infection (single or mixed infection) was observed
among the studied Gram-negative pathogens.
Regarding the susceptibility of Gram-positive patho-
gens, they presented more homogeneous resistance
rates (Table 5) with highest resistance observed for ami-
noglycosides and tylosin. Among the 108 studied iso-
lates, 79% were characterized as multiresistant (Table 6)
with highlight for Aerococcus viridans and the Staphylo-
coccus and Streptococcus species. Interestingly, the
Enterococcus genus was the least resistant among the
studied Gram-positive pathogens, with seven E. faecalis
isolates completely sensitive for all tested antimicrobials.
The resistance profiles cluster analysis enabled the
differentiation of three groups (A-C) (Figure 3),
wherein the A and B groups are composed of most of
the multiresistant isolates. Group A comprises 36 iso-
lates, all of which are resistant to more than four anti-
microbial classes, including most of A. viridans and
Streptococcus species, with exception of S. suis that
were separated in group B that consists of 46 isolates,
with 96% multiresistant. These include the S. suis, Cory-
nebacterium and 95% of Staphylococcus isolates. While
group A is characterized by resistance to tetracycline,
enrofloxacin, clindamycin and tylosin, with variable
resistance to sulfonamides and florfenicol according to
the identified genus and species, group B is mainly

Table 6. Gram-positive pathogens resistance profile distribu-
tion according to the number of resistant antimicrobial classes.
Resistance profile

Species 1-2 3-4 >5 Total
classes classes classes
Aerococcus viridans - 7(31.8) 15(68.2) 22(100)
Corynebacterium - 1 (100) - 1(100)
amycolatum
Corynebacterium casei - 1(100) - 1(100)
Corynebacterium - 1 (50.0) 1(50.0) 2(100
confusum
Corynebacterium - 1(100) - 1(100)
glutamicum
Corynebacterium sp 1(20.0) 4(80.0 - 5(100)
Enterococcus faecalis 4 (36.4) - - 11 (100)
Enterococcus faecium 6 (66.7) 3(333) - 9 (100)
Enterococcus gallinarum - 1(100) - 1(100)
Enterococcus hirae 3(100) - - 3 (100)
Globicatella sulfidifaciens 1 (50.0) 1 (50.0) - 2 (100)
Lactococcus lactis 1 (50.0) - 1(50.0) 2(100)
Staphylococcus aureus - 1(100) - 1(100)
Staphylococcus - 7(63.6) 4(36.4) 11(100)
chromogenes
Staphylococcus cohnii - 1 (100) - 1(100)
Staphylococcus - - 1(100) 1(1
haemolyticus
Staphylococcus hyicus - 3 (75.0) 1(25.0) 4(100)
Staphylococcus simulans - - 1(100) 1(100)
Streptococcus alactolyticus - - 2(100) 2 (100)
Streptococcus dysgalactiae - - 2(100) 2(100)
Streptococcus gallolyticus - - 1(100) 1(100)
Streptococcus - - 10 (100) 10 (100)
hyovaginalis
Streptococcus - - 4(100) 4(100)
pluranimalium
Streptococcus suis - 3(37.5) 5(62.5) 8(100)
Streptococcus thoraltensis - - 2(100) 2(100)
Total 16 (14.8) 35(32.4) 50 (46.3) 108
(100)
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B c4-17 A39 H2 Staphylocoscus chromogenes ] P19
8 c4-2 a2 H2 Staphylocoscus chromogenes M P21
e ca-10 a32 H2 Corynebacterium amycolatum ] P16
B c4-36 460 H2 Corynebacterium sp M P34
8 C3-115 A9 H2 Corynebacterium sp ] Pz
] ca-45 A68 H2 Corynebacterium sp M P
8 c4-53 A76 H2 Streptococeus hyovaginalis ] =
e c6-2 A110 H Streptococeus hyovaginalis M P40
B c4-69 493 H2 Streptosoceus suis M P43
B c4-57 480 H2 Streptococeus suis ] PaD
W c C4-1 A3l H2 Enterocaccus faecium M P15
W ca-28 451 H2 Staphylococcus aureus M P27
W c4-32 56 H2 Enterococeus faecium M P30
W c4-32 A56 H Enterococeus hirae M P30
W ca-42 A% H Enterococcus faecium M P15
W c cs-2 At10 H3 Enterocaceus faecalis ] P49
[ €6-9 a125 H Enterococcus faecalis 5
o c c6-1 A103 H Enterococeus faecalis M Ps
mc c8-15 A108 H Enterococeus faecalis ] P5
[ C3-94 a7 H1 Enterococeus fascalis s
W c6-12 103 H3 Enterococeus faecium s
H c3-97 A28 Hi Enterococous faecalis M P13
[ c4-28 A52 H2 Emerococeus faecalis ] P2
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W c3-8 a2 Hi Enterococcus faecalis s
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Figure 3. Resistance profiles cluster analysis of studied Gram-positive pathogens. The grey scale (black, grey and white) corre-
sponds to resistant, intermediate and sensitive status, respectively. The colored squares indicate the detected resistance groups
(red — A, orange - B, blue - Q).



characterized by g-lactams, aminoglycosides and tylo-
sin resistance. The remaining Gram-positive isolates
comprise group C that includes the few susceptible E.
faecalis and the less-resistant strains.

4. Discussion

The predominance of E. coli among studied isolates, in
both single and mixed infections, corroborates previ-
ous studies that also detected E. coli as the most fre-
quent bacteria in sows’ UTl cases (Brito et al. 2004;
Menin et al. 2008; Merlini and Merlini 2011; Mazutti
et al. 2013). The high frequency of E. coli in mixed infec-
tions should not be disregarded or merely considered
as contamination, since over 80% of the studied E.
coli isolates were characterized as multiresistant and
93% of them presented at least one virulence gene
related to urinary tract infections, among focH, papC,
sfa, afa, hlyA, iucD and cnfl genes (data not shown).

The high frequency of Streptococcus sp. and Strepto-
coccus-like bacteria, such as A. viridans, also corrobo-
rates previous findings considering that most studies
only reported the identification of Streptococcus sp.
with hemolysis differentiation since they relied solely
on traditional isolation and biochemistry methods for
bacterial identification (Menin et al. 2008; Merlini and
Merlini 2011; Mazutti et al. 2013).

The MALDI-TOF MS technique has already been
endorsed for the identification of several microorgan-
isms (Biswas and Rolain 2013; Singhal et al. 2015),
including rare bacterial species implicated in human
and animal infectious disease (Seng et al. 2013). Con-
sidering the variety of Gram-positive species identified
in this study, especially of Streptococcus, Staphylococcus
and Enterococcus, the MALDI-TOF MS represents not
only a high throughput solution but also a reliable
alternative to biochemical tests, which are not only
laborious but often provide dubious results.

Since most studies of antimicrobial susceptibility
characterization mainly focus on E. coli or rarely on
Streptococcus sp., resistance data regarding most of
the Gram-positive bacteria identified in this study is
scarce. For E. coli, our results agree with the reported
high multiresistance frequency, with elevated levels of
tetracycline, florfenicol and sulfonamides; however,
the observed streptomycin high resistance rate differ
from previous studies (Costa et al. 2008; Menin et al.
2008; Hancock et al. 2009).

In regard to Streptococcus sp. Menin et al. (2008)
described high resistance to aminoglycosides and fluo-
roquinolone with greater susceptibility to g-lactams. In
this study, we observed variability of resistance profiles
according to the identified Streptococcus species; nev-
ertheless, all isolates were characterized as multiresist-
ant. The multiresistant profiles stand out for most
Gram-positive bacteria while the Enterococcus genus
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was highlighted as the most susceptible among the
studied isolates.

Therefore, with the improvement of microbiological
methods for proper diagnosis and bacterial identification,
underestimated pathogens are related to urinary infec-
tion, which is still poorly studied in farm animals. These
pathogens may represent a potential risk for porcine
health and should be properly identified by veterinary
diagnostic laboratories. Furthermore, characterization of
antimicrobial resistance profiles is of significant impor-
tance not only for animal treatment but also for resis-
tance monitoring which could be applied to both human
and animal health promotion programs.
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