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THE BIGGER PICTURE In modern animal social experimentation, digital cameras combined with advanced
computer vision technologies can be used for animal pose estimation, to track animals as they move about
their enclosures, and to recognize and quantify different types of behaviors. However, persistent challenges
remain: reliable 2D unsupervised tracking of animals under complex social conditions is unresolved, and in-
terpreting social behaviors from pose and tracking data is notably difficult. The computational framework
described in this work offers an integrated solution to these challenges under weakly supervised conditions,
bridging computational science with biomedical research.
SUMMARY
Accurate analysis of social behaviors in animals is hindered by methodological challenges. Here, we develop
a segmentation tracking and clustering system (STCS) to address two major challenges in computational
neuroethology: reliable multi-animal tracking and pose estimation under complex interaction conditions
and providing interpretable insights into social differences guided by genotype information. We established
a comprehensive, long-term, multi-animal-tracking dataset across various experimental settings. Bench-
marking STCS against state-of-the-art tracking algorithms, we demonstrated its superior efficacy in
analyzing behavioral experiments and establishing a robust tracking baseline. By analyzing the behavior
of mice with autism spectrum disorder (ASD) using a novel weakly supervised clustering method under
both solitary and social conditions, STCS reveals potential links between social stress and motor impair-
ments. Benefiting from its modular and web-based design, STCS allows researchers to easily integrate
the latest computer vision methods, enabling comprehensive behavior analysis services over the Internet,
even from a single laptop.
INTRODUCTION

Understanding the intricate nature of social behavior1 is crucial in

the field of neuroscience, as it offers profound insights into how

organisms interact, communicate, and form relationships within

their social milieu. In this context, studying social behavior in an-

imals serves as a pivotal bridge between molecular2 and sys-
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This is an open access article under the CC BY-NC-ND
tems-level neuroscience.3 Investigations using rodent models,

in particular, offer a valuable means to dissect the neural circuits

and molecular underpinnings governing social interactions.

Autism spectrum disorders (ASDs) are a heterogeneous group

of complex neurodevelopmental disorders characterized by im-

pairments in social interaction, communication, and restricted

and repetitive behaviors.4,5 Traditional assessments, such as
ber 8, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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the three-chamber test,6 often occur in controlled environments,

potentially oversimplifying the complexity of natural interac-

tions.7 This limitation is especially pertinent in conditions marked

by social deficits, such as ASD.8,9

A variety of deep-learning-based methods for multi-animal

behavior analysis are available,9,10 including DeepLabCut

(DLC)11 and SLEAP,12 which facilitate simultaneous animal

pose estimation and tracking. However, these tools have a num-

ber of limitations, including unreliable identity (ID) switches13 and

the requirement for thousands of labeled images to visually

distinguish animals like SIPEC.14 Common workarounds involve

tracking a distinctive part of the animal for identification or pre-

recording individual activity videos for each animal to establish

individual information. However, the former fails to fully utilize

the animal’s complete visual representation,15 and the latter in-

troduces additional workload and extraneous variables into the

animal experiments.16 Although idTracker.ai17 offers a solution

by achieving extremely high tracking accuracy with little inter-

vention, automatically identifying visually similar animals—a

task beyond the capacity of average human performance—it is

computationally intensive and struggles with highly deformable

and socially active animals in complex environments.11,18

Beyond tracking, analyzing complex social-behavior patterns

is also challenging in behavioral neuroscience. Existing ap-

proaches, often manual and rule based, are laborious and

require tailored sets of rules for different animals or specific con-

ditions.Whilemethods such as those proposed in DLC and other

systems19–21 offer post-processing of results, they frequently fall

short of capturing the full spectrum of social behaviors. These

gaps underscore the necessity for developing more advanced

analytical tools.

Recognizing these challenges and limitations in behavioral

studies, we developed a segmented tracking and clustering sys-

tem (STCS) for multi-animal behavioral analysis. STCS com-

prises two novel components: segTracker.ai and segCluster.

SegTracker.ai is an animal-, model-, and device-agnostic unsu-

pervised pose-tracking protocol that enables tracking of social

behaviors in complex settings with different combinations of cut-

ting-edge deep-learning methods. SegCluster, on the other

hand, is a weakly supervised social-behavior clustering protocol

that utilizes a novel autoencoder neural network based on the

spatiotemporal graph convolutional network (STGCN)22,23 with

an innovative social convolution (SC) block. This combination

not only quantifies behavior traits with unprecedented precision

but also delves deeper into analyzing social-behavior patterns.

Application of STCS in Shank3 knockout mice, a model for

ASD,24,25 enabled identification of nine distinct interactive

behavioral patterns. By comparing the locomotive characteris-

tics of solitarymice versus those in groups, our data revealed po-

tential mechanisms underlying the emergence of these varied

interaction patterns. Thus, STCS is able to capture subtle behav-

ioral differences across different phenotypes.

RESULTS

Development of an STCS
We developed an STCS by introducing a transformative

approach to monitor animal’s social behaviors with the incorpo-

ration of two innovative components: segTracker.ai for tracking
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and segCluster for analysis. Inspired by DLC11 and idTrack-

er.ai,17 we divided the multi-animal tracking and pose estima-

tions into several sub-tasks: animal detection, segmentation,

and pose estimation per frame. We then generated local track-

lets and associated these tracklets to form complete tracks for

animals (Figure 1A). To conquer these sub-tasks, we introduced

four deep-learning modules: the detection and segmentation

model (Figure 1B), the optical-flow model (Figure 1C), the

pose-estimation model (Figure 1D), and the classification/re-ID

model (Figure 1E). The detection and segmentation model

generated bounding boxes for top-down pose estimation and

instance-segmentation masks for generating tracklets. The opti-

cal-flow model estimated the motion between adjacent frames

to perform mask warping for better matching. Tracklets were

merged using various strategies and then used to train the clas-

sifier, which subsequently identified the remaining tracklets iter-

atively until tracking was complete. Together, this modular

approach enables our comprehensive and accurate tracking of

multiple animals, handling complex behaviors and interactions.

An integral component of STCSwas dedicated to the nuanced

differentiation and clustering of lab animals’ social behaviors. To

leverage rich genotype or group data for comprehensive, unbi-

ased social-behavior analysis, we employed a multi-task au-

toencoder based on the spatiotemporal graph convolutional

network (STGCN). This autoencoder features a reconstruction

head for capturing latent behavioral patterns, complemented

by a classification head that integrates genotype information.

Post training and evaluation, we extracted behavioral embed-

dings from the autoencoder’s bottleneck, facilitating dimension-

ality reduction and clustering as depicted in Figure 1F. However,

STGCN in its original form was not tailored for social-behavior

recognition as it amalgamates individual data only at the last fully

connected layer. To adapt STGCN for social-behavior studies

while preserving its skeletal graph structure, we innovated by

introducing an SC module into the original graph convolutional

network (GCN) block, thereby creating the social GCN block.

Thismodule aggregates data from previous stages, gathering in-

puts from neighboring key points defined in a skeletal structure,

comprising three crucial components (Figure 1G):

(1) Grouped Conv1d: processes data from multiple subjects

simultaneously, capturing their spatial interactions.

(2) BatchNorm: normalizes data across multiple subjects,

enhancing spatial interaction capture.

(3) ReLU activation: adds non-linearity, enabling themodel to

learn complex behaviors.

By grouping the same key points across different individuals,

the SC module enhanced the data flow of interaction data

throughout the network stages. Our experiments demonstrated

its efficacy in improving classification tasks across diverse sce-

narios, including varying animal numbers, input features,26 and

experimental settings (Figure S1).

To democratize the use of STCS, especially for researchers

with limited computational expertise, we developed a user-

friendly browser/server architecture. This architecture includes

a streamlined graphical user interface on the front end, sup-

ported by multiple work queues on the back end (Figure 1H, I).

Notably, segTracker.ai, a core component of STCS, can be
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Figure 1. Comprehensive workflow of STCS
(A) Schematic representation of the STCS framework, integrating segTracker.ai for expert deep-learning-based animal-detection, segmentation, optical-flow-

estimation, pose-estimation, and identification tasks.

(B) Visual output from the animal segmentation and detection model, showcasing the precision in identifying individual subjects within a complex environment.

(C) Results from the optical-flow-estimation model, illustrating the dynamic flow and movement trajectories of the subjects across sequential frames.

(D) Outputs from the pose-estimation model, delineating the postural positioning of each subject, critical for detailed behavioral analysis.

(E) Classification model results, providing accurate identification of individual subjects, an essential step for longitudinal behavioral studies.

(F) Processed pose sequences from segTracker.ai, segmented into data chunks for input into segCluster’s social STGCN—a multi-task autoencoder designed

for reconstructing pose data and classifying social interactions, further refined through UMAP and agglomerative clustering for nuanced behavior pattern

analysis.

(G) The Social GCN Block, enhancing the original GCN Block for improved integration and interpretation of social-behavior data.

(H) Architectural layout of STCS, illustrating its browser/server (B/S) design with RESTful API support, optimized for seamless deployment via Docker, facilitating

collaborative research via the Internet.

(I) User-friendly interface of STCS, accessible through the Edge browser, demonstrating the system’s ease of use for end users.
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conveniently deployed on a standard personal laptop or PC with

a modest GPU, yet robustly delivers comprehensive lab animal

tracking services to entire research groups via the Internet.

Diverse datasets compilation for detection, instance
segmentation, pose estimation, and multi-animal
tracking
In developing robust systems for detection, instance segmenta-

tion, pose estimation, and long-term animal tracking, we

compiled diverse datasets crucial for training and validating

our models. We manually annotated video frames of mouse

behavior obtained from various experimental setups and

recording devices to train the instance-segmentation and

pose-estimation models (Figure 2A). Additionally, a smaller num-

ber of frames from idTracker.ai featuring ants and fruit flies

(about 20–30 frames) were labeled, ensuring generalizability

across different video types without specific optimizations.

Unlike existing methods such as DLC or AlphaTracker, which

may require fine-tuning for specific video types to achieve high-

quality pose-estimation outputs, our strategy employs a single,

versatile model designed to operate across a diverse array of

video settings. This approach reduces the need for multiple

specialized models in varied real-world applications.

On the other hand, long-term tracking of lab animals is crucial

for evaluating the efficacy of tracking and identification algo-

rithms.27 In previous studies, experimental animal tracking algo-

rithms could only be validated on short-term datasets ranging

from tens of seconds to a few minutes, or a few hundred to a

few thousand frames.11,12,28–31 To our knowledge, there are no

open-source datasets for long-term tracking of multiple rodents

publicly available. The complexity of animal interactions in etho-

logical experiment videos, combined with varying video lengths,

experimental setups, and the number of animals involved, poses

significant challenges for trackingmethods. Notably, an increase

in the number of animals does not necessarily correlate with

increased tracking difficulty in the videos.31 For instance, Jiang

et al.28 found that tracking a few deformable, occluding mice

poses a greater challenge than tracking a larger number of lo-

custs. Therefore, constructing a publicly accessible dataset is

essential for impartially testing different tracking algorithms.

We compiled an extensive multi-animal tracking dataset in the

multiple object tracking (MOT) format,32 derived from real-world

social-behavior experiments, and employed occlusion metrics31

to quantitatively describe the complexity of our tracking dataset.

This dataset encompassed a diverse array of challenges, such

as a 1-h video featuring four wild-type (WT) mice (43WT) with

a single labeled instance, exhibiting complex behaviors such

as occlusion, chasing, and fighting over 108,003 frames. The

demanding nature of this video’s length and complexity under-

scores the necessity for precise and consistent identification

and tracking. Further diversifying the dataset, we included

videos such as six-mouse WT (63WT), two-mouse WT (23WT)

in complex settings, low-resolution four-mouse WT (Noldus),

and four-mouse Parkinson’s disease model (43PD) videos to

test the system under varied frame rates and video qualities.

Additionally, the dataset is enriched with 14-ant and 10-fly

videos from idTracker.ai, enhancing its comprehensiveness for

smaller species (Figures 2A; Table 1). To evaluate the robustness

of our tracking algorithm in minimal movement scenarios, we
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also provide a video where mice are stationary or asleep

(Note S1).
Development of deep-learning models and
benchmarking against state-of-the-art (SOTA) tracking
methods
We trained multiple distinct deep-learning models using anno-

tated data of mice, ants, and fruit flies for performing instance-

segmentation and pose-estimation tasks. Preliminary

evaluations on the validation and test datasets (Figure 2B)

demonstrated the robustness and accuracy of our models

without requiring specific fine-tuning.

Accurate identification of individual animals during extended

tracking sessions is crucial for behavioral tracing and analysis sys-

tems. We assessed various convolutional neural network (CNN)

models, including idTracker.ai’s idCNN,17 DenseNet12133 (used

by SIPEC), MobileNetV2,34 and OSNet,35 for their ability to recog-

nize similar lab animals within a subset of the 43WT dataset.

OSNet, pretrained on ImageNet, outperformed others, showing

nuanced identification capabilities (Figure 2C). LayerCAM36 anal-

ysis revealed that OSNet’s class activation maps (CAMs) were

sharply focused, particularly effective at identifying unique mark-

ings on mice, in contrast to the more diffuse maps from idTrack-

er.ai (Figure 2D). This was further supported by a confusion matrix

analysis, illustratingOSNet’s superior accuracy in classifying visu-

ally distinct and similar mice (Figure 2E).

On the other hand, segTracker.ai, a core algorithm in our sys-

tem, leverages deepmodels but remains independent of specific

models or algorithms. It supports integration with various deep-

learning architectures, allowing researchers to customize their

tracking and analysis strategies. We showcase segTracker.ai’s

model-agnostic feature with two distinct configurations

(Figures 2A; Table 2):

(1) We use Mask Scoring RCNN37 for detection and instance

segmentation due to its capability to automatically eval-

uate mask quality. YOLOv8 Pose38 is employed as a sin-

gle-stage pose-estimation method for its balance of ac-

curacy and efficiency, particularly advantageous in

crowded scenes. For motion estimation, we select the

Farneback optical-flow-estimation algorithm,39 a clas-

sical dense optical-flow method not based on deep

learning. Finally, OSNet35 is chosen as the re-identifica-

tion model for its superior identification performance in

our experiments.

(2) This is a combination purely based on deep-learning

models. We employ RTMDet-tiny-Ins40 as the detection

and instance-segmentation model, currently a state-of-

the-art method for real-time instance segmentation.

MobileNetV2,34 combined with a top-down pose-estima-

tion approach,41 is used for pose estimation, offering

higher pose-estimation accuracy. LiteFlowNetV2,42 a

lightweight network for optical-flow estimation, achieves

a balance of speed and precision. We again choose OS-

Net as the re-identification model.

Subsequently, we conducted a thorough comparison of seg-

Tracker.ai using the aforementioned trained models against nine

other SOTA tracking systems. These systems span a wide range



Figure 2. Dataset construction and performance metrics of segTracker.ai

(A) The mouse annotation dataset for instance segmentation and pose estimation comprises videos from various neurobiology experiments. Over half of the

images are sourced from videos outside the tracking dataset. On the right are representative snapshots of the five tracking videos as well as some other video

snapshots that constitute the instance-segmentation and pose-estimation dataset.

(B) Benchmarking results showing the efficacy of expert models for bounding box detection (BBox), segmentation (Segm), and key point (Kpts) accuracy across

different animal species. Config 1, Mask Scoring RCNN as the detector, YOLOv8-s Pose for single-stage pose estimation. Config 2, RTMDet-Ins-tiny as the

detector, MobileNetV2 for top-down pose estimation. The ant and fruit fly datasets were trained using Config 2.

(C) Comparative identification accuracies for four different animals within the 43WT dataset, evaluated using networks from idTracker.ai, DenseNet121 (em-

ployed in SIPEC), MobileNetV2, and OSNet. The accuracies are reported as top1 and top2 for both validation and test datasets, with error bars indicating a 95%

confidence interval (CI).

(D) LayerCAM visualizations comparing the focus of the final CNN layer between the idTracker.ai network and OSNet, with the manually annotated M1 mouse

near the tail base as a reference (left image).

(E) Confusion matrix illustrating classification outcomes for OSNet and the idTracker.ai network, showcasing the difference in model discernment capabilities on

the test dataset.

(F) Tracking accuracy assessment for the 10flies and 14ants datasets compared to idTracker.ai, with representative snapshots of the datasets. The asterisk

denotes accuracy as reported in the original publication.
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of domains: four general simple online and real-time tracking

(SORT) algorithms,43–46 one tracker named DEVAwith the capac-

ity to ‘‘trackanything,’’47and foursystemsspecificallydesigned for

tracking experimental animals11,12,17,29 (Tables 2, 3, and S6).
Due to the lack of essential trajectory correction mecha-

nisms, the SORT algorithms may struggle to effectively perform

stable tracking of lab animals in the long term. Even with

the incorporation of appearance information, general
Patterns 5, 101057, November 8, 2024 5



Table 1. Basic information of the annotated videos

Name Size (MB) Duration Resolution fps Recording device OC OL TBO IBO J

43WTa 208 01:00:00 648 3 724 30 Smartisan OD103 3,099 2.61 2.04 0.16 636

63WTb 344 00:10:02 1,080 3 1,080 60 iPhone 13 Plus 1,440 1.35 1.16 0.16 266

23WTc 157 00:30:10 608 3 864 30 iPhone 13 304 5.20 6.70 0.17 39

43PDd 212 00:10:24 820 3 800 15 S-YUE Webcam 773 1.80 1.43 0.20 193

Nolduse 10.5 00:10:00 236 3 184 25 Noldus camera 392 3.72 2.39 0.15 93

14antsf 109 00:12:57 840 3 714 59.94 – – – – – –

10fliesf 32.5 00:10:12 948 3 920 60 – – – – – –

OC, occluded counts; OL, occluded length; TBO, time between occlusions; IBO, intersection between occlusion;J, a single video-complexity metric.
aWith complex interactions, 1/4 is marked, cropped, and recoded to H.264.
bCropped with ffmpeg.
cComplex environment, 1/2 is marked, animals move out of view from time to time, cropped and recoded to H.264.
dLow image quality and low FPS, cropped and recoded to H.264.
eExtremely low image quality, choppy video recording, cropped and recoded to H.264.
fCropped and recoded to H.264, provided with idTracker.ai.
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re-identification techniques fail to yield any benefits, as they

lack fine-tuning on mouse images. DEVA, utilizing instance-

segmentation information, faces challenges with mask defor-

mation during tracking. Among the four tracking systems de-

signed for experimental animals, only idTracker.ai can track

multiple animals with relatively high precision, yet it struggles

with complex experimental setups and videos containing

more intricate interactions. Furthermore, idTracker.ai relies

solely on the visual recognition of the mouse body, neglecting

the visual features of the mouse’s tail, potentially hindering

tracking in some scenarios.

Considering the additional computation introduced by dense

optical-flow estimation, we conducted ablation experiments by

removing the flow-estimation process to investigate the role of

the optical flow in segTracker.ai (Table S1). Results highlight its

necessity in the low-frame-rate video (15 frames per second

[fps]) and overall enhancement of tracking performance.

We also evaluated the performance of segTracker.ai in

tracking mice during extended periods of inactivity. Prolonged

inactivity can pose challenges for vision-based tracking algo-

rithms,17 yet segTracker.ai with Config. 2 achieved high tracking

accuracy (92.30 IDF1 score). Its robust detector maintained clear

differentiation among closely interacting mice, including during

sleep, demonstrating reliable tracking capabilities in stationary

scenarios.

In rigorous analysis across variousmouse videos, segTracker.ai

consistently outperformed the other methods, which not only un-

derscores our method’s superiority but also brings to light the

inherent challenges in multi-animal tracking under complex social

conditions.

Our evaluation also extended to smaller species, using the

ant and fruit fly videos from idTracker.ai (Table 1). Here, seg-

Tracker.ai (Config. 2) achieved over 99.7% tracking accuracy

with less time consumption compared to idTracker.ai, a testa-

ment to its computational efficiency and robustness (Figure 2F;

Table S2). These results demonstrated segTracker.ai’s

advanced capabilities in handling a wide range of animal

models and video qualities, contributing to ongoing efforts to

enhance tracking accuracy and efficiency in the study of animal

behavior.
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Better-trained models yield better tracking results
The quality of instancemasks can significantly impact segTrack-

er.ai’s tracking performance. Experimentation with YOLACT49

as the instance-segmentation model (Figure 2A), known for its

real-time efficiency, revealed issues such as mask leakage,50

which notably impaired tracking results. Specifically, segTrack-

er.ai based on YOLACT successfully tracked only one out of

five videos, showing varied declines across metrics compared

to other model configurations (Table 2).

To assess the impact of training samples on tracking perfor-

mance, we trained instance-segmentation and pose-estimation

models using 20%, 40%, 60%, and 80% of the available sam-

ples. Results indicate that insufficient training samples compro-

mise instance mask quality and subsequent tracking perfor-

mance. Notably, using as little as 40% of the training data

(about 160 labeled frames) enabled successful tracking across

all videos in our dataset. Performance generally improved with

additional training samples, demonstrating a steady enhance-

ment in tracking capabilities (Table 4).

SegTracker.ai demonstrates reliable tracking evenwith limited

annotation data. However, adding more training data or switch-

ing to a model with better instance-segmentation performance

proves to be effective in enhancing the tracking capabilities of

segTracker.ai, even reversing the difficulty of fully tracking

some complex videos. This flexibility is crucial for researchers

seeking to optimize tracking outcomes without extensive

computational expertise. By supporting integration with various

instance-segmentation models, segTracker.ai leverages ad-

vancements in computer vision to continually enhance experi-

mental animal tracking.

Decoding social-behavior variations in Shank3
knockout mice
We established a Shank3 knockout mouse model associated

with ASD (Figure S2A). Gene and protein deletions were

confirmed through PCR and western blot analyses

(Figures S2B and S2C). Classified into WT, heterozygous (HE),

and homozygous (HO) categories, fine home-cage behavioral

analyses and classic three-chamber social tests found that HO

mice exhibited increased grooming and decreased movement,



Table 2. Benchmarking against SOTA tracking systems and algorithms

Tracker

43PD Noldus 63WT 23WT 43WT

IDF IDP IDR IDF IDP IDR IDF IDP IDR IDF IDP IDR IDF IDP IDR

OCSORTa,43 18.8 18.5 19.2 37.2 37.9 36.5 58.6 58.8 58.3 11.9 12.3 11.5 15.8 16.0 15.5

ByteTracka,44 4.7 4.7 4.6 22.0 22.3 21.7 27.6 27.7 27.5 7.8 8.0 7.6 7.7 7.8 7.6

DeepOCSORTb,45 25.7 26.1 25.2 27.2 26.7 27.7 48.9 49.1 48.7 16.4 17.0 15.9 17.5 17.7 17.2

BoTSORTb,46 43.8 44.1 43.5 34.2 34.6 33.7 37.8 37.9 37.7 19.7 20.2 19.1 17.4 17.5 17.2

DEVA47 40.3 40.3 40.3 23.1 25.2 21.3 45.8 46.1 45.6 11.8 8.0 22.2 22.8 21.1 24.8

AlphaTracker2c,d,29,48 28.5 28.7 28.3 40.4 40.8 40.0 27.1 27.2 26.9 49.5 51.6 47.6 26.7 26.8 26.6

DLCd,11 34.1 34.1 34.1 26.5 27.3 25.8 36.6 36.7 36.6 42.2 43.2 41.2 28.4 28.6 28.3

SLEAPd,e,12 29.0 29.5 28.4 35.4 35.8 35.1 42.9 43.2 42.6 42.8 44.5 41.2 27.7 28.3 27.1

idTracker.ai17 91.4 91.4 91.4 83.2 83.2 83.2 N/A N/A N/A

Ours (Config. 1)f 95.1# 94.0# 96.3* 91.6# 89.9# 93.4* 96.6# 95.3# 97.9# 84.2# 82.7# 85.8# 95.1# 93.9# 96.3*

Ours (Config. 2)g 96.2* 96.8* 95.6# 92.1* 93.5* 90.7# 99.1* 99.4* 98.9* 92.3* 94.7* 90.0* 97.1* 98.2* 96.1#

Ours (YOLACT)h N/A 81.0 87.1 75.6 N/A 51.3 56.5 46.9 44.8 51.0 39.9

The best-performing tracker is marked with an asterisk (*), while the second-best tracker is marked with a hash symbol (#). We also tried to evaluated

TRex. However, due to the issue raised in https://github.com/mooch443/trex/issues/209, we were unable to evaluate its tracking performance on our

datasets.
aSORT algorithms without utilizing appearance information.
bSORT algorithms utilizing appearance information. We used OSNet-AIN pretrained on ImageNet for the re-id network.
cWe also attempted to evaluate the original AlphaTracker. However, we could not install the tracking system via Conda (UnavailableInvalidChannel

error). We choose to evaluate AlphaTracker2 as an alternative as it is the successor of the original software and is developed by the same research

team.
dAlphaTracker2 does not support datasets with different number of animals and DLC does not accommodate different input resolutions. The detection

and pose-estimationmodels of SLEAP perform optimally when trained individually on each dataset rather than on amixed dataset.We trained the pose

estimation and detection models with a different dataset (see section ‘‘experimental procedures’’).
eEvaluation results were generated using SLEAP-simple tracker. We also attempted to assess the SLEAP-flow tracker. However, consistent errors

occurred due to insufficient GPU RAM, despite using RTX 4090 (24G), which is the most advanced computing device available to us.
fEvaluation results were obtained using Mask Scoring RCNN37 as the detector, YOLOv8-s Pose38 for single-stage pose estimation, Farneback algo-

rithm39 for optical-flow estimation, and OSNet as the re-id model.
gEvaluation results were obtained using RTMDet-tiny-Ins40 as the detector, MobileNetV2 for top-down pose estimation,34,41 LiteFlowNetV242 for op-

tical-flow estimation, and OSNet as the re-id model.
hEvaluation results were obtained using YOLOv8-s Seg49 for instance segmentation, YOLOv8-s Pose for single-stage pose estimation, LiteFlowNetV2

for optical-flow estimation, and OSNet as the re-id model.
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along with evident social deficits—specifically, reduced explora-

tion time in the chamber containing a stranger mouse. In

contrast, HE mice displayed no abnormalities in these experi-

mental tests (Figures S2D and S2E). Traditional behavioral para-

digms challenge our ability to fully and accurately understand so-

cial behavior, particularly in distinguishing subtle behavioral

variations in HE individuals.

To overcome these limitations, we designed further experi-

ments with two setups: the newcomer-introduction (NI) group

and the homogeneous-genotype (HG) group. In the NI group, a

new mouse of either WT, HE, or HO genotype was introduced

to a group of WT mice. Conversely, the HG group involved

both ASD-affected and control mice interacting in an open field,

either individually or in genotype-matched groups. These exper-

iments, supported by segCluster and kinematic analysis, aimed

to elucidate the behavioral nuances across the three genotypes.

We next trained an autoencoder on identified pose sequences

extracted from NI group videos, followed by uniform manifold

approximation and projection (UMAP) dimension reduction and

agglomerative clustering. The classification head of our model

clustered behavior sequences by genotype, while the recon-

struction head preserved behavior information within the em-
beddings. During training, the classification head ensures the

behavior sequences of the same genotype were clustered closer

together, and the reconstruction head ensures that the embed-

dings still contained behavior information. The classification ac-

curacy and reconstruction quality are shown in Figure 3A, with

key-point reconstruction errors reported in root-mean-square

error (RMSE), measured in centimeters. We used the silhouette

score (SS) to evaluate the goodness of clustering quality.51 Typi-

cally, with SS over 0.50, it can be considered that a reasonable

clustering structure has been detected. With the weakly super-

vised method, the model captures the structure of three geno-

types (SS > 0.5), and the structure is more obvious in the remap-

ped space than the original space (Figures 3B and 3C). Given the

complexity and variability in social behaviors, we adjusted the

SS threshold from the typical 0.5 to 0.4 to capture more nuanced

patterns within each genotype’s behavioral space. To be more

concise, we picked the largest number of clusters above this

threshold and took a closer look at these clustered phenotypes.

As shown in Figures 3D and 3E, we were able to identify different

phenotypes in each of the genotypes. The complete procedure

yielded a comprehensive overview of behavioral patterns, as

shown in Figure 3F.
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Table 3. Evaluation result for tracking systems based on MOTA and MOTP

Trackers

43PD Noldus 63WT 23WT 43WT

MOTA MOTP MOTA MOTP MOTA MOTP MOTA MOTP MOTA MOTP

OCSORT 90.9 84.4 87.0 86.3* 98.1 89.4# 85.6 86.9# 94.3 90.1#

ByteTrack 62.5 73.9 84.0 82.1 94.6 82.0 83.7 83.7 91.5 84.6

DeepOCSORT 91.4 84.3 87.0 86.3* 98.1 89.4# 85.6 86.9# 94.3 90.1#

BoTSORT 94.2# 83.4 87.6* 86.2# 98.3# 89.3 85.9# 86.7 94.9# 89.8

DEVA 61.3 80.4 <0 73.4 65.9 86.8 <0 73.1 <0 81.5

AlphaTracker2 77.2 72.5 76.1 75.2 86.3 74.8 64.6 77.5 83.1 77.1

DLC 70.5 75.8 42.0 72.2 85.0 78.5 63.4 77.6 69.1 77.5

SLEAP 70.5 75.5 63.7 72.5 89.6 79.1 60.6 76.7 77.0 77.5

idTracker.ai 97.0* 90.1* 86.9# 73.5 N/A N/A N/A

Config. 1 93.2 88.3# 81.6 70.1 98.7* 93.1* 90.2* 96.2* 97.1* 98.2*

Config. 2 90.9 83.6 84.9 85.5 95.8 88.8 84.6 86.3 92.4 89.2

The best-performing tracker is marked with an asterisk (*), while the second-best tracker is marked with a hash symbol (#). However, readers should be

aware that MOTA/MOTPmay unfairly favor methods using RTMDet (Config. 2) for result generation, such as idTracker.ai, segTracker.ai, and the SORT

family, due to our ground truth derived from RTMDet and manual corrections. Methods such as DLC, SLEAP, and AlphaTracker2, which do not utilize

RTMDet for detection boxes or instance masks, might not reflect their true performance on MOTA/MOTP. See also Note S1.
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To evaluate the STGCN’s capability in extracting meaningful

features from skeletal sequences, we analyzed a training

regimen on four NI videos, followed by a validation on two addi-

tional videos with entirely newWT, HE, and HO newcomers. This

analysis achieved a validation classification accuracy of 0.47 (F1

score, 0.40; Figure 3A), which was markedly higher than the 0.33

expected by random chance. This elevated accuracy under-

scores the network’s potential to predict an individual’s geno-

type from fragments of skeleton sequences, thereby demon-

strating its ability in identifying behavioral traits of the ASD

mice and the effectiveness of using the genotype information

as a supervision. Interestingly, the network tends to misclassify

HO mice as WT, contrasting with traditional three-chamber

tests, which struggle to differentiate WT from HE instead. This

discrepancy highlights the nuanced behavioral differences

observed between ASD mice under open-field and free-social

conditions compared to the more controlled three-chamber

test scenarios (Figure S2). The STGCN’s effectiveness is further

corroborated by an RMSE of 0.76 cm, indicative of its precise

behavioral sequence reconstruction capabilities (Figure 3A).

Furthermore, we employed model interpretation techniques

for deeper insights into the classifier and autoencoder, ensuring

accurate phenotype categorization. LayerCAM, initially intro-

duced in Figure 2D, was adapted for visualizing the spatiotem-

poral social-behavior CAMs of the clustered phenotypes. This

method enabled the network to self-explain its processing,

particularly highlighting its ability to identify the HO-genotype

mice engaging closely with a WT mouse, attributing such inter-

actions more significantly to the autistic behavior spectrum.

We further explored the utility of spatiotemporal LayerCAM in a

much more complex analysis protocol, such as a one vs. four

interaction scenario, confirming its efficacy in distinguishing

HO individuals based on their interaction patterns (Figure 3G).

Identification of social interaction patterns in ASD mice
using spatiotemporal atlas
Inspired by previous research,16 we constructed a one vs. one

spatiotemporal social-behavior atlas, focusing on interactions
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between ASD andWTmice within a healthy WT community (Fig-

ure 3F). This atlas, rich in representative social-interaction pat-

terns, allowed us to assign descriptive names to various behav-

ioral clusters. While certain clusters demonstrated similar

behaviors, such as either accepting or avoiding close interac-

tions, one particular cluster encompassed a diverse range of

interaction styles, challenging our ability to label it precisely

(Figures S3 and S4).

The atlas is structured along two principal axes derived from

behavior embeddings: UMAP1 and UMAP2. UMAP1 illustrated

a gradient of interaction tendencies, ranging from welcoming,

through avoidance, to outright escape or pre-emptive disen-

gagement. UMAP2, on the other hand, delineated the intensity

spectrum of close interactions, spanning from cautious, distant

approaches to more engaging pursuits and intimate exchanges.

Intriguingly, our analysis revealed distinct behavioral trends: HE

mice exhibited a pronounced inclination to actively avoid or

escape from close interactions with WT mice. Conversely, HO

mice occasionally showed openness to engagement initiated

by their WT counterparts. WT mice, in contrast, were more

frequently engaged in active and reciprocal interactions. This

atlas thus offers a nuanced view of social dynamics in ASD

models, highlighting the variability and complexity inherent in

these interactions.

Behavioral dynamics in Shank3 knockout mice
To validate phenotypic distinctions identified by segCluster, we

conducted a detailed kinematic analysis within the NI group of

mice (Figure 4A). This was complemented by a carefully crafted

set of behavioral discrimination criteria aimed at discerning

various potential social behaviors (Figure 4B). In this schema,

social behaviors were classified as active if initiated by the

newly introduced mouse and passive if initiated by the existing

healthy mice in the group. This methodological framework,

while avoiding the need for elaborate behavior recognition neu-

ral networks, still demandedmeticulous tracking of each mouse

in the experiment, particularly those that were newly incorpo-

rated into the group. This approach allowed for a nuanced



Table 4. Impact of training set size on tracking results (IDF1)

Dataset 20% 40% 60% 80% 100%

43PD N/A 96.4# 95.6 96.8* 96.2

Noldus 33.6 71.8 90.0# 79.3 92.1*

63WT 20.1 96.9 98.5# 93.7 99.1*

23WT 81.3 86.3 91.1 91.8# 92.3*

43WT N/A 94.9 92.4 96.6# 97.1*

The experiment yielding the highest performance is marked with an

asterisk (*), while the second-best tracker is marked with a hash symbol

(#). The data indicate that training detectors and pose-estimation models

with approximately 250 images can achieve high tracking accuracy

without the necessity of retraining the models for different videos.

Furthermore, continuously adding more annotated data also enhances

tracking performance.
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understanding of the social dynamics at play within different

genotypic interactions.

Differential kinematic analysis in varied social settings
Our investigation commenced with the novel NI group setting.

Notably, the HO mice displayed a marked decrease in move-

ment speed and distance traveled, aligning with their knownmo-

tor impairments (Figures 4C and 4D; Table S4). Despite their

reducedmobility, thesemice engagedmore extensively in social

interactions, as indicated by our tailored behavioral discrimina-

tion criteria. This unexpected propensity for social engagement

was statistically significant, particularly in the passive tail and

active head interactions, contrasting with conventional ASD

models (Figure 4E).

Behavioral variations under social pressures
Expanding beyond the NI group, we examined mice within HE

and HO groups and in isolation (Figure 4F). The data revealed

significant behavioral alterations under different social condi-

tions. In group settings, HE mice exhibited increased activity

with longer net distance traveled, whereas HO mice became

notably less mobile, traveling significantly less distance, sug-

gesting an inverse relationship between their social environment

andmovement behaviors (Figures 4G–4J; Table S4 and S5). This

observation was further substantiated through social-criterion

analysis (Figure 4K), revealing that social contexts significantly

affect the mobility and interaction patterns of these genetically

modified mice.

Synthesis of social and motor impairment insights
Our findings depict a complex picture of social behavior in

Shank3 knockout mice. Contrary to traditional assumptions

about ASD, HO mice, despite their motor limitations, engaged

more actively in social settings. This suggests a nuanced inter-

play between social inclination and physical capability, chal-

lenging existing perceptions of social behavior in ASD models.

Conversely, the reduced social interaction observed in HE

mice, despite lacking motor deficits, hints at underlying

behavioral or anxiety-related factors influencing their social

engagement.

This comprehensive study, employing segTracker.ai, not only

elucidates the nuanced social and motor phenotypes in Shank3
knockout mice but also highlights the importance of considering

both behavioral and physical aspects when studying neurodeve-

lopmental disorders. Our approach offers a more holistic under-

standing of ASD, contributing to the development of more effec-

tive therapeutic strategies.

DISCUSSION

In this study, we have dedicated our efforts on two pivotal chal-

lenges in computational behavioral science: the upstream chal-

lenge of multi-animal tracking under complex interactive social

conditions and the crucial downstream challenge of extracting

social-behavior characteristics from skeletal sequences of ani-

mals with different genotypes. We have developed STCS, a sys-

tem aimed at enhancing the study of social behavior in

neuroscience.

STCS combines segTracker.ai, an advanced lab animal pose-

tracking module inspired by idTracker.ai, and segCluster, a so-

phisticated tool for the analysis of social behavior. SegTracker.ai

leverages state-of-the-art computer vision techniques for detec-

tion, instance segmentation, and pose estimation. This module is

particularly adept at handling complex tracking with pose esti-

mation across various species and video qualities with different

combinations of deep-learning models, making it an invaluable

asset for interdisciplinary research in computer science and

behavioral neuroscience.

SegCluster, the second pillar of STCS, is an innovative module

used to discern subtle differences in social behaviors of lab an-

imals based on genotypes. This component employs a weakly

supervised learning approach, coupled with dimensionality

reduction and clustering analysis, to identify and categorize

behavioral patterns in an unbiased, data-driven manner. The

integration of these two modules of STCS enable us not only

to efficiently gather data but also to comprehensively analyze

complex social interactions.

Applying STCS to ASD research, particularly focusing on

Shank3 knockout models, has provided groundbreaking in-

sights. Typically, HO Shank3 knockouts are used as ASDmodels

in research because HE knockouts often do not exhibit detect-

able anomalies using traditional behavioral methods.8,24,25,52

This approach might overlook the complexities in the etiology

of ASD, as HE models could offer vital clues to understanding

the disorder’s full spectrum. By conducting cage-free social ex-

periments, STCS has adeptly identified subtle behavioral anom-

alies across a range of genotypes, capturing nuances in both HO

and HE Shank3 knockout mice, as well as in WT mice. This dis-

covery is in line with recent research on Shank3 knockout dogs,

suggesting a broader applicability of our findings in understand-

ing the complexity of ASD.53,54 This finding underscores the

capability of our system to capture nuanced differences across

genotypes, suggesting a potential link between social disorders

and locomotor impairments, potentially exacerbated by social

pressures.

Remarkably, our study has shown that HE and HO mice with

the same genetic defect exhibit contrasting behaviors, with HE

mice being more active in social settings, while HO mice tend

to be more stationary. This behavioral variance underscores

the complexity of ASD, challenging traditional genotype-

behavior correlations. Our integration of handcrafted rules for
Patterns 5, 101057, November 8, 2024 9
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Figure 3. Deciphering social interaction patterns with segCluster
(A) Confusion matrix and autoencoder reconstruction outcomes for the test dataset comprising entirely new individuals, demonstrating predictive accuracy and

reconstruction fidelity. Numbers in the confusion matrix represent social-behavioral chunks. Acc., macro average of the classification accuracy; F1, macro

average of the classification F1 score.

(B) UMAP dimensionality reduction applied to raw and remapped data, highlighting complex clustering of social behaviors.

(C) Assessment of cluster integrity using SSs on raw and remapped data, with an SS threshold set at 0.40 to delineate satisfactory clustering outcomes.

(D) Agglomerative clustering dendrogram for remapped features, illustrating the hierarchical relationships and potential groupings within the data.

(E) Distribution of clustered social interaction behaviors among wild-type (WT), heterozygous (HE), and homozygous (HO) mice, with statistical significance

determined by Dunn’s test (*p < 0:05, **p < 0:01).

(F) Spatial-temporal social-behavior atlas illustrating the interactive dynamics of a newWT or ASDmouse integrating into a healthy community. Pie charts reflect

composition of clustered phenotypes, with dark red skeletons representing existing WT community members and light red, green, and blue skeletons corre-

sponding to the WT, HE, and HO newcomers, respectively (see also Figures S3 and S4).

(G) Spatial-temporal LayerCAM visualizations during one-on-one and one-versus-four social interactions highlighting skeletal movement trajectories. White

ellipse and blue skeletons signify HO mouse, while red skeletons denote WT mouse.
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Figure 4. Kinetic metrics and rule-based social interaction distribution of ASD mice under social conditions

(A) Illustration of newcomer introduction (NI) group interaction focusing on social dynamics among WT, HE, and HO mice.

(B) Rule-based categorization of social interactions: body, tail, and head engagements, visualized with a 60� vision sector angle for interaction determination.

(C) Distribution plots showing variance in speed and acceleration among WT, HE, and HO mice within the NI group, highlighting kinetic behavior differences.

(D) Boxplots representing the total distance traversed over 10 min by WT, HE, and HO mice, emphasizing movement disparities in the NI group (Kruskal-Wallis

test followed by Dunn’s test, **p< 0:01).

(E) Duration distribution of interaction types across ASD mouse genotypes, distinguishing active initiations by newly introduced mice versus passive responses

from existing group members (Kruskal-Wallis test followed by Dunn’s test, *p < 0.05).

(F) Representation of the homogeneous genotype (HG) group setup, featuring consistent genotype cohorts.

(G) Overlaid density curves reflecting the speed and acceleration profiles for WT, HE, and HOmice in isolation versus within a group of four (HG group), illustrating

the impact of social context on movement dynamics. A distinct stratification of kinematic parameters among WT, HE, and HO mice could be observed in social

settings.

(H) Comparative speed distribution between solitary and grouped WT, HE, and HO mice, revealing differences in activity patterns influenced by social sur-

roundings.

(I) Comparative speed distribution between WT, HE, and HO mice in solitary and grouped, revealing shifts in activity patterns influenced by social surroundings.

(J) Box-and-whisker plots detailing the total travel distance over a span of 10 min for different genotypes under varying experimental conditions, indicating

genotype-specific mobility and social interaction trends (one-way ANOVA followed by Tukey’s HSD test).

(K) Graphical representation of interaction duration across various social behaviors, with significant differencesmarked by genotype-specific responses (Kruskal-

Wallis test followed by Dunn’s test, *p < 0:05), illustrating the intricacies of social engagement among ASD models. See also Tables S4 and S5.
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social-behavior analysis has validated the phenotypes identified

by segCluster, also highlighting the limitations of such rule-

based methods in capturing the full spectrum of behavioral

patterns.

Inconclusion,STCShasnot onlycontributed toour understand-

ing of ASD but also represented a significant advancement in the

studyof social behavior. Byprovidingamorecomprehensive anal-
ysis of social interactions, STCS holds the promise of enhancing

our understanding of a wide range of social behaviors and neuro-

developmental disorders. Its potential applicationsextendbeyond

ASD to other areas of behavioral neuroscience, such as aggres-

sion,55,56 mating behaviors,57,58 social hierarchy,59–61 and social

avoidance in depression,62,63 making it a versatile tool for future

research. STCS, therefore, stands as a testament to our
Patterns 5, 101057, November 8, 2024 11
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commitment to removing the limitations in sociability testing for ro-

dents and, more broadly, in the field of behavior science.

EXPERIMENTAL PROCEDURES

Hardware and software configurations

Computational experiments were conducted on a Lenovo Thinkbook16p 2021

laptop equipped with an RTX3060 Max-Q (6GB) GPU, 16 GB RAM, and an

AMDRyzen 5800HCPUunless otherwise noted. These hardware configurations

are readily available in the commercial market. Experiments employing our

methods were executed onUbuntu 20.04.6 LTSwithin theWindows Subsystem

for Linux 2 (WSL2). In contrast, experiments involving DLC and idTracker.ai were

performed onWindows 11, using Python environments provided by the respec-

tivepackages.Notably, although the Thinkbook16pboasts 16GBofRAM,a limit

of 12 GB was allocated to WSL2 for computations using STCS.

The recording conditions of the tracking videodataset are detailed in Table 1,

while the recording conditions for social-behavior videos of ASDmice are illus-

trated in Figure S5.

Dataset construction and annotation

We developed datasets for three animal species—mice, ants, and fruit flies—

targeting detection, pose-estimation, and instance-segmentation tasks.

These datasets were divided into training (70%), validation (20%), and testing

(10%) sets. For ants and fruit flies, image data were sourced from videos

included in the supplementary materials of the idTracker.ai paper. In contrast,

mouse image data were sourced from a diverse array of videos captured using

various devices and experimental settings, as detailed in Table 1, along with

additional recordings conducted for ASD behavior experiments. We defined

specific key points for each species: eight for mice (nose, left ear, right ear,

left hind leg, right hind leg, tail base, mid-tail, tail tip), seven for ants (head, tho-

rax, abdomen, 2 keypoints on each antenna), and six for fruit flies (left eye, right

eye, thorax, abdomen, left wing, right wing).

Our approach for extracting images from video frames was multifaceted,

combiningequidistant interval, randomsampling, andK-meansclustering (as re-

ported by DLC). Duplicate images were removed by annotators, who then con-

ducted selective annotations. Further, inspired by SLEAP’s human-in-the-loop

annotationmode,we introduced amethod for exporting low-confidence images

for manual review, integrating the revised data back into the dataset. The final

mousedatasetcomprises574 images (split as401:115:58), theantdataset36 im-

ages (25:7:4), and the fruit fly dataset 33 images (23:6:4). All images were anno-

tated using coco-annotator and exported in MSCOCO format.

For ground-truth generation in tracking tasks, we initially ran our algorithm

on the videos listed in Table 1. The outputs were then transferred to label-stu-

dio for manual corrections. In the 1-h-long 43WT dataset, which involved

frequent intense interactions, three human annotators were employed. Anno-

tator A was tasked with checking for ID switches frame-by-frame, annotator B

focused on discerning minor visual differences between lab animals, and

annotator C intervened for final decisions in cases of inconsistency between

A and B. All tracking datasets, except for the 14ants and 10flies datasets, pre-

sented in this article comply with the MOT challenge format.32

We utilized the occlusion metrics proposed by Pedersen et al.31 to measure

the complexity of animal interactions within each video defined as follows:

(1) Occlusion count (OC): the average number of occlusion events per

second.

(2) Occlusion length (OL): the average time in seconds of all occlusion

events.

(3) Time between occlusions (TBO): the average time in seconds between

occlusion events.

(4) Intersection between occlusions (IBO): ameasure of how large a part of

the animal is part of an occlusion event. The intersection in frame f for

animal i is given by

IBOi;f =
1

jbbi j
Xn

j = 1

bbi Xbbj ; jsi
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where n us the number of animals in an occlusion event, and bbj is the set of

pixel coordinates in the bounding box of animal j.

(5) J: a single complexity measure combining all the four metrics given by

J =
OC3OL3 IBO

TBO
;

and the measure falls in the interval ð0; +NÞ where a larger value indicates a

higher video complexity.
Detection, instance segmentation, and pose estimation

Our system’s pipeline is designed to be model agnostic, harnessing the versa-

tility of the OpenMMLab platform (https://github.com/open-mmlab/mmcv).

This flexibility allows users to experiment with various algorithm combinations.

For our specific implementation, considering hardware constraints, we opted

for Mask Scoring RCNN,37 RTMDet-tiny-Ins,40 and YOLOv8-s Segm

(YOLACT49) for instance-segmentation, YOLOv8-s Pose,38 and MobileNetV2-

based pose-estimation34,41 approach.

For high-quality instance segmentation, we adhered to most default data

augmentation protocols for training RTMDet models, including

RandomResize, RandomCrop, YOLOXHSVRandomAug, RandomFlip, and

MixUp. Han et al.16 suggest the effectiveness of CopyPaste augmentation in

multi-animal tracking; therefore, we incorporated this technique as well. How-

ever, mosaic augmentation was excluded due to compatibility issues.

We trained the Mask Scoring RCNN network and RTMDet-tiny-Ins model

with MMDetection toolkit (https://github.com/open-mmlab/mmdetection)

and YOLOv8-s Segm model with the ultralytics toolkit (https://github.com/

ultralytics/ultralytics).

YOLO Pose is a single-stage pose-estimation method that employs deep-

learning models to directly regress the coordinates of key points. The other

pose-estimation module employs a top-down methodology, utilizing

MobileNetV2 as the backbone—a popular lightweight model used in various

applications, including animal pose estimation in DLC and SLEAP. This mod-

ule predicts heatmaps representing the probability distributions of key points

for each individual. In post-processing, peaks on these heatmaps are con-

nected to form skeletons. We implemented data-augmentation strategies

such as RandomFlip and RandomBBoxTransform to enhance the perfor-

mance of the pose-estimation model. YOLO Pose was trained with the ultra-

lytics toolkit and MobileNetV2 top-down pose-estimation model was trained

with MMPose toolkit (https://github.com/open-mmlab/mmpose).

We observed discrepancies between the evaluation tools provided by the

YOLOv8 system and the results from cocoapi. Therefore, we uniformly used

cocoapi for evaluating our instance-segmentation and pose-estimation re-

sults. The sigma value for animal key points was consistently set to 0.1.

Subsequent to instance segmentation and pose estimation, we isolated in-

stances by masking out the background. Frames were then cropped around

the minimal enclosing rectangle for each instance and aligned using pose

data, resulting in what we term ‘‘instance frames.’’ These frames are preserved

for further classification.

Optimizing detection, instance segmentation, and pose estimation specif-

ically for laboratory animals was not within the scope of this study. The models

chosen for our experiments yielded satisfactory results. We encourage

readers seeking more technical details or alternative methods with potentially

superior performance on laboratory animals to consult the original papers on

SIPEC, SLEAP, DLC, etc.
Generating tracklets

Local tracklet generation primarily hinges on the instance-segmentation

masks and optical-flow estimates, which predict subsequent frame masks.

Initially, a soft non-maximum suppression (NMS)64 is applied to reduce redun-

dant detections, followed by retaining the top k detections based on confi-

dence scores, where k represents the maximum number of animals in the

video. We then calculate the distances between masks in adjacent frames

for data association.

https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mmdetection
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://github.com/open-mmlab/mmpose
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The distance metric used is intersection over maximum (IoM), akin to inter-

section over union (IoU). For Boolean matrices M1 and M2, the IoM is

defined as

IoMðM1;M2Þ =

PðM1^M2Þ
maxðPM1;

P
M2Þ :

For an instance mask Mt at time t, we predict its next frame location (t + 1)

using optical flow between the current frame and the subsequent frame I˛
RW3H32 (forward warping):

dMt+1

��
x + Ixy0

�
;
�
y + Ixy1

��
= Mtðx; yÞ;

where ½ $� denotes rounding to the nearest integer function.

Given the potential for warping holes and misalignment in forward warping,

we initially compute the mean masking intensities, apply thresholding, and

then perform a closing operation to fill predicted mask holes.

A cost matrix based on IoM distances is constructed for associating for-

warded and detected masks:

Cost½i; j� = � IoMðdMt;i ;Mt;jÞ:

Associations are established using theHungarian algorithm, accepted only if

the cost matrix entry exceeds a threshold Cost½i; j�%Thrmask. In our experi-

ment, we set Thrmask = � 0:7.

Unmatched forwardedmasks are kept alive for a predetermined period, with

the tracklet marked as stale if no newmatches occur. Conversely, detection of

an unmatched new mask results in a new tracklet added to the active pool.

After generating the tracklets, we applied the three-sigma rule to exclude

those with unusually fast or slow-motion speeds, as well as those with average

areas significantly larger or smaller than typical. This approach effectively fil-

ters out anomalies in movement speed and size. Tracklets filtered out by

this criterion will undergo classification at the final stage of the association

procedure.

Merging tracklets with soft border

In scenarios where local tracklets present temporary contradictions—prevent-

ing their amalgamation into a singular track—we leverage prior knowledge to

address this challenge. To this end, we construct an undirected graph GðV ;EÞ
representing the relationships among local tracklets, where V is the set of

tracklets and E is the set of pairs with contradictory attributes.

The criteria for determining contradictions between tracklets in our system,

segTracker.ai, diverge from those used in idTracker.ai. The latter marks track-

lets as contradictory if they coexist in the same frame upon iteration through all

frames. In contrast, segTracker.ai, grappling with imperfect segmentation

masks, implements soft borders for tracklets. We define the edge set E as

E = fft1; t2g j Overlapðt1; t2Þ R Thrborder ^ t1; t2 ˛ Vg

where Overlapð$; $Þ quantifies the number of frames in which two tracklets

coexist. We set Thrborder = 30 frames in our experiments.

Utilizing the contradictory graph G, mutually contradictory tracklet groups

are discerned by identifying maximal cliques.65 For a clique C, it holds that

jCj% k, where j$j denotes the cardinality of a clique. Considering the largest

cliques possible, where jC�j = k, we define a mergeable tracklet set Si as

Si = Nðc1ÞX/XNðci� 1ÞXNðci+1ÞX/XNðckÞ;

with cj being the vertex in C� and Nð $Þ denoting the neighbors of a given

vertex.

Visual identification and distance-based association

In segTracker.ai, tracklets are merged to form tracks using two primary

methods. The first method merges tracklets based on the confidence scores

provided by the classification model. We set a confidence threshold of 0.95

and establish a minimum number of instance frames required for merging.

The system first identifies all unclassified tracklets with a confidence above

0.95 andmerges themwith the corresponding individual track. If contradictory

tracklets are classified as the same individual during this process, the merging
is halted, and a new model training round is initiated. However, relying solely

on high-confidence tracklets may lead to identification failures; hence, we

introduce a secondary strategy that considers the confidence distance be-

tween unclassified and previously classified tracklets. We treat the association

as a progressive clustering process, analogous to the concept of triplet loss.

This loss guides the classification model to minimize distances within the

same cluster and maximize distances between different clusters. Meanwhile,

the fully connected (FC) layers act as classifiers, taking feature maps as inputs

and yielding classified individuals as outputs. In our design, the FC layers are

retained, with the clustering process being externalized from the loss function.

This allows the model to leverage the FC layers’ strong fitting capabilities for

more accurate predictions.

Given the classification model f and all the images in the classified track Ti

for individual i, we take the average of neural network output PTi
= fðTiÞ as the

clustering center. We propose two methods to measure the distance between

unclassified tracklets and classified tracks. First, using the Jensen-Shannon

divergence (JSD), we compare the average output distribution Pt = fðtÞ for

an unclassified tracklet t against PT :

JSðPtkPTÞ =
1

2
KL

�
PtkPt+PT

2

�
+
1

2
KL

�
PTkPt+PT

2

�
;

where KLð $k $Þ denotes the Kullback-Leible divergence, which is defined by:

KLðPkQÞ =
X
i

PðiÞlog PðiÞ
QðiÞ; i = 1; 2;/; k:

Alternatively, we consider the output probability distributions as appearance

features, calculating the cosine distance:

cosðPt ;PT Þ =
Pt$PT

jPt j$jPT j :

The distance matrix between classified tracks and unclassified tracklet

groups (as formed in the ‘‘merging tracklets with soft border’’ section) is

then computed. The Hungarian algorithm is employed to determine optimal

matches, accepted if the average matching distance falls below a set

threshold, ThrdistðJSÞ = 0:1 and ThrdistðcosÞ = 0:05 in our experiments.
Tracking performance evaluation

We evaluated our tracking results on the 10flies and 14ants datasets against

the original outputs from idTracker.ai, as provided in their supplementary

data. The idTracker.ai authors reported near-perfect tracking accuracies

(100% and 99.943%, respectively). Our analysis, based on the trajectories_

wo_gaps.npy data, revealed minor discrepancies in accuracy, potentially

stemming from the trajectories_interpolated.npy file. We converted the cen-

troids of individual masks into the idTracker.ai NumPy array format, treating

each entry with a not-a-number (NaN) value as non-identified.

For each individual i at time t, centroid coordinates from our method and id-

Tracker.ai are denoted as pði; tÞ and p�ði;tÞ, respectively. We marked pairs as

inconsistent when the Euclidean distance kp�ði; tÞ � pði; tÞk exceeded the an-

imal’s length. Instances with inconsistencies lasting less than 0.5 s were

compared against idTracker.ai outputs as ground truth. Inconsistencies over

0.5 s prompted manual video clip checks for ground-truth determination.

Additionally, we tested idTracker.ai (version 4.0.12) on our own video data-

sets. In instances where idTracker.ai encountered an out-of-memory (OOM)

error, we attempted the process up to three times; persistent OOM errors

led to marking the results as not applicable (N/A). Given that idTracker.ai

does not provide detection boxes or pose-estimation results, our evaluation

using TrackEval (https://github.com/JonathonLuiten/TrackEval) involved

matching our detection frames generated by RTMDet with the tracking outputs

of idTracker.ai. This approach allowed for a comparative assessment of

tracking accuracy under our detection framework.

We compared our system with the unsupervised tracking component of

DLC on our own video datasets. Due to DLC and AlphaTracker2’s (AT2)

requirement for consistent image resolution, we annotated 120–150 images

per video for each dataset, undergoing 30,000 training iterations and 400–

600 epochs (400 for pose estimation and 600 for detection), respectively.

Although SLEAP supports multiple input resolutions, we have found that
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training a model individually for each video yields better pose-estimation qual-

ity, and thus SLEAP has also adopted this dataset-specific approach. The

annotation process was dual pronged: equidistantly sampled images anno-

tated by our model and manually corrected, and images obtained via DLC’s

internal K-means-based sampling algorithm, which were exclusively manually

annotated. We trained DLC’s re-ID transformer model using default parame-

ters. To evaluate tracking performance, we converted DLC, SLEAP, and

AT2’s pose-estimation results into detection boxes, allowing for a level com-

parison of tracking capabilities between DLC, AT2, and our system.

Due to the plethora of configurable parameters offered by software like

SLEAP and DLC, it is impractical to explore the optimal parameter combina-

tion using methods such as grid search. Therefore, we largely maintained

the default parameter settings of the software. A list containing the configura-

ble parameters used during our experiments is included in Note S2.

DEVA offers a video instance-tracking solution but requires the provision of

instance masks for each frame. We input the instance-segmentation results

from RTMDet-tiny-Ins into DEVA, as it is the best instance-segmentation

model we have validated. We set DEVA’s tracking mode to semionline and

max_num_objects to 6 for tracking mice.

For OCSORT, ByteTrack, DeepOCSORT, and BoTSORT, we used the

default parameters provided by yolo_tracking (https://github.com/mikel-

brostrom/yolo_tracking) and input the detection boxes obtained from

RTMDet-tiny-Ins into these algorithms to acquire tracking results. Based on

our visual observations, we consider OCSORT to have stronger capabilities

in motion modeling. However, due to the lack of an appropriate re-identifica-

tion mechanism, all SORT algorithms struggle to achieve long-term stable

tracking results.

We focus mainly on identity metrics including identification F1 score (IDF1),

identification recall (IDR), and identification precision (IDP),66 which primarily

measures the data-association accuracy for MOT trackers. This emphasis is

due to the majority of bounding boxes being automatically generated by

RTMDet and subsequently manually corrected, rendering direct comparisons

based on detector performance with other methods as potentially unfair (Note

S3). However, we also provided comprehensive evaluation results based on

multiple object tracking accuracy (MOTA)67 metrics (Table 3) and higher-order

tracking accuracy (HOTA; Table S6),68 which consider both the stability of

long-term tracking and the performance of the detector. For IDF1, IDR, IDP,

MOTA, and HOTA, higher values indicate superior tracking performance. We

noted that some animal-tracking tools performed poorly on our dataset, not

only due to instability in long-term tracking but also because of a higher rate

of missed detections. This could be attributed to our dataset being composed

of various types of images, the need for more annotated data, or the require-

ment for more meticulous tuning by domain experts in these methods.
Weakly supervised behavior remapping

We utilized the spatiotemporal GCN (STGCN) implemented in MMAction2 as

the backbone for our autoencoder, chiefly due to its excellent performance

in spatiotemporal modeling. We represented the mouse skeleton as a directed

graph with specific key points connections such as {(left ear, nose), (right ear,

nose), (tail base, nose), (left hind leg, tail base), (right hind leg, tail base), (mid

tail, tail base), (tail tip, mid tail)}.

Traditionally, STGCNs analyze individual behaviors and integrate this informa-

tion in the final layer via an FC network for social action recognition. To augment

its capacity for modeling social interactions without altering the STGCN’s struc-

ture or input-output format, we introduced a novel, lightweight SC module. This

module is essentially a linear layer that amalgamates features from different in-

dividuals at a specific key point and time. We termed it Conv due to its resem-

blance to group convolution operations in aggregating behavioral information

across various individuals and for its consistency with the existing GCN Block

structure. To ensure that this module does not compromise the extraction of in-

dividual behavioral features, we incorporated residual connections into the SC

module. The output for a given input xin ˛RN3T3K3C is given by

xout ½:; t; k; :� = xin½:; t; k; :�+ActðWkxin½:; t; k; :� + bÞ;

where N is the number of individuals, t the timestamp, k a keypoint, C the

feature channel number,Actð $Þ the activation function,Wk ˛RNC3NC the learn-

able weight matrix for keypoint k, and b is the bias term.
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The STGCN autoencoder is structuredwith symmetrically arranged encoder

and decoder sets (Figure S6). The encoder comprises seven GCN blocks,

while the temporal modeling module utilizes a multi-scale temporal convolu-

tional network. During encoding, feature channels are expanded to 32 and

subsequently downsampled to four channels at a 1/2 sampling rate in specific

layers, with temporal downsampling also implemented. The decoder, with six

GCN blocks and a simpler temporal convolutional network, follows a similar

expansion and downsampling pattern, with an additional FC layer mapping

the features to Cartesian coordinates for action sequences. The autoencoder

is trained using the mean squared error (MSE) loss function. The classification

head of the autoencoder, tasked with predicting the genotype from extracted

features, takes the encoder’s output as input. Given the indirect correlation be-

tween social behaviors and genotype information, we treated genotype pre-

diction as a weakly supervised task. To accommodate potential inaccuracies

in genotype labels, we implemented label smoothing with a larger epsilon

value (0.6) for the three genotypes (WT, HE, HO) and trained the model using

cross-entropy loss.

For neural network input, we segmented action sequences from videos into

2.5-s intervals, retaining different animals as necessary. For instance, in the NI-

group experiment, we included a newcomer and one WT mouse to form a

simpler 1vs1 sequence. We adopted two strategies for generating training

and test sets. One strategy assessed whether the neural network’s extracted

features could differentiate behavioral variations among different genotypes:

we trained on selected sequences from four videos per genotype, chose the

model with the highest reconstruction accuracy, and tested on the remaining

videos to predict genotypes, comparing the accuracy against a random-guess

baseline of 0.33. The other strategy, aimed at feature extraction and clustering,

involved dividing each video into two equal segments, using the first half for

training and the second for testing, selecting the model with the highest clas-

sification accuracy on the test set for feature extraction.

Clustering of ASD mice behavior

In the process of clustering ASD mice behavior, we refined the action se-

quences designated for feature extraction, as detailed in the section ‘‘weakly

supervised behavior remapping.’’ This refinement involved filtering based on

the minimum interspecies distance, focusing exclusively on sequences where

the distance between twomice remained below 10 cm. Utilizing the bottleneck

layer of the STGCN autoencoder, we extracted embeddings from these

sequences.

For dimensional reduction, we applied UMAP69 to transform these high-

dimensional feature sets into a two-dimensional space. This step facilitated

amore tractable analysis of the behavioral data. Subsequent hierarchical clus-

tering was performed, with the optimal number of clusters determined by

exceeding a predefined threshold of 0.4, as gauged by the SS.

To understand the genotype distribution within each identified social-

behavior category, we conducted statistical analyses using the Kruskal-

Wallis test, followed by Dunn’s test for post hoc analysis. This approach al-

lowed for a comprehensive assessment of behavioral variations across

different genotypes.

LayerCAM for interpreting spatiotemporal social behavior in STGCN

autoencoders

We employed LayerCAM to perform an interpretable analysis of spatiotem-

poral social-behavior sequences. For a more detailed understanding through

CAMs, we focused on the final GCN layer preceding temporal downsampling

in our visualization analysis. This selection was critical to achieve finer granu-

larity in the resulting CAMs.

Given that the length of behavior sequences might require padding to match

the standard input length of the neural network, we resampled the generated

CAMs to ensure congruence with the original sequence lengths. The resam-

pling process involved summing the CAMs across feature channels and map-

ping these aggregated values to their respective time points and skeletal key

points.

Furthermore, to mitigate the issue of false-positive activations commonly

observed at relatively stationary key points, a consequence of the continuous

accumulation in spatiotemporal CAMs, we adopted a specialized visualization

technique. This technique prioritizes the maximum activation for each key

point over the standard practice of accumulating activation values. Such an

https://github.com/mikel-brostrom/yolo_tracking
https://github.com/mikel-brostrom/yolo_tracking
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approach ensures that the visualizations accurately reflect themost significant

activations, thereby providing a more precise interpretation of the network’s

focus and decision-making process in relation to specific behavioral

sequences.
Mouse

Shank3 KO mice were bred and raised under identical conditions in compli-

ance with the guidelines set by the Institutional Animal Care and Use Commit-

tee at the animal core facility of the Huazhong University of Science and Tech-

nology in Wuhan, China. Mice were housed in groups of three to five per cage

and maintained under a 12-h light-dark cycle, with lights switched on at 8 a.m.

The environment was kept at a consistent ambient temperature (21�C ± 1�C)
and humidity (50% ± 5%). Behavioral tests were conducted during the light

phase of the cycle.

Shank3�/� mice were generated by Gem-Pharma-Tech, Nanjing, China

(Primers: KO-F, 50-AGGGCAGGGAAGCCAATAAGCATCCAAT-30; KO-R,

50-ACTCACCCACTGTCCACCCACCCGAAAT-30; WT-F, 50-TGGCCATGGC

TCTATGCTGG-30; WT-R, 50-GGGCCACCTTATCTGTGCTGT-30).
Mice genotyping

DNA was extracted from tail snips for pup identification using a PCR-based

sequence analysis. Tail snips (4 mm) from mice were collected in sterile 1.5-

mL microcentrifuge tubes containing 100 mL of tissue digestion solution buffer

(composed of 0.5844 g of NaCl, 0.1211 g of Tris, 0.744 g of EDTA-2Na, and

5 mL of 10% SDS, pH 8.0) along with 100 mL of proteinase K. The samples

were then incubated on a shaking table at 55�C for 6 h. Subsequently, the di-

gested samples were heated at 98�C for 18 min, followed by centrifugation at

14,000 rpm for 18 min. Post centrifugation, 10 mL of supernatant was trans-

ferred to a new sterile 1.5-mL microcentrifuge tube and mixed with 40 mL of

double-distilled water. PCR reactions were carried out in a 20-mL volume,

comprising 1.5 mL of isolated tail DNA sample, 6.5 mL of H2O, 10 mL of 23 Go-

Taq master mix, and 1 mL each of forward and reverse primers, as previously

described. The PCR cycling conditions were as follows: 98�C for 3 min (98�C
for 10 s, 66�C for 20 s) for 35 cycles, 68�C for 10 min, and 4�C for 5 min. Sub-

sequently, the PCR products were resolved on 2%agarose gels in Tris-borate-

EDTA (TBE) buffer.
Western blot

Brain tissues were isolated from Shank3+/+, Shank3+/�, and Shank3�/� mice,

homogenized, and diluted in a buffer containing 200 mM Tris-Cl (pH 7.6), 8%

SDS, and 40% glycerol. The protein concentration was determined using a

BCA kit (Pierce). Final concentrations of 10% b-mercaptoethanol and

0.05% bromophenol blue were added, and the samples were boiled

for 10 min in a water bath. Subsequently, the proteins in the extracts were

separated by 10% SDS-PAGE, transferred to nitrocellulose membranes,

and blocked with 2% BSA in TBST for 1 h. The membranes were then incu-

bated overnight at 4�C with specific primary antibodies, including rabbit

monoclonal anti-Shank3 (1:1,000, sc377088, Santa Cruz) and mouse mono-

clonal anti-beta-actin (1:5,000, MA5-15452, Invitrogen). Following primary

antibody incubation, the membrane was washed with TBST and incubated

with the appropriate secondary antibodies (1:1,000, Odyssey) for 1 h at

room temperature (22�C ± 1�C). After further washing, the blots were

scanned using an infrared imaging system (Odyssey, LI-COR). Band den-

sities were quantitatively analyzed using Kodak Digital Science 1-D software

(Eastman Kodak).
Home cage behaviors

Individual mice of each genotype were video-recorded alone in the

PhenoTyper home cages (Noldus, Holland), which provides a home cage envi-

ronment for a mouse, with the ability of bedding, shelter, and food and water

supply. Mice were placed into the PhenoTyper home cages (403 403 40 cm,

Noldus, Holland) and monitored between 1 p.m. and 4 p.m. Locomotion and

spontaneous behavior were detected by the interruption of infrared beams

by the body of themouse over a consecutive 30min. Automated video analysis

was conducted by EthoVisionXT (Noldus, Holland) to index time spent per-

forming individual behaviors.
Three-chamber sociability test

The three-chamber apparatus, constructed from durable white plastic,

measured 102 cm in length, 47 cm inwidth, and 45 cm in height. The two trans-

parent side-crossing walls were designed with a 10-cm width to allow mice to

move freely between chambers. The cup-like containers, each with a diameter

of 10 cm and a height of 12 cm, were constructed using metal wires with 1-cm

gaps, enabling air exchangewhile preventing direct physical interactions. Atop

each cup, a cone-shaped object, also made from the samematerial, was posi-

tioned to deter climbing by the test mouse. During the habituation session,

mice were gently placed in the center of the apparatus, flanked by two empty

containers on each side, and given a 10-min period for exploration. Following a

1-h delay, mice progressed to a 10-min test session. Here, an unfamiliar WT

mouse, matched in age, sex, and strain, was placed in one container to serve

as the social stimulus, while a novel object occupied the other. The positioning

of containers was systematically alternated across all experiments to prevent

potential biases. Exploratory time on each side during the habituation session

was meticulously recorded. In the subsequent test session, interaction

behavior was defined as a mouse approaching its nose within 1 cm of a

container. The social preference discrimination index, a metric previously

described, was computed as (M�O)/(M +O), withM representing the duration

spent interacting with the unfamiliar mouse, and O denoting the time devoted

to exploring the novel object.

Statistics

Statistical analyses were conducted using Scipy version 1.10.1 and the statan-

notations package version 0.5.0 for statistical functions, with post hoc tests

performed using scikit_posthocs version 0.7.0. The significance threshold

was set at p < 0.05. Kinematic analyses of experimental animals were initially

subjected to a Shapiro-Wilk test for normality and Levene’s test for homoge-

neity of variances. Kinematic data and duration of rule-based behavioral tasks

that met the assumptions of normality and homogeneity of variance were

analyzed using ANOVA, with Tukey’s honestly significant difference (HSD)

test for post hoc comparisons. For data that did not meet the requirements

for ANOVA, Kruskal-Wallis non-parametric tests were used, followed by

Dunn’s post hoc test for pairwise comparisons. The effectiveness of the SC

module was assessed using the Mann-Whitney U test. Differences in the dis-

tribution of clustered behavioral categories across different genotypes of

experimental animals were evaluated using the Kruskal-Wallis test.
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Data and code availability
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and pose-estimation results, and all trained models including their configura-

tion files from our research are publicly accessible on figshare.70–74 The STCS

code is also publicly available at our GitHub repository: https://github.com/

tctco/STCS.
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