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Abstract: Peptides represent an important class of biologically active molecules with high potential
for the development of diagnostic and therapeutic agents due to their structural diversity, favourable
pharmacokinetic properties, and synthetic availability. However, the widespread use of peptides and
conjugates thereof in clinical applications can be hampered by their low stability in vivo due to rapid
degradation by endogenous proteases. A promising approach to circumvent this potential limitation
includes the substitution of metabolically labile amide bonds in the peptide backbone by stable
isosteric amide bond mimetics. In this review, we focus on the incorporation of 1,4-disubstituted
1,2,3-triazoles as amide bond surrogates in linear peptides with the aim to increase their stability
without impacting their biological function(s). We highlight the properties of this heterocycle as
a trans-amide bond surrogate and summarise approaches for the synthesis of triazole-containing
peptidomimetics via the Cu(I)-catalysed azide-alkyne cycloaddition (CuAAC). The impacts of the
incorporation of triazoles in the backbone of diverse peptides on their biological properties such
as, e.g., blood serum stability and affinity as well as selectivity towards their respective molecular
target(s) are discussed.

Keywords: 1,4-disubstituted 1,2,3-triazoles; CuAAC; peptidomimetics; amide bond surrogate;
metabolic stabilisation

1. Introduction

Peptides represent one of the major classes of biomolecules used as diagnostics and therapeutics. [1]
Since the introduction of solid-phase peptide synthesis (SPPS) by Merrifield [2], which allows for a
quick, easy and automatable synthesis of peptides, their pharmaceutical impact grew enormously due
to their high specificity and low off-target side-effects. However, applications of peptides in medicine
can be limited due to their low in vivo stability [3]. They are susceptible to rapid degradation by
proteases via hydrolysis of the amide bonds in their backbone structure [4]. This leads to a poor oral
bioavailability due to the presence of proteases in the digestive system and a low metabolic stability
in vivo derived from the degradation in the blood plasma mediated by soluble and membrane-bound
peptidases [5,6].

Therefore, substantial effort has been put into the development of stabilisation techniques for
metabolically labile peptides. Different approaches have been studied involving structural variations
of the peptide sequence. For example, modification of the C- or N-terminus of a peptide, cyclisation of
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linear peptides or incorporation of d-amino acids and other unnatural amino acids in the sequence have
been shown to have a positive impact on peptide stability in blood serum [3,5,7]. Another approach
is the coadministration of protease inhibitors to impede fast degradation and enhance in vivo blood
serum stability [5,8].

In order to prevent degradation by proteases, amide bonds susceptible to cleavage can be
substituted with isosteric amide bond surrogates. [9] Those peptidomimetics resemble native peptides
but contain synthetic non-peptidic structural features to improve the therapeutic or diagnostic
properties of the molecule. The most common peptide bond mimetics include esters, N-methylated
amide bonds, reduced amide bonds, semicarbazides, retro-inversed peptide bonds, peptoids and
alkenes (Figure 1) [9,10]. Introduction of heteroatoms such as sulfur, fluorine or boron lead to further
variation [11–15]. The incorporation of heterocycles in the peptide backbone is also reported. [16,17]
The first example of an aromatic heterocyclic amide bond mimetic in literature is the substitution of
the amide bond with 2-imidazolidine [18]. Other well-studied heterocyclic surrogates are pyrazoles,
tetrazoles and 1,2,4-triazoles and many more examples can be found in the literature [19–21]. One of
the most recently emerged amide bond mimetics in peptides is the 1,2,3-triazole scaffold [22].
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In medicinal chemistry, the 1,2,3-triazole motif is frequently used for the replacement of amide
bonds and their application in small molecules has already been highlighted elsewhere [23,24]. In 2003,
the first report of a cyclic peptidomimetic was published where a 1,4-substituted 1,2,3-triazole was
used as an isostere for the amide bond to obtain molecules which self-assemble into nanotubes [25].
In the following years, several groups investigated the structural consequences of the incorporation
of one or more triazoles on the secondary structure of resulting peptidomimetics such as α-helices
and β-sheets [26–33]. Another focus of attention was the synthesis and biological evaluation of cyclic
peptidomimetics with one or more triazoles in the backbone [34–43]. In most cases, the formation of
the triazole ring was used as a strategy for the (macro)cyclisation of the peptidomimetic. In a similar
manner, CuAAC was also applied for the synthesis of large peptides by ligating smaller fragments [44].
A handful of studies investigated the conformation of a dipeptide with the central amide bond being
substituted by a triazole [45–47].

In contrast to a metabolically labile amide bond, 1,2,3-triazoles are not cleaved by proteases.
Hence the substitution of a peptide bond by a triazole (Ψ[Tz], a so-called amide-to-triazole switch)
represents a promising strategy to increase the peptide’s in vivo stability. This property is not only
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important for the therapeutic efficacy of a drug but also for diagnostic means [48]. A number of examples
of triazolo-peptidomimetics included in this review concern their application as radiopharmaceuticals.
In nuclear medicine, small radiolabelled peptides are the agents of choice for tumour-targeting
vectors in diagnostic imaging of tumour entities. For example, the peptide can be conjugated via
its N- or C-terminus or a sidechain to a chelator that can stably complex a metallic radionuclide
such as lutetium-177 or gallium-68 [48]. The radiopharmaceutical is applied intravenously and
then distributes in the entire body. It specifically binds to the cancer cells due to high receptor
affinity and after internalisation, it gets accumulated inside the tumour. This leads to an increased
concentration of radioactivity inside the target, which is then detected by either single photon emission
computed tomography (SPECT) or positron emission tomography (PET) depending on the employed
radionuclide [48,49]. In the field of SPECT- and PET-imaging, peptides are preferred over antibodies
as tumour-targeting vectors because of their favourable pharmacokinetic properties, their synthetic
availability and their low cost [50]. In general, their rapid distribution, fast tissue penetration and quick
blood clearance enable imaging with higher resolution and after shorter incubation times compared
to antibodies. Furthermore, healthy tissue is less exposed to radiation which makes radiolabelled
peptides a safer option for treatment of patients [50,51]. The abundance of regulatory and other
peptides, which display high affinity for receptors that are often massively overexpressed in cancer
cells, constitutes a vast pool of possibilities for the development of diagnostic tools. However,
one limitation is their short biological half-life in blood plasma due to proteolysis. The number of
approved radiolabelled peptides for imaging or therapy is still low partly due to low in vivo stability.
Currently a great effort is ongoing to improve their stability whilst maintaining (or even increasing)
the affinity to the receptor [48]. Besides their use as radiopharmaceuticals, other applications of
triazolo-peptidomimetics include endogenous peptides involved in signalling, protease inhibitors and
inhibitors of protein-protein interaction and will be discussed in detail in the following.

In this review, we highlight the properties of 1,2,3-triazoles as trans-amide bond isosteres and
the synthesis of triazolo-peptidomimetics. We discuss the application of the amide-to-triazole switch
in peptides with the aim to improve their stability. We limit our review to the modification of linear,
high affinity peptides which exhibit a known biological function and where one or more amide bonds
are replaced with a 1,4-disubstituted 1,2,3-triazole. The use of 1,5-disubstituted 1,2,3-triazoles as
surrogates for cis-amide bonds is not within the scope of this review, but can be found summarised
elsewhere [42,52–56]. This review is organised by peptides and listed in chronological order.

2. 1,2,3-Triazole as Amide Bond Isostere

1,4-Disubstituted 1,2,3-triazoles are excellent isosteres for the trans-amide bond as they mimic
the electronic properties such as dipole moment and hydrogen-bond properties of the amide bond
in contrast to many other surrogates (Figure 2) [22]. The dipole moment of the triazole moiety is
slightly higher than in amide bonds (~4.5 Debye vs. ~3.5 Debye) which allows for the polarisation of
the proton at C-4 so that it can serve as H-bond donor similar to the NH in amides [57,58]. The lone
pairs at N-2 and N-3 serve as weak H-bond acceptors, hence well mimicking the amide bond. [59,60]
Because of the high dipole moment, the triazole unit could align with that of other amide bonds
to stabilise the secondary structure of peptides [61]. Furthermore, the aromatic heterocycle is able
to form intra- or intermolecular π-interactions [62]. When comparing the structure and the size of
the two units, the triazole surrogate leads to a slightly longer distance (4.9–5.1 Å) between the two
neighbouring amino acid residues than the amide bond (3.8–3.9 Å), which is thus more similar to
the distance encountered in peptides incorporating β-amino acids (4.9 Å) [22,23,63]. The heterocycle
reproduces the planarity of the amide bond, although it also displays a higher rigidity due to the
aromatic structure. All these similar features make this heterocyclic motif a good amide bond mimetic,
which is highly stable to enzymatic cleavage by proteases, acid or base hydrolysis and reductive or
oxidative conditions [64]. However, due to this high chemical stability, it is still unknown how triazoles
are metabolised and further investigations are needed to determine their biological fate [61].
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3. Synthesis of Triazolo-Peptidomimetics

In recent years, the regioselective synthesis of 1,2,3-triazoles became easily accessible. In 2002,
the groups of Meldal and Sharpless reported independently the Cu(I)-catalysed azide-alkyne
cycloaddition reaction (CuAAC) which leads to the regioselective formation of 1,4-disubstituted
1,2,3-triazoles under mild conditions [65,66]. This reaction is classified as a click chemistry reaction as
it is high yielding, wide in scope, simple to perform, produces no (or easily removable) side-products
and can be conducted in a wide range of solvents [67]. Due to this outstanding versatility, this reaction
quickly had a high impact in many areas of chemistry. Applications of the CuAAC range from organic
and medicinal chemistry to material science and biological chemistry [68–72]. This reaction is also a
versatile tool for peptide chemists, either for cyclisation reactions (head-to-tail, head/tail-to-sidechain or
sidechain-to-sidechain) or cyclodimerisations, as disulfide bridge replacement, for ligation of peptide
fragments or bioconjugation to other (bio)molecules [73,74]. Meldal reported the use of CuAAC on
solid phase which further enhanced its use in peptide synthesis [65]. The introduction of the triazole
motif into the backbone of the peptide can be easily performed in solution or on solid phase as depicted
in Figure 3.
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The CuAAC can be performed in solution between an N-protected α-amino alkyne and an
α-azido carboxylic acid leading to a triazole-containing dipeptoid building block which can then be
employed for SPPS (pathway A). Alternatively, the CuAAC can be carried out directly on solid phase by
transforming the immobilised, deprotected N-terminal amine on-resin into an azide and subsequently
reacting it with a protected α-amino alkyne together with a Cu(I) salt (or a source thereof) for the
CuAAC (pathway B). CuAAC can also be envisaged for the ligation of two larger peptide fragments
with an azide- and an alkyne-terminus, respectively (pathway C). In case of cyclic triazole-containing
peptides, the triazole formation may be used as the cyclisation step after the synthesis of the linear
peptide sequence bearing an azide and an alkyne unit (pathway D).

In solid phase synthesis, the triazole moiety is incorporated into the peptide backbone in
two steps. First, the free amine of the elongated peptide chain is transformed into an azide via
a diazotransfer reaction. Imidazole-1-sulfonyl azide hydrochloride (ISA0HCl) is a relatively safe
and stable diazotransfer reagent [75] and the reaction can be carried out at room temperature in
solvents compatible with solid phase synthesis (e.g., DMF). Alternatively, chiral α-azido acids are also
commercially available and can be used directly for SPPS. The second step consists of the CuAAC where
the terminal azide is reacted with an Fmoc-protected α-amino alkyne under Cu(I) catalysis employing
different sources of the metal (i.e., CuI, CuBr·Me2S, Cu(CH3CN)]PF6 or CuSO4·5H2O with sodium
ascorbate) [76–79]. α-Amino alkynes are not commercially available yet, however, their synthesis
can be achieved in a few steps from Fmoc-protected amino acids (Figure 4). The most common and
convenient method involves the formation of the corresponding α-amino aldehyde via the Weinreb
amide and the subsequent Seyferth-Gilbert homologation using the Bestman-Ohira reagent [80].
Besides, the Corey-Fuchs reaction for the transformation of aldehydes to alkynes can be employed
for the synthesis of Boc-protected α-amino alkynes [81]. However, it is known that this approach
may lead to partial racemisation of the α-amino alkyne [52,56,82]. The use of α-amino alkynes as a
mixture of enantiomers results in the formation of diastereomers when used for peptide synthesis and
additional measures (i.e., purification of the alkynes using chiral HPLC or separation of the resulting
diastereomeric peptide products by HPLC) have to be taken into account. An alternative synthesis
of α-amino alkynes involves the condensation of Ellman’s auxiliary onto aldehydes and subsequent
conjugate addition of an organometallic reagent to the resulting sulfinamide (Figure 4) [56]. However,
this method is limited to amino acids without acid-sensitive protecting groups in their side chains.

Reaction times for the CuAAC on solid phase are generally longer than for Fmoc-SPPS peptide
couplings. It is usually performed at room temperature overnight and no heating or microwave reactor
is necessary. CuAAC on solid phase results in quantitative conversion which can be followed by the
Punna-Finn test, a colorimetric test developed for the detection of aliphatic azides similar to the Kaiser
test [83]. The CuAAC can also be used to ligate several peptide fragments as an alternative cyclisation
approach for peptides.
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Figure 4. Different approaches for the synthesis of α-amino alkynes: The most common synthesis is
starting from an amino aldehyde via a Seyferth-Gilbert homologation using the Bestmann-Ohira reagent.
Another possibility from the same starting material is the Corey-Fuchs reaction. An alternative approach
is the condensation of an achiral aldehyde and Ellman’s auxilliary followed by the conjugate addition
of an organometallic alkyne reagent to the sulfinamide. M = Metal (e.g., Li or MgX), PG = protecting
group, R = amino acid side chain, TMS = trimethylsilyl.

4. Applications

4.1. PACE4 Inhibitors

Paired basic amino acid cleaving enzyme 4 (PACE4, also known as proprotein convertase
subtilisin/kexin type 6 PCSK6) belongs to the family of pro-protein convertases and plays an important
role in tumour aggressiveness. A patent from Dory and co-workers describes the development of
more stable and selective PACE4 inhibitors for treating a variety of different cancers based on the
octapeptide multi-Leu peptide [84]. Various modifications were introduced in this peptide including
the replacement of amide bonds with a 1,2,3-triazole and in silico analyses were performed to select
potent inhibitors. Amongst them were the two triazole-containing peptidomimetics P1 and P2 with a
triazole in positions Leu2-Leu3 and Leu1-Leu2, respectively (Table 1). However, the synthesis of these
two compounds is not described. Half-life (t1/2) in blood plasma and the inhibitor constant (Ki) was
determined. Interestingly, compound P1 displayed a two-fold lower half-life in blood plasma and a
decreased potency (t1/2 = 1.0 h, Ki = 600 nM) compared to the unmodified peptide (t1/2 = 2.1 h, 38 nM).
In contrast, peptidomimetic P2 maintained the potency of the parent compound (Ki = 37 nM) and
increased the plasmatic half-life by 100% (t1/2 = 4.0 h). Nevertheless, these two peptide analogues were
not further pursued as other strategies such as the incorporation of d-amino acids, β-amino acids or
modification at the N-terminus were found to be more effective.

Table 1. Sequences of Multi-Leu and P1–2 and their reported biological properties [84].

Compound Sequence t1/2 [h] b Ki [nM]

Multi-Leu a Ac-Leu-Leu-Leu-Leu-Arg-Val-Lys-Arg-NH2 2.1 ± 0.2 38
P1 Ac-Leu-LeuΨ[Tz]Leu-Leu-Arg-Val-Lys-Arg-NH2 1.0 ± 0.2 600
P2 Ac-LeuΨ[Tz]Leu-Leu-Leu-Arg-Val-Lys-Arg-NH2 4.0 ± 0.5 37

a Reference compound. b Determined in blood plasma.
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4.2. Leu-Enkephalin

The Dory group reported the synthesis of triazole-containing peptidomimetics based on
Leu-enkephalin (Leu-Enk), an endogenous ligand for the delta opioid receptor (DOPr) [76]. Due to
the rapid degradation of this pentapeptide, the group investigated the use of metabolically stable
1,2,3-triazoles to obtain analogues with increased biological half-lives. They designed four derivatives
Enk1–4 by systematically replacing each amide bond with a triazole (see Table 2). For the synthesis
of these peptidomimetics, the triazole-bearing dipeptide was prepared in solution via CuAAC using
CuI and 2,6-lutidine and the building blocks were then further used in the solid-phase synthesis
of the peptidomimetics (Figure 3A). The binding affinities of all analogues were determined in a
competitive binding assay on GH3 cell membrane extracts (rat pituitary tumour cell lines) containing
DOPr and using the selective DOPr agonist [3H]-deltorphin II as competitive ligand. Compound
Enk1 with a triazole at position Phe4-Leu5 showed the highest affinity with an Ki = 89 nM, although
it was 15-fold lower than the endogenous Leu-enkephalin (Ki = 6.3 nM) [85]. Derivative Enk2 with
a triazole at position Gly3-Phe4 displayed a 60-fold lower affinity (Ki = 460 nM) compared to the
reference compound and the other analogues lost their affinity for DOPr (Ki > 1000 nM). Unfortunately,
experiments regarding their stability are not reported. This study shows that the 1,2,3-triazole is not
in all cases a universal bioisostere for a trans-amide bond as their incorporation into the peptide can
result in diminished or abolished biological activity.

Table 2. Sequences of Leu-Enk and Enk1–4 and their reported Ki values [76].

Compound Sequence Ki [nM] b

Leu-Enk a Tyr-Gly-Gly-Phe-Leu 6.3 ± 0.9
Enk1 Try-Gly-Gly-PheΨ[Tz]Leu 89 ± 12
Enk2 Try-Gly-GlyΨ[Tz]Phe-Leu 460 ± 250
Enk3 Try-GlyΨ[Tz]Gly-Phe-Leu >1000
Enk4 TryΨ[Tz]Gly-Gly-Phe-Leu >1000

a Reference compound. b Ki values were determined in competitive binding assays on GH3/DOPr cell membrane
extracts with [3H]-deltorphin II as selective agonist. Ki values are expressed as the means ± standard error of means
(SEM) of three to four independent experiments.

4.3. Bombesin

The amide-to-triazole switch was reported on the minimal binding sequence of bombesin
BBN(7-14), an agonistic ligand of the gastrin-releasing peptide receptor (GRPR), which is overexpressed
in a variety of tumours (i.e., prostate, breast, lung and pancreatic cancer) [77]. Valverde et al. chose
this model peptide as an example for a radiolabelled tumour-targeting vector to demonstrate the
potential of this novel peptide stabilisation method. The sequence was functionalised with a PEG4

spacer and the universal chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) at
the N-terminus which was necessary for the radiolabelling with lutetium-177, a clinically established
radionuclide. In addition, the methionine residue in position 14 was changed to norleucine (Nle)
to avoid side products arising from the oxidation of methionine during the radiolabelling step [86].
Afterwards, a triazole scan of [Nle14]BBN(7-14) was performed by creating a library of nine different
triazolo-peptidomimetics BBN2–10 (Table 3) in which every amide bond was substituted with a
triazole one at a time. The CuAAC was performed on solid phase according to Figure 3B by
reacting the resin-bound azido-peptide with the corresponding α-amino alkyne, [Cu(CH3CN)]PF6,
tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) and N,N-diisopropylethylamine (DIPEA) to
achieve the formation of the 1,4-substituted 1,2,3-triazole at the desired position. Seven out of the nine
peptidomimetics showed improved in vitro serum stability ranging from t1/2 = 8 h for BBN8 to t1/2

= >100 h for BBN4 (in comparison to t1/2 = 5 h for the reference peptide BBN1) thus enhancing the
stability up to 20-fold. The amide-to-triazole switch in the two analogues BBN2 and BBN10 preserved
the serum stability (t1/2 = 5 h and 6 h, respectively). The lipophilicity of all compounds was evaluated
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by determining the logD7.4 value. This is an important characteristic for radiopharmaceuticals as it
impacts pharmacokinetic properties such as the renal excretion of the drug. Substitution of an amide
bond with a 1,2,3-triazole did not significantly alter the lipophilicity of the novel peptide analogues at
pH 7.4. When tested for their biological activity, the cell uptake and the dissociation constant (KD) were
evaluated using GRPR-overexpressing PC3 cells (human prostate cancer cells). The internalisation rate
of BBN2, 5 and 7 were comparable to the parental compound (29.1%, 28.3% and 24.5%, respectively
compared to 27.7% for the unmodified reference peptide BBN1). The single digit nanomolar affinity
of the reference compound BBN1 to GRPR (KD = 2.0 nM) was also maintained in BBN2, 5 and 7
with KD values of 3.0, 3.1 and 5.9 nM, respectively. For compound BBN6, the amide-to-triazole
switch was slightly detrimental resulting in an internalisation rate of only 8.4% and a KD value of
48.6 nM. The other derivatives had abolished biological function on GRPR. Thus, compound BBN5
with the triazole situated between Gly11 and His12 was chosen for in vivo evaluation as the most
promising candidate with a 3.5-fold increase in in vitro serum stability and conserved biological activity.
It displayed in vivo specificity toward GRPR and a 2-fold higher tumour uptake in athymic nude mice
bearing PC3 xenografts due to its higher in vivo stability.

Table 3. Sequences of BBN1–14 and their reported biological properties [77,87].

Comp. Sequence
t1/2

[h] b
Uptake after 4 h

[%] c
KD

[nM] d

BBN1 a [177Lu]Lu-DOTA-PEG4-Gln-Trp-Ala-Val-Gly-His-Leu-Nle-NH2 5 27.7 2.0 ± 0.6
BBN2 [177Lu]Lu-DOTA-PEG4-Gln-Trp-Ala-Val-Gly-His-Leu-NleΨ[Tz]H 6 29.1 3.0 ± 0.5
BBN3 [177Lu]Lu-DOTA-PEG4-Gln-Trp-Ala-Val-Gly-His-LeuΨ[Tz]Nle-NH2 60 0.2 n.d.
BBN4 [177Lu]Lu-DOTA-PEG4-Gln-Trp-Ala-Val-Gly-HisΨ[Tz]Leu-Nle-NH2 >100 n.o. n.d.
BBN5 [177Lu]Lu-DOTA-PEG4-Gln-Trp-Ala-Val-GlyΨ[Tz]His-Leu-Nle-NH2 17 28.3 3.1 ± 1.0
BBN6 [177Lu]Lu-DOTA-PEG4-Gln-Trp-Ala-ValΨ[Tz]Gly-His-Leu-Nle-NH2 25 8.4 48.6 ± 11.5
BBN7 [177Lu]Lu-DOTA-PEG4-Gln-Trp-AlaΨ[Tz]Val-Gly-His-Leu-Nle-NH2 16 24.5 5.9 ± 1.8
BBN8 [177Lu]Lu-DOTA-PEG4-Gln-TrpΨ[Tz]Ala-Val-Gly-His-Leu-Nle-NH2 8 n.o. n.d.
BBN9 [177Lu]Lu-DOTA-PEG4-GlnΨ[Tz]Trp-Ala-Val-Gly-His-Leu-Nle-NH2 14 n.o. n.d.
BBN10 [177Lu]Lu-DOTA-PEG4Ψ[Tz]Gln-Trp-Ala-Val-Gly-His-Leu-Nle-NH2 5 0.5 n.d.
BBN11 [177Lu]Lu-DOTA-PEG4-Gln-Trp-AlaΨ[Tz]Val-GlyΨ[Tz]His-Leu-Nle-NH2 27 21.7 ± 0.2 25.6 ± 6.9
BBN12 [177Lu]Lu-DOTA-PEG4-Gln-Trp-Ala-ValΨ[Tz]GlyΨ[Tz]His-Leu-Nle-NH2 40 3.5 ± 0.6 >1000
BBN13 [177Lu]Lu-DOTA-PEG4-Gln-Trp-AlaΨ[Tz]ValΨ[Tz]Gly-His-Leu-Nle-NH2 66 0.1 ± 0.1 >1000
BBN14 [177Lu]Lu-DOTA-PEG4-Gln-Trp-AlaΨ[Tz]ValΨ[Tz]GlyΨ[Tz]His-Leu-Nle-NH2 61 0.3 ± 0.1 >1000

a Reference compound. b Determined in blood serum at 37 ◦C. c Ratio of specific receptor-bound and cell-internalised
compound expressed in % of administered dose. Expressed as the means ± SEM of at least two independent
experiments. n.o.: not observed d Determined by receptor saturation binding assay on PC3 cells expressing GRPr.
Expressed as the means ± SEM of at least two independent experiments. n.d.: not determined.

Valverde et al. also explored the synthesis of triazolo-peptidomimetics of [Nle14]BBN(7-14)
with multiple triazoles in the backbone [87]. Therefore, triazoles were strategically placed in the
most promising positions as identified by the previous triazole scan. The three possible analogues
BBN11–13 with two triazoles in one molecule at positions Ala9-Val10, Val10-Gly11 or Gly11-His12 were
synthesised as well as the peptidomimetic BBN14 containing all three substitutions. Even though the
half-lives in blood serum were increased 5- to 13-fold (27–66 h) compared to unmodified compound
BBN1, the biological activity was lost (BBN12–14) or significantly decreased likely due to a constraint
conformation of the peptidomimetic (KD = 25.6 nM for BBN11, Table 3).

Another bombesin derivative studied by Valverde et al. was the antagonist JMV594 which differs
from BBN(7-14) only in the last two amino acids at the C-terminus and the addition of a d-Phe at the
N-terminus (Figure 5) [88,89].

Due to the high homology of the two peptides, the three most promising positions identified in
the screening of [Nle14]BBN(7-14) were substituted with a triazole in JMV594. The obtained peptides
were conjugated to PEG4 and DOTA for lutetium-177 chelation at their N-terminus and the resulting
derivatives BBN15–18 were tested for cell binding and receptor affinities (Table 4). The analogues
BBN17 and BBN18 lost their biological activity and BBN16 with the triazole at the C-terminus
displayed a lower affinity (KD = 8.1 nM) and cell binding (13%) compared to the reference compound
BBN15 (KD = 2.7 nM, cell binding 30%). Surprisingly, in vitro blood serum stability tests showed
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that analogue BBN16 as well as the unmodified peptide BBN15, have remarkably long half-lives in
blood serum compared to agonistic [Nle14]BBN(7-14) (see above). 65% and 75% of the peptide and
peptidomimetic were still intact after 48 h, respectively. Despite the high homology between the two
bombesin derivatives, the successful results from the [Nle14]BBN(7-14) triazole screening could not
be transferred to JMV594 analogues. These results underline the different mode of action of the two
GRPR-binding molecules (agonistic vs. antagonistic peptides). In general, backbone modifications that
are tolerated by one peptide cannot be applied automatically to a structurally related peptide.
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Figure 5. Comparison of the amino acid sequences of bombesin derivative [Nle14]BBN(7-14) and
antagonist JMV594. Dashed lines illustrate the structural similarity of the amino acid sequences,
and arrows indicate positions where amide bonds can be replaced by 1,2,3-triazoles in the agonist
[Nle14]BBN(7–14) without loss of the biological properties of the vector. Reproduced with permission
from Valverde et al. [89].

Table 4. Sequences of BBN15–18 and their reported biological properties [89].

Comp. Sequence b Stability after 48 h
[%] c,d

Uptake after 4 h
[%] d,e KD [nM] f

BBN15 a [177Lu]Lu-DOTA-PEG4-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu 65 30 2.7
BBN16 [177Lu]Lu-DOTA-PEG4-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-LeuΨ[Tz]H 75 13 8.1
BBN17 [177Lu]Lu-DOTA-PEG4-d-Phe-Gln-Trp-Ala-Val-GlyΨ[Tz]His-Sta-Leu n.d. n.d. >1000
BBN18 [177Lu]Lu-DOTA-PEG4-d-Phe-Gln-Trp-AlaΨ[Tz]Val-Gly-His-Sta-Leu n.d. n.d. >1000

a Reference compound. b Sta: statine: (3S,4S)-4-amino-3-hydroxy-6-methylheptanoic acid. c Determined in blood
serum at 37 ◦C. Expressed as % of intact peptide. d n.d.: not determined e Ratio of specific receptor-bound and
cell-internalised compound expressed in % of administered dose. Expressed as the means of three independent
experiments. f Determined by receptor saturation binding assay on PC3 cells expressing GRPr. Expressed as the
means ± SEM of at least two independent experiments.

4.4. Kisspeptin

Kisspeptin is an endogenous peptide involved in the modulation of the gonadotropic axis,
a hormonal system including luteinising hormone (LH) and follicle-stimulating hormone (FSH) which
regulates fertility in mammals and human. The downregulation of this system is the cause of severe
reproductive disorders resulting in partial or complete infertility in humans [90,91]. It also occurs
naturally in seasonal breeders such as sheep during the anoestrous phase and its manipulation can
lead to a prolonged breeding season and improved livestock management [92]. It has been shown that
injection of the truncated decapeptide analogue KP10 leads to an upregulation of the gonadotropic
axis although the effect is only short-lasting due to quick degradation of the peptide by proteases.
Beltramo et al. examined the stabilisation of the decapeptide KP1, the ewe analogue of KP10, via an
amide-to-triazole switch [78]. First, they N-acetylated the endogenous decapeptide KP1 which led to a
highly improved resistance towards proteolysis as a small fraction (2.6%) of peptide was still present
after 6 h of incubation in blood serum (KP2, Table 5). The amount of the reference compound KP1 was
below the detection limit at this time point. The potency of the novel compounds was determined in a
calcium mobilisation assay using HEK-293 cells (human embryonic kidney cells) transfected with the
kisspeptin receptor KISS1R. It was shown that N-acetylation of KP1 also increased drug potency from
an EC50 of 2.5 nM to 0.07 nM (KP2). In a next step, the two main proteolysis sites at position Phe6-Gly7

and Gly7-Leu8 were replaced by triazoles leading to two monotriazolo analogues KP3 and KP4 as
well as bistriazolo-peptidomimetic KP5. The formation of these triazoles was accomplished on solid
phase by the addition of Fmoc-protected α-amino alkynes, CuBr·Me2S and DIPEA to the immobilised
azidopeptide (Figure 3B).
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Table 5. Sequences of KP1–5 and their reported biological properties [78].

Comp. Sequence Stability after 6 h [%] b,c EC50 [nM] d

KP1 a Tyr-Asn-Trp-Asn-Ser-Phe-Gly-Leu-Arg-Tyr-NH2 n.d. 2.5 ± 2.2
KP2 Ac-Tyr-Asn-Trp-Asn-Ser-Phe-Gly-Leu-Arg-Tyr-NH2 2.6 ± 0.4 0.07 ± 0.06
KP3 Ac-Tyr-Asn-Trp-Asn-Ser-Phe-GlyΨ[Tz]Leu-Arg-Tyr-NH2 40.8 ± 2.9 0.07 ± 0.06
KP4 Ac-Tyr-Asn-Trp-Asn-Ser-PheΨ[Tz]Gly-Leu-Arg-Tyr-NH2 61.4 ± 6.4 0.6 ± 0.05
KP5 Ac-Tyr-Asn-Trp-Asn-Ser-PheΨ[Tz]GlyΨ[Tz]Leu-Arg-Tyr-NH2 50.7 ± 3.2 120 ± 87

a Reference compound. b Determined in blood serum at 39 ◦C. c n.d.: not detectable d Determined by a calcium
mobilization assay on HEK-293 cells transfected with KISS1R.

The in vitro serum stabilities of triazole-containing analogues KP3–5 increased 15- to 25-fold
compared to KP2 as after 6 h of incubation 40.8, 61.4 and 50.7% of the peptidomimetics were still
intact, respectively (compared to 2.6% of KP2). Regarding biological activity, KP3 with the additional
triazole at position Gly7-Leu8 maintained the potency of KP2. However, the amide-to-triazole switch
in KP4 was less favourable yielding in an EC50 of 0.6 nM and multiple triazole substitution in KP5 was
detrimental to the potency (EC50 = 120 nM). Compounds KP2 and KP3 were evaluated in vivo for their
capacity to increase the plasma concentration of LH and FSH in anoestrous ewes. After intravenous
injection, KP2 did not change the LH concentration compared to KP1 but compound KP3 resulted in a
clear increase (peak concentration: 5.4 ng mL−1 compared to 3.3 ng mL−1 for KP1). The duration of
LH release after administration of KP3 was also doubled in comparison to KP1, which in turn resulted
in a higher amount of the hormone secreted over time (Figure 6). In vivo dose-response studies of
KP3 illustrated solely a modest increase in the maximal concentration, the duration of action and the
total amount of LH secretion upon application of higher KP3 concentrations. Similar trends were
observed for secretion of FSH. Overall, these results were less significant than anticipated from the
in vitro data probably due to fast renal excretion. These modifications, in combination with further
optimisations, hold the potential to improve the treatment of reduced or complete infertility associated
with the gonadotropic axis.
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from Beltramo et al. [78].

4.5. Neurotensin

Mascarin et al. applied the amide-to-triazole switch approach to the stabilisation of the binding
sequence of neurotensin, NT(8-13), a regulatory peptide which specifically binds to neurotensin
receptors (NTR) [93]. The overexpression of subtype NTR1 in breast, pancreas, prostate cancer
and many more makes this molecule an interesting candidate as a tumour targeting vector for the
development of new therapeutic and diagnostic agents [94,95]. However, the major drawback is
its low in vivo stability with a half-life of only a few minutes. Hence, the group was investigating
the stabilisation of this peptide via a triazole scan. The binding sequence NT(8-13) was conjugated
N-terminally to a PEG4 spacer and DOTA, which was employed for the radiolabelling with lutetium-177.
A first generation of triazolo-peptidomimetics was obtained by the stepwise substitution of each amide
bond with a 1,4-disubstituted 1,2,3-triazole except for the amide bond between Arg9-Pro10, which does
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not allow for an amide-to-triazole switch due to the secondary amine of Pro. A second generation was
obtained by replacing isoleucine in position 12 of the most promising triazolo-peptidomimetics with
tert-leucine (Tle), another strategy reported for the stabilisation of this sequence. The same synthetic
protocol as described above for bombesin analogues was employed (Figure 3B) [77]. All compounds
were then evaluated in vitro for their stability in blood serum (Figure 7) as well as their cell internalisation
into NTR1-expressing HT29 cells (human colon carcinoma) and affinity toward the NTR1 (Table 6).
Substitution of amide bonds between the C-terminus and Pro10 (compounds NT2–5) resulted in a loss
of biological function albeit an up to 4-fold increase in vitro stability was achieved (t1/2 = 13.0–164.0 min
compared to t1/2 = 39.4 min for reference compound NT1). This came as no surprise, as this region
is involved in several H-bond interactions with the receptor and therefore sensitive to structural
modifications. Exchanging the amide bond at the N-terminus PEG4-Arg8 or Arg8-Arg9 (compound
NT6–7) slightly improved in vitro stability to half-lives of 64.9 min and 46.9 min, respectively. Biological
evaluation of NT6 and NT7 showed that the activity was maintained in vitro with a cellular uptake of
6.4% and 9.4%, respectively, and KD values of 8.8 nM and 4.5 nM (for comparison, reference compound
NT1: 7.3% internalisation and KD 3.7 nM). Earlier studies reported the remarkably improved stability
of NT(8–13) when Ile12 is replaced with a Tle residue [96,97]. Modification of the two most promising
triazolo-peptidomimetics NT6 and NT7 with the Ile12-to-Tle12 switch resulted in derivatives NT9
and NT10 with a 100-fold increase of the in vitro stability (>95% of compound still intact after 4 h;
half-lives not determined) compared to the reference compound NT8 (0.9% after 4 h). However,
only derivative NT9 retained a submicromolar affinity toward NTR1 (KD = 214 nM). In vivo evaluation
of the most promising peptide conjugates in athymic nude mice bearing HT-29 xenografts revealed
that the replacement of the Arg8-Arg9 amide bond by a triazole resulted in two-fold tumour uptake for
both, the Ile12 derivative NT6 and the Tle12 derivative NT9, compared to their respective reference
compounds without a triazole. This can be ascribed to the significantly improved stability of the
triazolo-peptidomimetics. Compound NT7 on the other hand, showed a high tumour-to-background
ratio, a property which is particularly important for potential imaging applications.
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Subsequent investigations focused on the incorporation of multiple triazoles in the backbone of
NT(8–13) [98]. Building on the results of the triazole scan discussed above, the triazolo-peptidomimetics
NT11 and NT12 with a simultaneous substitution at PEG4-Arg8 and Arg8-Arg9 for the Ile12 and Tle12

analogue were synthesised and tested in vitro. Multiple triazoles could not improve the stability of the
peptidomimetics further. Surprisingly, the biological activity of NT11 was maintained (kD = 4.6 nM,
10.8% cell internalisation) but unexpectedly the stability was found to be reduced (t1/2 = 13 min)
compared to the unmodified peptide conjugate NT1 (t1/2 = 39.4 min). One explanation might be that
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the introduction of two consecutive triazoles in this peptide sequence results in a confirmation of the
peptide, which is prone to enzymatic degradation. In the case of the Tle12 derivative NT12, the in vitro
plasma stability was maintained (>97% intact after 4 h), but the receptor affinity was abolished.

Table 6. Sequences of NT1–12 and their reported biological properties [93,98].

Comp. Sequence Stability after 4 h [%] b

(t1/2 in min) c
Uptake after 4 h

[%] d
KD

[nM] e

NT1 a [177Lu]Lu-DOTA-PEG4-Arg-Arg-Pro-Tyr-Ile-Leu 0.9 ± 0.3 (39.4) 7.3. ± 0.4 3.7 ± 0.8
NT2 [177Lu]Lu-DOTA-PEG4-Arg-Arg-Pro-Tyr-Ile-LeuΨ[Tz]H 21.3 ± 1.8 (69.7) n.o. n.d.
NT3 [177Lu]Lu-DOTA-PEG4-Arg-Arg-Pro-Tyr-IleΨ[Tz]Leu 30.0 ± 3.6 (72.0) n.o. n.d.
NT4 [177Lu]Lu-DOTA-PEG4-Arg-Arg-Pro-TyrΨ[Tz]Ile-Leu 46.1. ± 3.8 (164.0) n.o. n.d.
NT5 [177Lu]Lu-DOTA-PEG4-Arg-Arg-ProΨ[Tz]Tyr-Ile-Leu 0 (13.0) n.o. n.d.
NT6 [177Lu]Lu-DOTA-PEG4-ArgΨ[Tz]Arg-Pro-Tyr-Ile-Leu 6.5 ± 4.6 (64.9) 6.4 ± 1.2 8.8 ± 1.7
NT7 [177Lu]Lu-DOTA-PEG4Ψ[Tz]Arg-Arg-Pro-Tyr-Ile-Leu 2.2. ± 1.2 (46.9) 9.4 ± 0.5 4.5 ± 0.8

NT8 a [177Lu]Lu-DOTA-PEG4-Arg-Arg-Pro-Tyr-Tle-Leu 70.6. ± 1.4 (n.d.) 1.3 ± 0.2 507 ± 114
NT9 [177Lu]Lu-DOTA-PEG4-ArgΨ[Tz]Arg-Pro-Tyr-Tle-Leu 97.7 ± 2.3 (n.d.) 2.1 ± 0.1 214 ± 45

NT10 [177Lu]Lu-DOTA-PEG4Ψ[Tz]Arg-Arg-Pro-Tyr-Tle-Leu 94.7 ± 4.2 (n.d.) 1.2 ± 0.2 >1000
NT11 [177Lu]Lu-DOTA-PEG4Ψ[Tz]ArgΨ[Tz]Arg-Pro-Tyr-Ile-Leu 0.2 ± 0.2 (13) 10.8 ± 0.4 4.6 ± 2.3
NT12 [177Lu]Lu-DOTA-PEG4Ψ[Tz]ArgΨ[Tz]Arg-Pro-Tyr-Tle-Leu 97.2 ± 3.1 (n.d.) 2.2 ± 0.1 >1000

a Reference compound. b Determined in blood serum at 37 ◦C. c n.d.: not determined d Ratio of specific
receptor-bound and cell-internalised compound expressed in % of administered dose. Expressed as the means of at
least two independent experiments. e Determined by receptor saturation binding assay on HT-29 cells expressing
NTR1. Expressed as the means ± SEM of at least two independent experiments.

4.6. Cathepsin K & S Inhibitors

The Lalmanach group explored the stabilisation of peptidic inhibitors for cathepsin K and S [99].
These two proteins are cysteine proteases normally present in lysosomes and share a high homology.
When found in the extracellular matrix, these enzymes are often overexpressed and dysregulated,
making them innovative targets for new therapies for a range of medical conditions. Cathepsin K
is considered as a target involved in osteoporosis whereas cathepsin S has been identified to play
a role in autoimmune diseases and neuropathic pain [100,101]. One strategy to identify inhibitors
for proteases is to turn their substrates into a non-cleavable inhibitory molecule by substituting the
hydrolysed amide bond. For this purpose, the use of metabolically stable 1,2,3-triazoles as amide
bond mimics at the previously identified scissile bonds in two known cathepsin K and S inhibitors
were investigated. They also compared the resulting triazolo-peptidomimetics to their azapeptide
counterparts in which the α-carbon next to the labile amide bond was replaced by a nitrogen (Figure 1).
The triazolo-peptidomimetics were synthesised on solid phase following the protocol of Beltramo et al.
(Figure 3B) [78]. The substrates were tested for their ability to inhibit enzyme activity on a range
of different proteases (including human cysteine proteases, a matrix metalloproteinase, an aspartyl
protease and several serine-proteases) and Ki values for cathepsin K and S were determined using
fluorescently-labelled substrates (Table 7). Triazole-containing compound CatS1 was based on the
previously reported sequence of a tridecapeptide. [102] It was shown that it inhibits cathepsin S,
but also cathepsin K and L without affecting any other protease. This peptidomimetic was not cleaved
by cathepsin S, K or L as shown by HPLC analyses of the different incubation mixtures. It was further
demonstrated that CatS1 reversibly and competitively inhibits cathepsins S, K and L in the micromolar
range (Ki = 15, 10 and 30 µM, respectively). In contrast to other cathepsins present in the lysosome,
cathepsin S is not only operating at acidic pH but also remains stable and active at neutral pH. Indeed,
Ki values obtained at pH 5.5 and pH 7.4 were comparable for cathepsin S (Ki = 15 vs. 42 µM) but not
for cathepsin K or L (data not shown here). However, the corresponding azapeptide CatS2 was the
more potent and specific inhibitor of cathepsin S and K with a Ki value in the nanomolar range.
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Table 7. Sequences of CatS1–2 and CatK1–2 and their reported biological properties [99].

Comp. Sequence a Ki for CatS, pH 5.5 [nM] b Ki for CatS, pH 7.4 [nM] b Ki for CatK, pH 5.5 [nM] b Ki for CatL, pH 5.5 [nM] b

CatS1 Ac-Gly-Arg-Trp-His-Pro-Met-GlyΨ[Tz]Ala-Pro-Trp-Glu-D-Ala-D-Arg-NH2 15,000 ± 5000 42,000 ± 8000 10,000 ± 3600 30,000 ± 3200
CatS2 Ac-Gly-Arg-Trp-His-Pro-Met-azaGly-Ala-Pro-Trp-Glu-D-Ala-D-Arg-NH2 26 ± 5 17 ± 3 3 ± 0.8 5 ± 0.5
CatK1 Abz-Arg-Pro-Pro-GlyΨ[Tz]Phe-Ser-Pro-Phe-Arg-Tyr(3-NO2)-NH2 n.o. n.o. 800 ± 330 22,000 ± 2000
CatK2 Abz-Arg-Pro-Pro-azaGly-Phe-Ser-Pro-Phe-Arg-Tyr(3-NO2)-NH2 n.o. n.o. 9 ± 0.7 2000 ± 400

a Abz: o-Aminobenzoic acid b Ki values were determined by measuring residual peptidase activity after incubation with the peptidomimetics at 37 ◦C using Z-Leu-Arg-AMC (Cathepsin S)
or Z-Phe-Arg-AMC (Cathepsin K and L) as substrate. Data expressed as the means ± SEM of three individual experiments. n.o.: not observed.
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Another set of investigated peptidomimetics was based on a bradykinin-derived substrate,
previously reported to be degraded by cathepsin K [103]. Triazolo-peptidomimetic CatK1 did not
inhibit cathepsin S and other proteases but was able to inhibit cathepsin K and L in a reversible manner
with a Ki of 0.8 and 22 µM, respectively. However, azapeptide CatK2 displayed a much higher affinity
in the nanomolar range. Molecular modelling studies suggest that although the triazole exhibits similar
geometric, steric and electronic features as the trans-amide bond, its constrained coplanar structure
reduces the interaction of the peptidomimetics with the enzyme’s active pocket. Hence, in this case the
insertion of a 1,2,3-triazole turned out to be less effective than the substitution of amide bonds with a
semicarbazide due to significantly lower affinities (100- to 1000-fold).

4.7. Caspase-3 Inhibitors

Proteases are ubiquitous enzymes executing various tasks in organisms and their activity is tightly
regulated by different mechanisms. A lot of effort has been invested in studying their function and
localisation. For example, Verhelst and co-workers investigated the possibility to develop a general
strategy for the design of chemical probes that covalently interact with proteases [104]. Their idea
was to design inhibitors based on known substrates by substituting the labile peptide bond with a
metabolically stable surrogate and attach a photo-crosslinker to covalently inhibit the targeted enzyme.
They studied caspase-3 as a model protease and developed several peptidomimetics based on the
known pentapeptide substrate Asp-Glu-Val-Asp-Ala (Figure 8). An alkyne function was localised
as a bioorthogonal tag at the N-terminus of the peptide to enable the installation of a fluorophore
via CuAAC. In addition, a glycine residue with a benzophenone moiety at the α-carbon serving as
photoactivatable crosslinker was incorporated at either the C-terminus (CasC1, CasC3, CasC4) or the
N-terminus (CasC2, CasC5, CasC6) of the peptide. The two peptide analogues CasC1 and CasC2
were obtained by an amide-to-triazole switch at the previously identified scissile bond Asp4-Ala5 of
the parent peptide. The other probes CasC3–6 contained reduced amide bonds in the same position
and either benzophenone or diazirine as substituent of the glycine residue at the C- or N-terminus
(Figure 8).
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The synthesis of the triazolo-peptidomimetics was performed on solid phase, including the triazole
incorporation via CuAAC (Figure 3B). For this step, immobilised azidopeptide was incubated with
the corresponding protected α-amino alkyne, CuBr, Na-ascorbate, 2,6-lutidine and DIPEA. With the
chemical probes in hand, they first performed competitive activity-based protein profiling (ABPP) to
investigate the inhibitory characteristics of the novel compounds. For this purpose, caspase-3 was
incubated with the probes under UV irradiation and residual caspase-3 activity was measured using a
fluorescent enzyme-specific probe and analysed by SDS-PAGE. Analogues CasC3–6 with a reduced
amide bond at Asp4-Ala5 resulted in complete inhibition of the protease whereas triazole-containing
derivative CasC1 did not show any inhibitory effect. The second triazolo-peptidomimetic CasC2
displayed slight inhibition at 10 µM but even increasing the substrate concentration to 100 µM did not
lead to full inhibition of caspase-3. Similar to the findings for cathepsin K & S inhibitors described
above, triazoles were the less efficient amide bond surrogate for caspase-3 inhibitors probably due to
the increased rigidity of the triazole compared to the amide bond. Further studies are necessary to
determine if this is also valid for other proteases inhibitors.

4.8. NRP-1/VEGF165 Inhibitors

Neuropilin-1 (NRP-1) is a protein implicated in angiogenesis and therefore also plays a role in
the vascularisation of tumours [105]. It has been shown that it is heavily overexpressed in a variety
of tumours and hence, related to tumour malignancy and poor prognosis [106,107]. The interaction
of NRP-1 with vascular endothelial growth factor 165 (VEGF165) is an interesting target for novel
cancer therapies and several inhibitors of NRP-1/VEGF165 have been proposed as potential drugs
such as the heptapeptide A7R. [108] Based on these findings, the group of Misicka has developed
branched pentapeptides of the type Lys(Har)-Xaa-Xaa-Arg (Har = homoarginine) with submicromolar
IC50 values, for example 0.3 µM for Xaa-Xaa= Pro-Ala (NV1). However, they observed enzymatic
cleavage of the peptides, which led to a low blood plasma stability in vitro [109]. To overcome the
peptide’s instability, the authors turned their attention to 1,4-disubstituted 1,2,3-triazoles as a stable
amide bond surrogate. They designed and synthesised a series of peptides where they connected
the C-terminal Arg residue and the N-terminal branched Lys(Har) residue (either l-Lys or d-Lys)
with different peptidomimetic spacers. The spacers consisted of a short sequence of one to three
amino acids in which at least one amide bond was substituted with a triazole (Table 8) [79]. In total,
seven spacers varying in length and the number of triazole bonds were investigated (not all of them
are shown here). Synthesis of the triazolo-peptidomimetics was achieved on solid support (Figure 3B)
with CuSO4·5H2O and sodium ascorbate as catalysts in the CuAAC. The inhibitory activity of all
derivatives towards binding of VEGF165 to NRP-1 was measured at a concentration of 10 µM using
an enzyme-linked immunosorbent assay (ELISA) and IC50 values were determined for the most
active compounds. None of the triazolo-peptidomimetics described performed better than reference
A7R. Two compounds NV2 and NV3 of the series displayed inhibition comparable to A7R (58% and
52% inhibition at 10 µM, respectively, compared to 61% for A7R). Both peptidomimetics contain the
GlyΨ[Tz]GlyΨ[Tz] motif as a linker and differ in the chirality of the terminal Lys residue (l vs. d,
respectively). However, the in vitro plasma stability results revealed that these two analogues are
significantly more stable. After 48 h, 70% of compound NV2 and >90% of compound NV3 were still
intact (half-lives not determined), whereas the previously reported compound NV1 possess a half-life
of only 39 min [109]. Further modification of NV2 at the N-terminus was attempted to optimise
the inhibition of NRP-1/VEGF165 interaction but efforts remained unsuccessful. Molecular dynamics
simulations of compound NV2 bound to NRP-1 confirmed a relatively instable binding mode, which is
in line with lower inhibitory activity compared to A7R. The simulations revealed that even when
the C-terminus is tightly bound to the receptor, the triazole-containing spacer and the N-terminus
still showed significant mobility which prevents stable inhibitor-protein interaction. This suggests
that improved inhibition could be achieved by introducing more rigid structures and/or groups that
enable further interaction with the receptor. In conclusion, NV2 and NV3 demonstrated a remarkably
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improved in vitro stability due to the triazole insertion in the peptide’s backbone although no enhanced
inhibitory activity compared to the reference compound A7R or NV1 was observed. These results
indicate that the compounds NV2 and NV3 could serve as lead structures in the development of more
active NRP-1/VEGF165 inhibitors.

Table 8. Sequences of A7R and NV1–3 and their reported biological properties [79].

Compound Sequence b Inhibition at 10 µM [%] c,d IC50 [µM] d

A7R a Ala-Thr-Trp-Lys-Pro-Pro-Arg 61.0 ± 0.4 5.86
NV1 Lys(Har)-Pro-Ala-Arg a n.d. 0.3
NV2 Lys(Har)-GlyΨ[Tz]GlyΨ[Tz]Arg 58.1 ± 2.1 8.39
NV3 d-Lys(Har)-GlyΨ[Tz]GlyΨ[Tz]Arg 52.6 ± 1.3 10.22

a Reference compound. b Har: Homoarginine c Expressed as percentage of inhibition of VEGF165 binding to NRP-1.
Values represent means ± standard deviation (SD). n.d.: not determined. d Determined in an enzyme-linked
immunosorbent assay.

4.9. Minigastrins

Minigastrin is a tridecapeptide binding to the cholecystokinin-2-receptor (CCK2R), a receptor
whose overexpression is linked to various cancer types such as pancreatic, thyroid or neuroendocrine
tumours [110]. Minigastrin analogues have been extensively explored as potential tumour-targeting
vectors for CCK2R-positive cancer cells and a screening test resulted in the truncated DOTA-conjugated
octapeptide MG11 as a promising candidate with a high receptor affinity but poor plasma stability [111].
Recently, Grob et al. reported the successful application of the amide-to-triazole switch methodology
to MG11 in order to increase its stability [82]. The authors focussed on the use of MG11 as a
radiotracer. For easier handling, they replaced the methionine residue in position 15 with norleucine
[Nle15]MG11. [86] They then performed a triazole scan, where every peptide bond was substituted
individually with a 1,4-disubstituted-1,2,3-triazole. Synthesis of these triazolo-peptidomimetics
MGN1–8 was performed on solid phase according to procedures described by Valverde et al.
(Figure 3B) [77]. In vitro blood plasma stability tests revealed that six out of eight compounds
showed enhanced stability and in five cases even more than 50% of the molecules were still being
completely intact after 24 h of incubation (Table 9). It was calculated that the half-life of compound
MGN4 with a triazole at position Trp14-Nle15 is 90-fold higher (t1/2 = 349.8 h) compared to the reference
compound [Nle15]MG11 (t1/2 = 3.9 h). Insertion of a triazole at position Gly13-Trp14 (MGN5) displayed
maintained stability (t1/2 = 3.8 h) and only substitution at Tyr12-Gly13 (MGN6) resulted in a slight
decrease of the proteolytic stability of the peptide (t1/2 = 2.6 h). The measurement of logD7.4 values of
all compounds confirmed earlier findings of the same group, that the lipophilicity was not significantly
altered by the introduction of a triazole into the peptide backbone. [77] All compounds were evaluated
in vitro for their internalisation into CCK2R-expressing A431 cells (human epidermoid carcinoma) and
affinity toward CCK2R (Table 9). It was shown that compounds MGN1–3 with a triazole incorporated
within the last three amino acids of the C-terminus almost completely abolished their biological activity.
This comes as no surprise as this region is the minimal binding sequence and known to be very sensitive
even to minor modifications. Compounds MGN4, MGN5 and MGN7 maintained their biological
activity (i.e., 33.1% of internalisation after 4 h and IC50 = 25.4 nM for MGN4) when compared to
reference compound [Nle15]MG11 (32.2% internalisation, IC50 = 15.4 nM). MGN6 and MGN8 were
reported to have increased biological activity. Interestingly, compound MGN6 which displayed the
lowest in vitro serum stability almost doubled its internalisation rate to 54.3% and enhanced the IC50

value to 1.7 nM. This is the first example of an amide-to-triazole switch leading to higher receptor
affinity of the resulting peptidomimetic. Compounds with maintained or improved biological activity
were also tested in vivo in athymic nude mice with CCK2R-positive tumour xenografts (Figure 9).
Not surprisingly, compound MGN6 also performed best in mice with a 2.6-fold increased tumour
uptake and a slower tumour washout. In addition, the analogue also showed a 3-fold increased
tumour-to-kidney ratio, a property important for the translation of radiotracers to the clinic as the
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dose to radiation-sensitive kidneys needs to be minimised. Despite its slightly reduced in vitro plasma
stability, derivative MGN6 performed better than other minigastrin derivatives because of its increased
affinity and tumour uptake. Further in silico modelling studies led to the hypothesis that an additional
cation-π interaction between the 1,2,3-triazole in MGN6 and Arg356 in the binding pocket of the receptor
are responsible for the improved binding properties of compound MGN6 to the receptor. Thus, this is
the first example of the application of an amide-to-triazole switch which resulted in a derivative with
improved pharmacodynamic properties such as receptor affinity and cell internalisation.

Table 9. Sequences of [Nle15]MG11 and MGN1–15 and their reported biological properties [82,112].

Compound Sequence
t1/2

[h] b,d
Uptake after 4 h

[%] b,e
IC50

[nM] c,f

[Nle15]MG11 a Lu-DOTA-d-Glu-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH2
3.9

(3.8–4.1) 32.2 ± 3.2 15.4
(11.0–21.1)

MGN1 Lu-DOTA-d-Glu-Ala-Tyr-Gly-Trp-Nle-Asp-PheΨ[Tz]H 34.9
(31.3–39.3) 2.5 ± 2.9 200.5

(164–245)

MGN2 Lu-DOTA-d-Glu-Ala-Tyr-Gly-Trp-Nle-AspΨ[Tz]Phe-NH2
35.9

(32.2–40.3) 0.1 ± 0.08 > 50,000

MGN3 Lu-DOTA-d-Glu-Ala-Tyr-Gly-Trp-NleΨ[Tz]Asp-Phe-NH2
114.3

(96.5–139.7) 0.2 ± 0.13 > 50,000

MGN4 Lu-DOTA-d-Glu-Ala-Tyr-Gly-TrpΨ[Tz]Nle-Asp-Phe-NH2
349.8

(263–520) 33.1 ± 1.9 25.4
(18.3–34.6)

MGN5 Lu-DOTA-d-Glu-Ala-Tyr-GlyΨ[Tz]Trp-Nle-Asp-Phe-NH2
3.8

(3.6–4.0) 41.7 ± 3.9 15.6
(12.3–19.7)

MGN6 Lu-DOTA-d-Glu-Ala-TyrΨ[Tz]Gly-Trp-Nle-Asp-Phe-NH2
2.6

(2.5–2.7) 54.3 ± 5.1 1.7
(1.3–2.3)

MGN7 Lu-DOTA-d-Glu-AlaΨ[Tz]Tyr-Gly-Trp-Nle-Asp-Phe-NH2
51.4

(46.2–57.7) 29.6 ±2.7 20.9
(17.0–25.7)

MGN8 Lu-DOTA-d-GluΨ[Tz]Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH2
7.7

(7.3–8.1) 39.6 ± 2.7 8.0
(6.3–10.9)

MGN9 Lu-DOTA-d-Glu-Ala-TyrΨ[Tz]Gly-TrpΨ[Tz]Nle-Asp-Phe-NH2
279.5

(206–431) 28.2 ± 3.0 65.8
(53.2–80.9)

MGN10 Lu-DOTA-d-Glu-Ala-TyrΨ[Tz]GlyΨ[Tz]Trp-Nle-Asp-Phe-NH2
1.9

(1.85–2.04) 49.6 ± 3.0 12.4
(10.9–14.0)

MGN11 Lu-DOTA-d-Glu-AlaΨ[Tz]Tyr-Gly-TrpΨ[Tz]Nle-Asp-Phe-NH2
386.1

(249–842) 31.1 ± 3.9 91.0
(76.3–108.3)

MGN12 Lu-DOTA-d-Glu-AlaΨ[Tz]TyrΨ[Tz]Gly-Trp-Nle-Asp-Phe-NH2
4.1

(3.8–4.4) 48.3 ± 2.2 5.3
(4.5–6.1)

MGN13 Lu-DOTA-d-GluΨ[Tz]Ala-TyrΨ[Tz]Gly-Trp-Nle-Asp-Phe-NH2
14.7

(14.0–15.5) 58.4 ± 3.5 5.8
(5.3–6.4)

MGN14 Lu-DOTA-d-GluΨ[Tz]AlaΨ[Tz]Tyr-Gly-Trp-Nle-Asp-Phe-NH2
6.4

(5.8–7.2) 40.9 ± 2.5 15.6
(12.6–19.1)

MGN15 Lu-DOTA-d-GluΨ[Tz]AlaΨ[Tz]TyrΨ[Tz]Gly-Trp-Nle-Asp-Phe-NH2
8.1

(7.7–8.6) 47.1 ± 1.6 7.3
(6.0–8.7)

a Reference compound. b Results obtained with [177Lu]Lu-labelled compounds. c Results obtained with
nonradioactive natLu-labelled compounds. d Determined in blood serum at 37 ◦C. Expressed as means with
95% confidence interval of nonlinear regression of at least two independent experiments. e Ratio of specific
receptor-bound and cell-internalised compound expressed in % of administered dose. Expressed as the means ± SD
of at least three independent experiments. f Determined by receptor saturation binding assay on A431 cells
transfected with CCK2R. Expressed as means with 95% confidence interval of nonlinear regression of at least three
independent experiments.

Based on these results, Grob et al. studied the incorporation of multiple triazoles in the peptide
backbone of [Nle15]MG11 for potential additive or synergistic effects in order to further improve
the properties of the peptide [112]. Therefore, the authors were strategically combining positions
for amide-to-triazole switches, which led to increased stability or affinity in the case of [Nle15]MG11
(Table 9). In total, seven novel multi-triazole containing peptide analogues MGN9–15 were synthesised
and tested for their in vitro and in vivo properties. Except for MGN10, they all displayed maintained
or improved half-lives in blood serum compared to [Nle15]MG11 ranging from 4.1 to 386.1 h. In five
out of seven cases, the in vitro stability fell in between or was above the half-lives of the corresponding
monotriazolo-peptidomimetics. Incorporation of multiple triazoles into the backbone of [Nle15]MG11
was slightly detrimental to cell internalisation for MGN9 and MGN11 (28.2% and 31.1%, respectively),
but beneficial for all other tested compounds, with MGN13 having the highest internalisation rate
of 58.4%. A similar trend was observed for the affinities, where all compounds except MGN9 and
MGN11 displayed maintained or improved IC50 values, ranging from 5.3 to 15.6 nM. All examples
except MGN11 were included in in vivo studies and displayed higher tumour uptake than the
reference compound [Nle15]MG11. The most promising candidates were MGN13 and MGN15
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containing further triazole substitutions at position D-Glu10-Ala11 and/or Ala11-Tyr12 in addition to
the modification at Tyr12-Gly13. In vivo, the multitriazolo-peptidomimetics showed a further 1.5-fold
increase in tumour uptake and a 2- to 3-fold increase in the tumour-to-kidney ratio in athymic nude mice
with CCK2R-positive tumour xenografts compared to mono-triazole compound MGN6. These results
confirm that the amide-to-triazole switch is a promising strategy to obtain peptidomimetics with
improved tumour-targeting properties. In summary, [Nle15]MG11 is highly tolerant towards backbone
modifications in its N-terminal region whilst preserving or improving receptor affinity. This is the first
example of multiple triazole-to-amide switches in peptides leading to improved serum stability and
affinity to the receptor. In particular, MGN15 is the first reported compound where three amide bonds
in the backbone were substituted with a triazole and biological function was still maintained. However,
no apparent trend for synergistic or additive effects of multiple triazoles in the backbone of peptides can
currently be defined to allow the prediction of the biological behaviour of multitriazolo-petidomimetics
based on those of the corresponding monosubstituted triazolo-peptidomimetics.
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Figure 9. Biodistribution of 177Lu-labelled reference compound and MG4–8 in mice bearing
A431-CCK2R tumour xenografts 4 h post-injection of the radiotracer. Percentage of injected activity per
gram of organ/tissue (%iA/g) without (plain columns) and with (crosshatched columns) co-injection
of excess minigastrin (blocking experiments to verify receptor specificity). * for p < 0.033 and *** for
p < 0.001. Reproduced with permission from Grob et al. [82].

4.10. Angiotensin

Angiotensin II (AII) is an octapeptide and serves as ligand for the angiotensin receptor subtype 1
and 2 (AT1R and AT2R). It has been shown that AT2R represents a novel target for the development of
treatments for various cancers including melanoma and breast cancer [113,114]. Nevertheless, there is
still an imminent need to develop ligands with high receptor subtype-specificity (Table 10). One potent
and selective derivative of AII is the previously reported [Tyr6]AII, in which His6 is replaced by
Tyr [114]. This modification yielded in a ligand with nanomolar affinity for AT2R and an 18.000-fold
selectivity for AT2R over AT1R. However, its use is limited by a low metabolic stability. Therefore,
Tzakos and co-workers intended to develop more stable analogues by applying the amide-to-triazole
switch to [Tyr6]AII. [115] They introduced a 1,2,3-triazole at four strategic positions in the peptide
backbone yielding triazolo-peptidomimetics AII1–4 (Table 10). The triazoles were incorporated
following the protocol from Valverde et al. (Figure 3B) [77].
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Table 10. Sequences of AII and AII1–4 and their reported biological properties [115].

Compound Sequence IC50 for AT2R [nM] b AT2R/AT1R Selectivity c

All a Asp-Arg-Val-Tyr-Ile-His-Pro-Phe 0.12 ± 0.01 13.7
[Tyr6]All Asp-Arg-Val-Tyr-Ile-Tyr-Pro-Phe 4.0 d 18,000 d

All1 Asp-Arg-Val-Tyr-IleΨ[Tz]Tyr-Pro-Phe 1990 ± 88 >5
All2 Asp-Arg-Val-TyrΨ[Tz]Ile-Tyr-Pro-Phe 2.8 ± 0.08 >3611
All3 Asp-Arg-ValΨ[Tz]Tyr-Ile-Tyr-Pro-Phe 155 ± 6 >64
All4 Asp-ArgΨ[Tz]Val-Tyr-Ile-Tyr-Pro-Phe 7.5 ± 0.05 >1336
a Reference compound. b Determined in a competition binding assay on HEK-293 cells transfected with AT2R
with [125I,Sar1,Ile8]All as competitor. Expressed as means ± SD of three independent experiments. c Ratio of IC50
AT2R/AT1R. d Values taken from Magnani et al. [114].

These novel triazolo-peptidomimetics were tested for their plasma stability. After 24 h, only approx.
10% of the compounds were found degraded, compared to 46% of the reference compound [Tyr6]AII.
Thus, the replacement of amide bonds in the backbone of the peptide of investigation significantly
enhanced its stability in blood plasma. The binding affinity and selectivity of the peptidomimetics
and reference compound AII was assessed in a competitive binding assays using HEK-293 cells
(human embryonic kidney cells) transfected with AT1R or AT2R and [125I,Sar1,Ile8]AII as competitive
ligand (Figure 10). The affinities of all compounds were reduced when compared to the endogenous
ligand AII. Interestingly, the experiments revealed that two of the novel derivatives retained high
selectivity for AT2R over AT1R (3.600- and 1.300-fold for compound AIl2 and AII4, respectively)
whereas the two other peptidomimetics only showed minimal selectivity (64- and 5-fold for compound
AII3 and AII1, respectively). It should be noted that the AT2R selectivities represent conservative
estimations as the analogues failed to displace AT1R binding sufficiently. Further high-resolution
2D NMR studies confirmed that compounds with maintained receptor subtype selectivity, AII2 and
AII4, shared structural features in solution which indicates similar conformation. They clearly
clustered differently from compounds AII1 and AII3 which exhibit poor receptor subtype selectively.
This could imply that the introduction of a triazole moiety at specific positions favours a structural
microenvironment that is responsible for the observed higher affinities of All2 and All4 to AT2R.
Thus, these results illustrate that the amide-to-triazole switch can also provide peptide analogues of
enhanced metabolic stability and maintained receptor subtype selectivity.
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analogues All1–4 against [125I,Sar1,Ile8]AII on AT1R-transfected HEK-293 cells (A) and AT2R-transfected
HEK-293 cells (B). Reproduced with permission from Vrettos et al. [115].

5. Conclusions

In this review we discussed the use of 1,4-disubstituted 1,2,3-triazoles as bioisosteres for a
trans-amide bond in peptidomimetics in order to enhance the parent peptide’s metabolic stability
whilst retaining or improving its biological activity.

In the majority of the reported cases, the substitution of an amide bond with a 1,4-disubstituted
1,2,3-triazole led to peptidomimetics with increased in vitro blood serum stability. These results
underline the importance and thus growing interest in triazoles as promising amide bond surrogates.
However, a second important factor that needs to be considered is the impact of such structural
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modifications on the peptides’ biological activity, for example, the affinity or selectivity towards
its respective receptor. Another important parameter in drug development is the lipophilicity of
the compound. It has been shown that the amide-to-triazole switch leads to peptidomimetics with
maintained lipophilicity. In the studied cases, single or multiple substitutions of (up to three) amide
bonds with triazoles did not change the logD7.4 values of peptides consisting of at least six amino
acids [77,82,93,112]. Even though 1,4-disubstituted 1,2,3-triazoles are good bioisosteres of trans-amide
bonds by mimicking electronic and steric features, a few essential differences exist. First, the heterocycle
slightly increases the distance between the two neighbouring amino acid residues when compared
to a peptide bond. Triazoles also possess a higher rigidity and planarity which can result in changes
of the conformation of the peptide that can potentially influence the binding to its biological target.
Furthermore, the introduced heterocycle may enable new π-interactions between the peptidic ligand
and the binding site of its respective receptor, which in turn can influence its biological properties.
In general, the affinity and selectivity a novel triazolo-peptidomimetic towards their receptor do not
seem to be predictable. Ideally a triazole-scan, similar to established Ala-scans, is performed with
the peptide of interest to evaluate all positions within a peptide sequence in order to identify the
most promising one(s) which tolerate(s) the structural modification. The amide-to-triazole switch
can lead to a higher success rate when compared to other established stabilisation methods such
as in the case of BBN(7-14), where four novel peptidomimetics with conserved biological activity
were identified whereas the reduction of amide bonds or N-methylation recognised only two novel
promising compounds each [44,116,117]. On the other hand, in the case of protease inhibitors for
caspase-3 or cathepsin K & S, the amide-to-triazole switch was not successful and more promising
results were obtained with reduced amide bonds (for caspase-3) or the corresponding azapeptides
(for cathepsin K & S) [99,104]. In the same way, additive or synergistic effects of combining multiple
triazoles in one peptide appear to be difficult to anticipate based on the data of mono-substituted
triazolo-peptidomimetics. In addition, the combination of this stabilisation strategy with other backbone
modifications such as reduced amide bonds or N-methylated amino acids are still outstanding and
leaves ample possibilities to explore in the future. In conclusion, an amide-to-triazole switch is often
in favour of higher in vitro blood serum stabilities, but the biological properties of the resulting
peptidomimetics need to be evaluated individually in order to develop triazolo-peptidomimetics
successfully as potential drug candidates.
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109. Tymecka, D.; Puszko, A.K.; Lipiński, P.F.J.; Fedorczyk, B.; Wilenska, B.; Sura, K.; Perret, G.Y.; Misicka, A.
Branched pentapeptides as potent inhibitors of the vascular endothelial growth factor 165 binding to
Neuropilin-1: Design, synthesis and biological activity. Eur. J. Med. Chem. 2018, 158, 453–462. [CrossRef]

110. Reubi, J.C.; Schaer, J.-C.; Waser, B. Cholecystokinin(CCK)-A and CCK-B/Gastrin Receptors in Human Tumors.
Cancer Res. 1997, 57, 1377–1386.

111. Laverman, P.; Joosten, L.; Eek, A.; Roosenburg, S.; Peitl, P.K.; Maina, T.; Mäcke, H.; Aloj, L.; von Guggenberg, E.;
Sosabowski, J.K.; et al. Comparative biodistribution of 12 111In-labelled gastrin/CCK2 receptor-targeting
peptides. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 1410–1416. [CrossRef]

112. Grob, N.M.; Schmid, S.; Schibli, R.; Behe, M.; Mindt, T.L. Design of Radiolabeled Analogs of Minigastrin by
Multiple Amide-to-Triazole Substitutions. J. Med. Chem. 2020, 63, 4496–4505. [CrossRef]

113. Renziehausen, A.; Wang, H.; Rao, B.; Weir, L.; Nigro, C.L.; Lattanzio, L.; Merlano, M.; Vega-Rioja, A.;
del Carmen Fernandez-Carranco, M.; Hajji, N.; et al. The renin angiotensin system (RAS) mediates
bifunctional growth regulation in melanoma and is a novel target for therapeutic intervention. Oncogene
2019, 38, 2320–2336. [CrossRef]

114. Magnani, F.; Pappas, C.G.; Crook, T.; Magafa, V.; Cordopatis, P.; Ishiguro, S.; Ohta, N.; Selent, J.; Bosnyak, S.;
Jones, E.S.; et al. Electronic Sculpting of Ligand-GPCR Subtype Selectivity: The Case of Angiotensin II.
ACS Chem. Biol. 2014, 9, 1420–1425. [CrossRef] [PubMed]

115. Vrettos, E.I.; Valverde, I.E.; Mascarin, A.; Pallier, P.N.; Cerofolini, L.; Fragai, M.; Parigi, G.; Hirmiz, B.;
Bekas, N.; Grob, N.M.; et al. Single peptide backbone surrogate mutations to regulate angiotensin GPCR
subtype selectivity. Chem.–Eur. J. 2020. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0969-8051(01)00284-0
http://dx.doi.org/10.1016/S0969-8051(01)00304-3
http://dx.doi.org/10.1039/C6MD00208K
http://dx.doi.org/10.1016/j.ejmech.2017.12.012
http://dx.doi.org/10.1016/j.biochi.2007.08.011
http://dx.doi.org/10.1515/hsz-2015-0114
http://dx.doi.org/10.1074/jbc.M806500200
http://dx.doi.org/10.1016/j.abb.2006.10.033
http://dx.doi.org/10.3390/molecules24010206
http://dx.doi.org/10.1002/path.2989
http://dx.doi.org/10.1016/S0092-8674(00)81402-6
http://dx.doi.org/10.1038/s41598-017-03280-0
http://dx.doi.org/10.1093/emboj/19.7.1525
http://dx.doi.org/10.1016/j.ejmech.2018.08.083
http://dx.doi.org/10.1007/s00259-011-1806-0
http://dx.doi.org/10.1021/acs.jmedchem.9b01937
http://dx.doi.org/10.1038/s41388-018-0563-y
http://dx.doi.org/10.1021/cb500063y
http://www.ncbi.nlm.nih.gov/pubmed/24787922
http://dx.doi.org/10.1002/chem.202000924
http://www.ncbi.nlm.nih.gov/pubmed/32691857


Molecules 2020, 25, 3576 26 of 26

116. Coy, D.H.; Heinz-Erian, P.; Jiang, N.Y.; Sasaki, Y.; Taylor, J.; Moreau, J.P.; Wolfrey, W.T.; Gardner, J.D.;
Jensen, R.T. Probing peptide backbone function in bombesin. A reduced peptide bond analogue with potent
and specific receptor antagonist activity. J. Biol. Chem. 1988, 263, 5056–5060.

117. Horwell, D.C.; Howson, W.; Naylor, D.; Osborne, S.; Pinnock, R.D.; Ratcliffe, G.S.; Suman-Chauhan, N.
Alanine scan and N-methyl amide derivatives of Ac-bombesin[7-14]. Development of a proposed binding
conformation at the neuromedin B (NMB) and gastrin releasing peptide (GRP) receptors. Int. J. Pept. Protein
Res. 1996, 48, 522–531. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1399-3011.1996.tb00871.x
http://www.ncbi.nlm.nih.gov/pubmed/8985785
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	1,2,3-Triazole as Amide Bond Isostere 
	Synthesis of Triazolo-Peptidomimetics 
	Applications 
	PACE4 Inhibitors 
	Leu-Enkephalin 
	Bombesin 
	Kisspeptin 
	Neurotensin 
	Cathepsin K & S Inhibitors 
	Caspase-3 Inhibitors 
	NRP-1/VEGF165 Inhibitors 
	Minigastrins 
	Angiotensin 

	Conclusions 
	References

