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Abstract: Vinculin and its heart-specific splice variant metavinculin are key regulators of cell adhesion
processes. These membrane-bound cytoskeletal proteins regulate the cell shape by binding to
several other proteins at cell–cell and cell–matrix junctions. Vinculin and metavinculin link integrin
adhesion molecules to the filamentous actin network. Loss of both proteins prevents cell adhesion
and cell spreading and reduces the formation of stress fibers, focal adhesions, or lamellipodia
extensions. The binding of talin at cell–matrix junctions or of α-catenin at cell–cell junctions activates
vinculin and metavinculin by releasing their autoinhibitory head–tail interaction. Once activated,
vinculin and metavinculin bind F-actin via their five-helix bundle tail domains. Unlike vinculin,
metavinculin has a 68-amino-acid insertion before the second α-helix of this five-helix F-actin–binding
domain. Here, we present the full-length cryogenic electron microscopy structure of metavinculin
that captures the dynamics of its individual domains and unveiled a hallmark structural feature,
namely a kinked isoform-specific α-helix in its F-actin-binding domain. Our identified conformational
landscape of metavinculin suggests a structural priming mechanism that is consistent with the cell
adhesion functions of metavinculin in response to mechanical and cellular cues. Our findings expand
our understanding of metavinculin function in the heart with implications for the etiologies of
cardiomyopathies.

Keywords: actin; cadherin; cancer; catenin; cell adhesion; cell junction; cell migration; cell signaling;
heart failure; integrin; plasma membrane

1. Introduction

Vinculin and its larger and muscle-specific spliced isoform called metavinculin play
pivotal roles in cell adhesion by regulating cellular morphology, cellular motility, and
by the transducing force between neighboring cells as well as between cells and the
extracellular matrix [1–7] At cell–cell and cell–matrix junctions, (meta)vinculin functions as
a scaffold where it connects transmembrane cell surface receptors to the filamentous actin
cytoskeleton [8–10].

Vinculin is essential for the development of the heart as well as cardiomyocyte ad-
hesion functions including contraction [11,12]. Vinculin knockout mouse embryos have
neural tube and cardiac developmental defects and do not survive past embryonic day 10.
Vinculin-null murine embryonic fibroblasts have fewer adhesions and thus have defects
in cell spreading and are less able to attach. Therefore, they are more motile and resist
apoptosis and anoikis [13]. Moreover, heterozygous vinculin deletion (+/-) results in dilated
cardiomyopathies [14].

Vinculin and metavinculin have seven four-helix bundle domains that are connected
via a about 40 residue (in vinculin) or about 100 residue (in metavinculin) flexible proline-
rich linker to their respective and distinct five-helix bundle tail domains, which is called Vt
in vinculin, for vinculin tail, or MVt in metavinculin, for metavinculin tail (Figure 1) [15–18].
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Metavinculin has 68 amino acids inserted into the vinculin polypeptide chain between
vinculin residues 915 and 916. Structurally, these additional 68 residues replace the N-
terminal extended coil and the first α-helix H1 of the five-helix Vt bundle domain, whereby
the Vt α-helix H1 in MVt becomes part of the head–tail disordered linker in metavinculin
instead. The Vt and MVt domains bind to F-actin, and their primary and tertiary structural
differences correlate with their distinct actin bundling and binding properties [19–23].
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the linker and the MVt domain is boxed and indicated by two asterisks. Left, bottom: Vh1, Vh2, 
and Vh3 have each two subdomains, and their residue range is indicated below the N-term and C-
term labels (for N-terminal and C-terminal subdomain, respectively). Right, bottom: MVt is a five-
helix bundle domain (residue range of each α-helix is indicated) with an isoform-specific (black 
borders) coiled coil and first α-helix H1’. (B) Superposition of the patient-derived Δ954 metavincu-
lin polypeptide chains in the asymmetric unit in the crystal (gray) onto the two wild type polypep-
tide chains in the asymmetric unit (Vh1, orange; Vh2, yellow; Vh3, green; Vt2, blue; MVt, violet). 
Inter-molecular interactions are indicated. (C) Superposition of the two polypeptide chains in the 
asymmetric unit from the structure of the patient-derived ∆954 metavinculin. Subunit A is shown 
in gray and subunit B is colored spectrally (Vh1, orange; Vh2, yellow; Vh3, green; Vt2, blue; MVt, 
violet) and its linker region that could be built only in subunit B is shown in black (residues 840–
857). Relative domain differences are indicated. 

Figure 1. Metavinculin structure. (A) Top, Metavinculin domain structure. Metavinculin is organized
in four domains colored spectrally (Vh1, orange; Vh2, yellow; Vh3, green; Vt2, blue) that make up
the vinculin head (VH) domain that is connected to the metavinculin tail (MVt, violet) domain. The
metavinculin-specific insert between vinculin residues 915 and 916 spanning part of the linker and
the MVt domain is boxed and indicated by two asterisks. Left, bottom: Vh1, Vh2, and Vh3 have
each two subdomains, and their residue range is indicated below the N-term and C-term labels (for
N-terminal and C-terminal subdomain, respectively). Right, bottom: MVt is a five-helix bundle
domain (residue range of each α-helix is indicated) with an isoform-specific (black borders) coiled
coil and first α-helix H1’. (B) Superposition of the patient-derived ∆954 metavinculin polypeptide
chains in the asymmetric unit in the crystal (gray) onto the two wild type polypeptide chains in the
asymmetric unit (Vh1, orange; Vh2, yellow; Vh3, green; Vt2, blue; MVt, violet). Inter-molecular
interactions are indicated. (C) Superposition of the two polypeptide chains in the asymmetric unit
from the structure of the patient-derived ∆954 metavinculin. Subunit A is shown in gray and subunit
B is colored spectrally (Vh1, orange; Vh2, yellow; Vh3, green; Vt2, blue; MVt, violet) and its linker
region that could be built only in subunit B is shown in black (residues 840–857). Relative domain
differences are indicated.
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Vinculin and metavinculin are exclusively helical, which provides these proteins with
a large degree of flexibility to easily act as adaptor proteins. Two conformations have been
recognized as functionally relevant: (i) their closed and inactive and (ii) their open and
active states. Vinculin and metavinculin are held in their closed auto-inhibited conformers
by an extensive nanomolar affinity interface between their N-terminal four-helix bundle
Vh1 subdomains and their respective Vt or MVt tail domains. In turn, the vinculin and
metavinculin binding partners often need to be activated first prior to binding to vinculin
and metavinculin. Such activation often occurs by mechanical actomyosin force [4,24–28].

Apart from talin and actin, over a dozen other proteins also bind to vinculin and
metavinculin [29]. The binding sites that have been characterized are grouped as binders
to (i) the N-terminal Vh1 bundles, as seen for α-actinin [10,30–32], α-catenin [33–36],
and β-catenin [37,38]; or (ii) with the proline-rich linker region, as suggested for vinexin
α/β [39,40], vasodilator-stimulated phosphoprotein [41–43], and the seven-subunit actin
related proteins-2/3 [44,45]; or (iii) with the tail domains Vt and MVt, respectively, such as
reported for paxillin [46,47] and raver1 [48–50]. Pathogens such as Shigella and Rickettsia
bind the N-terminal Vh1 bundle by mimicry to exploit this vinculin binding site for entry
into the host cell [51–54].

Metavinculin is also interesting from a cardiac perspective, since metavinculin is the
vinculin isoform that is expressed in both smooth [55] and cardiac muscle cells [56,57]
as well as in platelets [58]. In muscle cells, metavinculin expression is enhanced during
contraction [59,60]. In mice, heterozygous inactivation or the knockout of vinculin results
in dilated cardiomyopathy [14,61,62], and metavinculin deficiency leads to disorganized
intercalated discs in human patients [63,64]. Metavinculin point mutations are particular to
patients with dilated cardiomyopathy [65] as well as hypertrophic cardiomyopathy [66,67].
However, family linkage analyses have not been reported, and the number of identified
patients with metavinculin mutations seems too small as direct evidence for metavinculin
dysfunction causing cardiomyopathies. Loss of metavinculin did not affect the development
of the heart and its function [68]. Nevertheless, the vinculin isoforms display distinct
mechanical properties, and it will be interesting to determine how metavinculin modulates
cell adhesion mechanics.

To further our understanding of metavinculin activation and function, we determined
the 4.17 Å cryogenic electron microscopy structure of metavinculin in its native state. Our
structure shows that metavinculin captures individual states of this dynamic protein and
reveals that metavinculin is much more flexible than anticipated from our crystal structures,
whereby its individual domains display a large degree of rotational freedom within the
restrictions provided by the tight head–tail auto-inhibition that keeps metavinculin locked
in its inactive state. Our results pave the way to further our understanding of metavinculin
functions in the heart and its role in devastating cardiomyopathies.

2. Results
2.1. The Metavinculin Polypeptide Chains in the Crystal Structures are Distinct

Our human wild-type and patient-derived 954 deletion mutant metavinculin crystal
structures crystallized with two polypeptide chains in the asymmetric unit that are very
similar [16]. The two wild-type subunits (12,257 atoms) can be superimposed onto the
∆954 mutant with root means squares deviations of 0.4 Å (Figure 1B). In the asymmetric
unit, the N-terminal four-helix bundle of Vh1 of subunit A packs against the C-terminal
four-helix bundle of Vh1 of subunit B as well as the N-terminal four-helix bundle of Vh3.
In addition, the tail domain MVt from subunit A packs against the N-terminal four-helix
bundle of Vh2.

Subunits B are slightly more ordered in both wild-type and ∆954 mutant metavinculin
structures, as is also evident from the additional residues 835–859 of the proline-rich
region that are visible in the electron density maps for subunits B that are missing for
subunits A. However, subunits A and B show different conformations whereby subunit A
superimposes onto subunit B with root means squares deviations of 1.3 Å (for 5969 atoms)
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(Figure 1C) in the 3.4 Å metavinculin ∆954 mutant structure as for the 3.6 Å metavinculin
wild-type structure (not shown).

Comparison of the two polypeptide chains shows that the biologically relevant
Vh1–MVt interface is fairly conserved with polypeptide chain movements of under 2 Å
(Figure 1C). Perhaps the largest relative domain movements of about 12 Å (as measured at
the Cα position of for example residue 456) are seen in the C-terminal four-helix bundle of
Vh2 that is almost completely (about 89% or its surface) solvent exposed. Large relative
four-helix bundle movements of about 7 Å in the polypeptide chain (as measured at the
Cα position of for example residue 341) are also seen in the N-terminal four-helix bundle
of this Vh2 domain. Its movement affects the N-terminal four-helix bundle domain of
Vh3, where it interacts with where the polypeptide chains have moved by about 4 Å (as
measured at the Cα position of for example residue 532). The far end of this N-terminal
four-helix bundle domain of Vh3 is again largely solvent exposed (about 72% or its surface),
and there, the relative domain movements are larger, about 7 Å as measured at the Cα

position of for example residue 562.
Finally, the five-helix Vt2 bundle that is also fairly solvent exposed (about 83% of its

surface) shows variations of about 4 Å (as measured at the Cα position of, for example,
residue 809). This conformational variability is lower (about 3 Å as measured at the Cα

position of for example Cα residue 730), where the Vt2 four-helix bundle movement is
restricted by interdomain contacts with the MVt five-helix bundle.

While metavinculin crystallized in space group P 42,212 with two molecules in the
asymmetric unit, the monoclinic human 2.9 Å vinculin structure (PDB entry 1tr2) [17]
has two subunits in its asymmetric unit that pack much more tightly as documented
by their buried surface area of about 1187 Å2 and dimensions of the two polypeptide
chains are about 130 Å × 127 Å × 128 Å compared to the intermolecular contacts seen in
metavinculin (about 964 Å2 and 158 Å × 110 Å × 80 Å). This tighter packing of vinculin
versus metavinculin correlates with the better resolution obtained for vinculin compared
to metavinculin. Perhaps the most notable intra-molecular inter-domain differences for
any of these four combinations of superpositions are seen in the C-terminal Vh2 four-helix
bundle that shows varying degrees of interactions with the N-terminal four-helix Vh1
bundle (Figure 1C).

The 3.1 Å chicken gizzard vinculin (PDB entry 1st6) [18] has one polypeptide chain
in the asymmetric unit (space group C 2221) and superimposes onto the human vinculin
subunit A with root means squares deviations of 1.7 Å for 5926 atoms or subunit B with
root means squares deviations of 2 Å for 6295 atoms. In this comparison also, the most
notable relative domain shifts are seen for the C-terminal Vh2 four-helix bundle that shows
varying degrees of interactions with the N-terminal four-helix Vh1 bundle (not shown).

Human vinculin subunit A resembles human metavinculin subunit A best (root means
squares deviations of 1.5 Å for 6235 atoms), and human vinculin subunit B superimposes
onto human metavinculin subunits A and B similarly (root means squares deviations of
1.9 Å in both cases for 6232 or 6411 atoms, respectively). The most notable intra-molecular
inter-domain differences for any of these four combinations of superpositions here also
remain for the C-terminal Vh2 four-helix bundle that shows varying degrees of interactions
with the N-terminal four-helix Vh1 bundle (not shown).

2.2. The Cryogenic Electron Microscopy Metavinculin Structure

To better understand the physiological relevance and biological function of the
metavinculin domain flexibility seen in our crystal structures, we determined the cryogenic
electron microscopy structure of human metavinculin. The initial processing of a single
ab initio three-dimensional reconstruction, including all particles accounting for best two-
dimensional classes (Figure 2A), and subsequent homogeneous refinement yielded a 4.17 Å
resolution structure (Table 1, Figure 2B) that overall resembled our earlier crystal structures
confirming overall the auto-inhibited conformation of metavinculin. The local resolution
estimate suggested that the central core is well ordered to 4.2 to 4.5 Å and contributes



Int. J. Mol. Sci. 2021, 22, 645 5 of 19

toward the overall resolution of the metavinculin structure. The peripheral α-helices are in
the 5 to 6 Å resolution range, while a few of the surface regions exhibit resolution of less
than 8 Å (Figure 2C).
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motion corrected images for metavinculin particles. Bottom panel, Representative two-dimensional classes for metavinculin
particles exhibiting visible helix bundle features. (B) Top panel, The 4.17 Å metavinculin structure as obtained using all
particles is depicted with the docked full-length human metavinculin structure color coded spectrally (Vh1, orange; Vh2,
yellow; Vh3, green; Vt2, blue; MVt, violet). Bottom panel, The gold standard Fourier shell correlation curve using a 0.143 Å
threshold, as obtained from homogeneous refinement from all particles, is provided for our final 4.17 Å metavinculin
structure. (C) Local resolution map to show the overall resolution coverage along the entire metavinculin structure. The
scale bar is color coded from high (3.5 Å, blue) to low (10 Å, red) resolution.
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Table 1. Metavinculin cryogenic electron microscopy data collection and model statistics.

(A) Metavinculin electron microscopy data collection and model reconstruction

Conformer Total 4.15 Å 4.5 Å 4.27 Å

Microscope EF-Krios EF-Krios EF-Krios EF-Krios
Voltage (kV) 300 300 300 300

Detector Gatan K3 Gatan K3 Gatan K3 Gatan K3
Magnification (nominal) 105,000 105,000 105,000 105,000
Dose rate (e−/Å2/sec) 42.45 42.45 42.45 42.45
Frames per exposure 40 40 40 40

Total exposure (e−/Å2) 67.92 67.92 67.92 67.92
Pixel size (Å/pix) 0.825 0.825 0.825 0.825

Defocus (mm) 1.4 1.4 1.4 1.4
Micrograph collected 3011 3011 3011 3011
Initial particles (no.) 1,303,504 1,303,504 1,303,504 1,303,504

Symmetry C1 C1 C1 C1
Resolution (Å) 4.17 4.15 4.5 4.27

Particles used (no.) 1,303,504 458,305 413,507 366,802

(B) Metavinculin model refinement and statistics of our three distinct conformers

Conformer Total 4.15 Å 4.5 Å 4.27 Å

Atoms 7568 7577 7577 7577
Protein Residues 994 995 995 995

Bonds (root means squares deviations)
Length (Å) 0.007 0.006 0.006 0.007
Angles (◦) 1.016 0.955 1.030 1.032

Molprobity score 2.00 2.12 2.17 2.02
Clash score 12.79 12.91 17.86 14.28

Ramachandran plot
Favored (%) 94.34 95.66 93.54 94.85
Allowed (%) 5.66 4.34 6.46 5.15
Outliers (%) 0.00 0.00 0.00 0.00

Rotamer outliers (%) 0.25 0.37 0.12 0.12
Cβ outliers (%) 0.00 0.00 0.00 0.00

Mean temperature factors 158.11 217.30 217.93 210.82

To account for the conformational flexibility within various domains, three-dimensional
classification of the initial ab initio model was carried out through heterogeneous refinement
in cryoSPARC [69] into three main classes. The individual three main classes accounted to
about 35%, 32%, and 28% of the total particles available with the remaining 5% segregated
as non-aligned particles. Furthermore, these individual three-dimensional classes were
subjected to homogeneous refinement to yield 4.15 Å, 4.5 Å, and 4.27 Å conformers repre-
senting at least two distinct populations (Figure 3). When comparing all three cryogenic
electron microscopy conformers presented here to our crystal structures, greater structural
similarity is seen with subunit A in the crystal. The two similar (4.15 Å and 4.27 Å) cryo-
genic electron microscopy structures superimpose onto subunit A with root means squares
deviations of 2.1 and 2.4 Å for 6,359 or 6,320 atoms, respectively versus the distinct 4.5 Å
cryogenic electron microscopy structure (3.4 Å for 6468 atoms). Subunit B of the crystal
structure superimposes more poorly with superposition values ranging from 3 to 3.6 Å.
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metavinculin. The refined metavinculin conformer is colored spectrally (Vh1, orange; Vh2, yellow; Vh3, green; Vt2, blue;
MVt, violet). The bottom panels show the gold standard Fourier shell coefficient derived from homogeneous refinement
applying a 0.143 Å threshold limit for resolution estimation. (A) The 4.15 Å resolution H1’-parallel metavinculin structure is
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2.3. The Cryogenic Electron Microscopy Metavinculin Conformers

The nanomolar interaction is the anchor of the auto-inhibited metavinculin (and vin-
culin) conformer. While this interface is restricting the remaining domains roughly in their
places, our cryogenic electron microscopy structure shows that they are surprisingly mo-
bile. When comparing all metavinculin conformations, the biologically relevant head–tail
interface that keeps metavinculin (and vinculin) in their autoinhibited conformation seems
unaltered (Figure 4A). Indeed, the superposition of Vh1 residues 2–250 and MVt residues
975–1114 from the various metavinculin cryogenic electron microscopy conformations
or crystal structures results in root means squares deviations of less than 1 to about 2 Å
for 2500–2700 atoms and even when superimposing onto the equivalent vinculin Vh1-Vt
domains, such values are up to 2.4 Å for 2749 atoms (Figure 4A).

2.4. A Novel Conformer in the F-Actin Binding Domain

Our 4.5 Å resolution cryogenic electron microscopy metavinculin conformer has a
novel feature not encountered before. Its first MVt α-helix H1’ is distinctly different from the
conformation seen in any other metavinculin structure. In all other full-length structures,
α-helix H1’ is parallel to α-helices H3 and H5 or antiparallel to α-helices H2 and H4 of
the five-helix bundle MVt domain. Therefore, we name this metavinculin conformation
the “H1’-parallel metavinculin” structure. However, in its new conformer, the N-terminus
(residues 961–972) of α-helix H1’ are by about 60◦ rotated from its MVt helix bundle bound
state (Figure 4A) to instead interact with the solvent exposed end of the N-terminal four-
helix bundle of Vh3 (Figure 4B). We will name this distinct metavinculin conformation the
“H1’-kinked metavinculin” structure. Resulting new MVt–Vh3 interactions are provided by
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MVt residues Gln-964, Gln-971, and Ser-972 and Vh3 residues Gln-501, Asp-505, Glu-565,
and Arg-570.
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kinked (with domains colored spectrally) and H1’-parallel (shown in gray) metavinculin cryogenic 
electron microscopy structures. Several subdomains are labeled, and the relative movements of 
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2.4. A Novel Conformer in the F-Actin Binding Domain 
Our 4.5 Å resolution cryogenic electron microscopy metavinculin conformer has a 

novel feature not encountered before. Its first MVt α-helix H1’ is distinctly different from 

Figure 4. Interdomain distinctions between the H1’-parallel and H1’-kinked metavinculin conformers.
(A) Superposition of both Vh1 subdomains (Vh1-N for N-terminal and Vh1-C for C-terminal, residues
2–250) and tail MVt (residues 975–1114; Vt in vinculin) domains from our two vinculin subunits in
the crystal, our four metavinculin subunits in the crystal, and our three cryogenic electron microscopy
structures (all in gray except for the H1’-kinked metavinculin conformer where Vh1 is in orange
and MVt in violet) shows that these two domains are almost identical. Cα positions 961–972 of
the three cryogenic electron microscopy structures are highlighted as spheres to show the novel
kink in the isoform-specific H1’ α-helix (arrow). The termini (residues 1 and 1119) are labeled as
N and C, respectively. (B) Superposition of the Vh1 (residues 2–250) and MVt (residues 975–1114)
domains from our H1’-kinked (with domains colored spectrally: Vh1, orange; Vh2, yellow; Vh3,
green; Vt2, blue; MVt, violet) and H1’-parallel (shown in gray) metavinculin cryogenic electron
microscopy structures. Cα positions 961–972 of the three cryogenic electron microscopy structures
are highlighted as spheres to show the novel kink in the isoform-specific H1’ α-helix (arrow). Several
subdomains are labeled, and their relative movements are indicated. (C) Superposition of the Vh1
(residues 2–250) and MVt (residues 975–1114) domains from our H1’-kinked (with domains colored
spectrally) and H1’-parallel (shown in gray) metavinculin cryogenic electron microscopy structures.
Several subdomains are labeled, and the relative movements of the 4 α-helices of the C-terminal Vh3
subdomain are indicated.
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The effects of the N-terminal four-helix bundle of Vh3 that is now closer to MVt in
the H1’-kinked metavinculin structure compared to its position in the other metavinculin
structures is transferred to the C-terminal Vh3 four-helix bundle that in turn is further
away from its interaction seen with the C-terminal four-helix bundle subdomain of Vh1
(Figure 4C). For example, Cα positions of residues 605, 620, 684, and 690 are 8–13 Å further
away from their positions (and the Vh1 C-terminal bundle) in the H1’-kinked metavinculin
structure compared to the H1’-parallel metavinculin structures.

2.5. The Metavinculin Vh2–Vh3 Domain Constellations

The new proximity of the N-terminal four-helix bundle of Vh3 with MVt are also
affecting the interaction of Vh3 with Vh2 resulting in a relative shift of the N-terminal
four-helix bundle of Vh2 not to lose its interaction with the Vh3 domain (Figure 4B). For
example, the N-terminal Vh2 four-helix bundle shows relative movements of its 4 α-helices
of up to 9 Å as measured at Cα position of residues 341. Since the N-terminal Vh2 and Vh3
four-helix bundles both moved in the same direction, their respective Vh2–Vh3 distances
remain at about 15 Å, as measured at Cα position between residues 298 and 636, in both the
H1’-kinked and H1’-parallel metavinculin conformers. This collective relative movement
of four-helix bundles is also somewhat the case for the C-terminal four-helix bundle of Vh3
and its relative position to the Vt2 domain (Figure 4C), where the distances, as measured
at the Cα position between residues 604 and 747, are about 14 Å and about 17 Å for the
H1’-kinked and H1’-parallel metavinculin structures, respectively.

2.6. The Two H1’-Parallel Metavinculin Conformations

Our two H1’-parallel cryogenic electron microscopy conformers are quite similar
and superimpose with root means squares deviations of less than 1.2 Å for 6614 atoms
compared to their poorer superposition with the H1’-kinked metavinculin structure, where
these values are 2.9 Å or 2.6 Å for 7097 or 7057 atoms, respectively (not shown). There
is a relative shift in the position of the C-terminal (or N-terminal) Vh2 four-helix bundle
subdomain of about 4.5 Å (or 5.3 Å) as measured between the Cα positions of residues 449
(or 288) in the H1’-kinked and the H1’-parallel metavinculin structures (Figure 5A). As
mentioned above, the H1’-parallel metavinculin cryogenic electron microscopy structures
resemble the subunit A crystal structure but nevertheless show also greatest difference in
this C-terminal four-helix bundle of Vh2 as well as relative movements of the Vt2 domain
(Figure 5B).

2.7. The Metavinculin Vh2 C-Terminal Subdomain Constellations

The C-terminal four-helix bundle of the Vh2 domain is in proximity with the N-
terminal four-helix bundle of Vh1 and with MVt. In the H1’-kinked metavinculin structure,
the distance of the C-terminal Vh2 subdomain to either the N-terminal subdomain of Vh1
or the MVt domain are 9.4 Å (as measured between the Cα positions of residues 73 and 396)
and about 13.5 Å (as measured between the Cα positions of residues 468 and 1086). These
values are 9.8 Å and 10.8 Å in the H1’-parallel metavinculin structure. Subunit A in the
crystal has its Vh2 C-terminal subdomain much more solvent exposed, as these distances
are almost doubled (15.7 and 19 Å, respectively). Subunit B in the crystal has values closer
to the cryogenic electron microscopy structures (8.8 and 15.3 Å). Thus, the C-terminal Vh2
four-helix bundle seems to be sampling a large conformational space.
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Figure 5. Inter-domain distinctions between the H1’-parallel metavinculin conformers. (A) Superpo-
sition of both Vh1 subdomains (Vh1-N and Vh1-C, residues 2–250) and the MVt (residues 975–1114)
domain from our two H1’-parallel metavinculin cryogenic electron microscopy structures. The 4.15 Å
H1’-parallel metavinculin conformer has its domains colored spectrally (Vh1, orange; Vh2, yellow;
Vh3, green; Vt2, blue; MVt, violet) and the 4.27 Å H1’-parallel metavinculin conformer is shown in
gray. Several subdomains are labeled, and the relative movements of the two Vh2 subdomains are
indicated. (B) Superposition of the Vh1 (residues 2–250) and MVt (residues 975–1114) domains from
our H1’-parallel metavinculin cryogenic electron microscopy (colored spectrally) and crystal (subunit
A, shown in gray) structures. Several subdomains are labeled, and relative subdomain movements
are indicated. (C) Superposition of the Vh1 (residues 2–250) and MVt (residues 975–1114) domains
from our H1’-parallel metavinculin cryogenic electron microscopy (colored spectrally) and crystal
(subunit B, shown in gray) structures. The crystal structure has residues through 859 for VH and
1131 for MVt, while the cryogenic electron microscopy structure has residues built through 839 for
VH and 1119 (labeled) for MVt. Subunit B residues Asn-773, Glu-775, Asp-1042, and Arg-1046 are
also labeled by their respective amino acid one letter codes (N, E, D, R).

2.8. The Metavinculin Vt2–MVt Domain Constellations

In addition to the interaction of the N-terminal four-helix bundle of Vh1 (residues
1–129) with the MVt tail domain (residues 946–1132), metavinculin seems to be held in its
closed conformer by the intramolecular interaction of the Vt2 domain with the MVt domain
(Figure 5C). While there are relative domains movements, all conformations seem to have
interactions conserved that keep the Vt2-MVt lock. For example, Vt2 residue Asn-773 is in
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electrostatic interaction with MVt residue Asp-1042 as well as the Glu-775 interaction with
Arg-1046.

Subunit B in the crystal is the only polypeptide chain that has residues visible in the
electron density map beyond the Vt2 four-helix bundle domain (through residues 859). In
subunit B, Vt2 residue Glu-839 binds MVt residue Arg-1117, thereby stabilizing this loop
which is disordered in subunit A in the crystal or in the cryogenic electron microscopy
structures. Collectively, interactions between the Vt2 and MVt domains seem an additional
conserved hook to keep the metavinculin structures in their auto-inhibited conformations.

2.9. The Metavinculin C-Terminal F-Actin Binding Domain MVt

Subunit B in our crystal structures is the most ordered polypeptide chain with electron
density only missing for residues 860–946 for the deletion mutant ∆954 or residues 857–
949 in our wild-type structure. Our 2.2 Å isolated MVt crystal structure (Protein Data
Bank entry 3myi) comprises residues 961–1116 and 1120–1129, which superimposes with
H1’-kinked (or H1’-parallel) metavinculin with root mean squares deviations of 1.5 Å (or
1.3 Å) for 924 (or 950) atoms. MVt superposes best with subunit A of our full-length crystal
structures (0.4 Å for 927 atoms). These values are 0.5 Å for 915 atoms superimposed onto
subunit B.

In our cryogenic electron microscopy structure, we did not observe a definitive density
for the C-terminus (residues 1120 to 1134). This suggests that this region is flexible and
in various conformations. Recently, the cryogenic electron microscopy structure to 2.9 Å
resolution was reported of MVt residues 879–1134 bound to F-actin, but the N-terminus
residues 879–980 that include the first α-helix (that we originally named H1’ to emphasize
its distinction from the equivalent α-helix H1 of the vinculin isoform) of this five-helix
bundle were disordered and could not be modeled [70]. This is consistent with an earlier
8.2 Å reconstruction of MVt (residues 858–1129) that also showed that α-helix H1’ was
displaced from the five-helix bundle domain [22]. The coiled coil (residues 949–960)
preceding the α-helix H1’ could not be built in our cryogenic electron microscopy structures
with residue 840 through 960 missing.

3. Discussion

Metavinculin shares functional as well as structural similarities with its splice variant
isoform, vinculin, which has been shown to be a very dynamic molecule involved in focal
adhesion as well as adherent junctions. The crystal structures of full-length vinculin and
metavinculin display a snapshot of the overall conformation of the molecule without their
full dynamics. Our 4.15–4.5 Å cryogenic electron microscopy metavinculin conformers
uncover the overall dynamics of human metavinculin.

Metavinculin is on the small (about 125 kDa) side for cryogenic electron microscopy
but turned out a great tool to elucidate the structural dynamics for smaller proteins. To bet-
ter resolve and visualize the molecular motions of metavinculin in detail, three-dimensional
variability analyses [71] were carried out with the default option of three modes on the
entire stack of 1,303,504 particles that was subjected to homogeneous refinement. Out of
the three modes computed by three-dimensional variability analyses, one mode provided a
glimpse of discrete conformational states presented by metavinculin in solution (Figure 6).
However, the other two modes provided subtle twists and lateral movement of the Vh2
domain, although they were not clearly discernable due to the moderate resolution of the
particles. Accordingly, the particles in solution exhibit the whole spectrum of conforma-
tional flexibilities seen from the heterogeneous refinement. The concerted action of all
domains leads to a primed interface state from the 4.15 Å conformer to the 4.5 Å conformer
with a concomitant release of α-helix H1’ of the MVt domain.
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Figure 6. Conformational flexibility as determined by three-dimensional variability analyses. Three-
dimensional variability analyses of metavinculin particles of the primed interface in the H1’-kinked
state (red) and H1’-parallel state (blue) of metavinculin depicting the overall mobility of the various
subdomains. The left panel show the prominent lateral movements of the Vh1 and Vh3 C-terminal
four-helix bundles relative to each other. The right panels represent the 90◦ rotated view and
illustrates the lateral movement of the Vh2 C-terminal four-helix bundle toward the Vh1 N-terminal
four-helix bundle as a consequence of coordinated movement of rest of the four-helical bundles. The
middle panels show the superposed view of the observed states with the top panel showing one of
the states and the bottom panel showing the other state in opposite direction. The arrows indicate
the direction of movement of individual subdomains, and the solid and dashed lines distinguish the
lateral movements corresponding to each other. The various domains positions are labeled for clarity.

The presentation of Vt as five-helix bundle as a self-contained conformation on its
own (PDB entries 1st6 and 1tr2) [17,18] or in complex with Vh1 (PDB entry 1rke) [72] raises
an intriguing question when the release of α-helix H1’, or α-helix H1 in vinculin, happens
in cells. Unfolding of the vinculin tail domain upon binding to filamentous actin or acidic
phospholipids has been suggested before [15], resulting in the release of the coiled coil
region preceding α-helix H1’ (or α-helix H1 in vinculin). The recent electron microscopy
structures of the F-actin binding domains of vinculin, metavinculin, or αE-catenin have their
first α-helices released from their five-helix bundles as a consequence of binding to F-actin
as documented by the isolated F-actin binding domains bound to the actin filament [70,73].
Our cryogenic electron microscopy structure of human full-length metavinculin provides a
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first glimpse of the α-helix H1’ being released even within the auto-inhibited state as a part
of its conformational flexibility. Despite the moderate resolution, we were able to model
the partially dissociated α-helix H1’ in the 4.5 Å structure, suggesting that this α-helix
is loosely held within the five-helix bundle. Furthermore, α-helix H1’ exhibits a buried
surface area of about 720 Å2, which is much lower than those exhibited by the rest of the
individual α-helices (about 1200 to 1500 Å2) as observed in the 4.15 and 4.27 Å resolution
conformations, respectively. Whether this α-helix H1’ dissociates during the release of
the metavinculin auto-inhibited state is an interesting question for future studies. Such
mechanism might allow the tail domain to interact with other protein, such as F-actin, with
enhanced affinity.

While the affinities of the vinculin isoforms for binding to F-actin are similar (0.6 ±
0.2 µM for MVt and 0.5 ± 0.1 µM for Vt) [21], metavinculin has been shown to behave
differently in F-actin binding and bundling activities in comparison to vinculin [16,23]. The
release of α-helix H1’ as part of the activation mechanism could lead to the rearrangement of
α-helices H1’ and H1 into microdomains, as suggested earlier [23]. However, our observed
pre-release of α-helix H1 suggests that this probably occurs prior to binding to F-actin
rather than as a consequence of the interaction leading to the bundling difference observed
between the isoforms. The rearrangement of the N-terminal α-helix has been proposed
to be a general mechanism for F-actin binding to metavinculin, vinculin, and α-catenin
family of proteins [70]. It has also been observed that the C-terminal region of the five-helix
bundle of the F-actin binding tail domain is flexible. We also see both these changes in our
4.5 Å H1’-kinked metavinculin conformer as a consequence of conformational flexibility
within the auto-inhibited form, suggesting again that the activation process might start
with a primed state for various protein interactions (Figure 7).

Our cryogenic electron microscopy structure of human metavinculin and our three-
dimensional variability analyses suggest that the overall stability of the auto-inhibited state
might be contributed by nearly all of its individual domain components. It is possible that
the motifs and structural scaffolds of the protein are involved in contributing toward either
structural integrity or functional flexibility or both. The various helix bundle domains seem
to provide scaffold stability to the structure of these adaptor proteins. The conformational
variability observed in our cryogenic electron microscopy metavinculin structure is in
agreement with published ion mobility-mass spectrometry experiments that showed that
metavinculin occupies a larger conformational range compared to vinculin [74]. In solution,
vinculin was found to be entirely in its closed conformer, while metavinculin displayed
additional conformers that included extended or unfolded states.

Since vinculin is a ubiquitous protein involved in cellular structural integrity through
focal adhesion and adherens junctions, it is important to be structurally primed to interact
with various components within the cell, including phospholipids and other cell adhesion
molecules. The conformational landscape that vinculin and metavinculin exhibit seems to
provide this structural priming that could get the proteins ready to adapt and engage in
cell adhesion function at the very onset of signaling cues such as force or other signaling
molecules (such as phosphatidylinositol 4,5-bisphosphate, PIP2).
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Figure 7. Mechanism of primed interface states exhibited by metavinculin. The cartoon representation
of the overall conformation, similar to our crystal structure, is as depicted in the bottom. A slight
twist in the four-helix bundles of Vh2 and Vh3 leads to the second H1’-parallel conformation (top
right). Either of the H1’-parallel conformations (top right or bottom) transitions to the H1’-kinked
conformation accommodating very large movements in the Vh1, Vh3, Vt2, and MVt subdomains
with the separation of α-helix H1’ depicted with white separator. (top left). The interplay between
these states as seen in our cryogenic electron microscopy structures provides a glimpse of the
primed interface state of metavinculin. The subdomains are color coded to represent Vh1 (orange),
Vh2 (yellow), Vh3 (green), Vt2 (blue), and MVt (purple). The single arrows indicate dhte domain
movements, the double arrows the transitions from one metavinculin conformer to another.

4. Materials and Methods
4.1. Expression and Purification of Metavinculin

Metavinculin expression and purification were carried as described earlier [16] with
slight modifications. Briefly, Escherichia coli BL21(DE3) cells expressing metavinculin were
lysed by sonication in 20 mM Tris-HCl pH 8, 400 mM NaCl, and 20 mM imidazole con-
taining the ethylenediaminetetraacetic acid-free protease inhibitor cocktail (from Millipore
Sigma, Burlington, MA, USA) and clarified by ultra-centrifugation (100,000× g for 45 min
at 4 ◦C). The supernatant was subjected to HisTrap Ni-Sepharose affinity column (Cytiva
Lifesciences) pre-equilibrated with 20 mM Tris-HCl pH 8 and 150 mM NaCl and eluted
with a 500 mM imidazole gradient. The eluate was concentrated and loaded onto a size
exclusion chromatography column (Superdex200) that was pre-equilibrated with 20 mM
Tris-HCl pH 8.0, 150 mM NaCl, and 0.2 mM tris (2-carboxyethyl) phosphine. The peak
fractions were pooled and concentrated. Aliquots were flash frozen in liquid nitrogen and
stored at −80 ◦C.

4.2. Metavinculin Cryogenic Electron Microscopy Data Collection

We applied 3 µL of purified human metavinculin at a concentration of 0.5 mg/mL
onto a glow discharged 300 mesh Quantifoil (Electron Microscopy Sciences, Hatfield, PA,
USA) 1.3/1.2 copper grids maintained at 4 ◦C and 95% humidity using a Leica GP2 (Leica
Microsystems, Buffalo Grove, IL, USA) plunge freezer. The grids were blotted for 4 s and
immediately plunge frozen in liquid ethane cryocooled by liquid nitrogen and maintained
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at −183 ◦C. The frozen grid was imaged on an EF-Krios (Thermo Fisher Scientific, Waltham,
MA, USA) operated at 300 kV with a Gatan K3 imaging system and an energy filter with a
slit width of 20 eV, and the data was collected at the National Center for CryoEM Access
and Training facility situated at the New York Structural Biology Center, New York, NY,
USA. Images were acquired using Leginon [75] at a nominal magnification of 105,000X
and a dose rate of 42.45 e−/Å2/s with a total exposure of 1.6 s containing 40 frames for
an accumulated dose of 67.92 e−/Å2. A total of 2,998 images were collected at a nominal
defocus of 1.4 µm. The metavinculin cryogenic electron microscopy data were processed
using a calibrated pixel size of 0.4124 Å with 2x binning to a final pixel size of 0.8247 Å.

4.3. Metavinculin Cryogenic Electron Microscopy Data Processing

Frame alignment and beam induced motion correction of the raw movies were carried
out using MotionCor2 [76]. This step as well as all further processing were carried out
in cryoSPARC 2.15 [69]. CTFFIND4 [77] was used to determine defocus values of the
micrographs. Images that were having large astigmatism, drift, and low contrast transfer
function fit resolution were discarded through manual curation. Initially, a few hundred
particles were picked from a few random micrographs and used for template-based picking
as implemented in cryoSPARC, resulting in 2,622,418 particles from 2842 images. Then,
these particles were extracted using 256-pixel box size, binned by 4 (3.3 Å/pixel), and
applied for two-dimensional classification. Most of the particles that were segregated as
featureless or excessive noise containing classes were excluded through two rounds of two-
dimensional classification resulting in 199 good classes, as being identified with discernable
helical bundle features, and 1,469,121 total particles. Then, these particles were re-extracted
in the original 256-pixel box size and subjected to initial ab initio three-dimensional recon-
struction in cryoSPARC. Additional, per-particle defocus and contrast transfer function-fit
resolution-based curation resulted in 1,303,504 particles that were used for homogeneous
refinement. The resulting initial ab initio model was further subjected to heterogeneous
refinement. The particles that were clustered in three groups were further subjected to the
final round of homogeneous refinement. The local resolution of the individual maps was
calculated using the BlocRes [78] as implemented in cryoSPARC. Evaluation of the het-
erogeneity of the particles were analyzed with three-dimensional variability analyses and
depicted using the three-dimensional variability display as implemented in cryoSPARC.
Model building was carried out using our human metavinculin crystal structure [16] as the
starting model, which was docked into the electron microscopy map using coot 0.9 [79].
Initial real-space refinement of the whole chain was carried out in coot, and after iterative
model building, the final model was refined using Phenix by real-space-refinement [80].
The quality of the final model was assessed by Molprobity [81].
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