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Abstract

Background: Dogs have the second largest number of genetic diseases, after humans. Among the
diseases present in dogs, progressive retinal atrophy has been reported in more than a hundred
breeds. In some of them, the mutation has been identified and genetic tests have allowed the
identification of carriers, thus enabling a drastic reduction in the incidence of the disease. The
Finnish lapphund is a dog breed presenting late-onset progressive retinal atrophy for which the
disease locus remains unknown.

Results: In this study we mapped the progressive retinal atrophy locus in the Finnish lapphund
using a DNA pooling approach, assuming that all affected dogs within the breed share the same
identical-by descent-mutation as the cause of the disease (genetic homogeneity). Autosomal
recessive inheritance was also assumed, after ruling out, from pedigree analysis, dominant and X-
linked inheritance. DNA from 12 Finnish lapphund cases was mixed in one pool, and DNA from 12
first-degree relatives of these cases was mixed to serve as the control pool. The 2 pools were
tested with 133 microsatellite markers, 3 of which showed a shift towards homozygosity in the
cases. Individual genotyping with these 3 markers confirmed homozygosity for the GALKI
microsatellite only (chromosome 9). Further individual genotyping with additional samples (4 cases
and 59 controls) confirmed the association between this marker and the disease locus (p < 0.001).
Closely related to this breed are the Swedish lapphund and the Lapponian herder for which a small
number of retinal atrophy cases have been reported. Swedish lapphund cases, but not Lapponian
herder cases, had the same GALK| microsatellite genotype as Finnish lapphund cases.

Conclusion: The locus for progressive rod-cone degeneration is known to be close to the GALK|
locus, on the telomeric region of chromosome 9, where the retinal atrophy locus of the Finnish
lapphund has been mapped. This suggests that the disease in this breed, as well as in the Swedish
lapphund, may correspond to progressive rod-cone degeneration. This would increase the number
of known dog breeds having this particular form of progressive retinal atrophy.

Background are collectively afflicted by more than 450 reported
There are more than 350 dog breeds, each maintained as  genetic diseases, the incidence of which varies from breed
a breeding population separate from other breeds, which  to breed [1,2]. Many of the breeds have been founded
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from a small number of individuals, and the dogs within
them have been subjected to a high degree of inbreeding.
In some cases further population bottlenecks and/or pop-
ular sire effects have led to a small number of individuals
contributing disproportionately to the gene pool of the
breed. In small, inbred and genetically isolated popula-
tions, inherited diseases are likely to be genetically homo-
geneous, with the same identical-by-descent mutation
underlying all instances of the disease in the breed. Even
if there is genetic heterogeneity, one of the mutations may
be much more common than the rest due to the afore-
mentioned characteristics of dog breeds. Association stud-
ies and, specifically for recessive diseases, autozygosity
mapping [3-7], are well suited for mapping disease loci in
this kind of populations. Moreover, these approaches
have the advantage of not needing DNA samples from
members of nuclear families covering several generations,
a requirement that may be difficult to meet for late age of
onset diseases since by the time a dog is diagnosed as
affected, the parents may no longer be alive or sibs and
descendants may have been dispersed. In place of nuclear
families, association studies may use any affected dogs
and unrelated controls. Thus, this approach has the
potential for increasing the number of disease loci that
may be mapped in this species.

Among canine diseases, progressive retinal atrophy (PRA)
involves the gradual death of photoreceptors, first rods,
leading to night blindness, and then cones, causing com-
plete loss of sight. PRA has been reported in more than a
hundred breeds, and the mutations underlying it have
been intensively searched for in many of them, although
only few of the mutations have been found [8]. Two dif-
ferent mutations have been identified in PDE6B, one caus-
ing rod-cone dysplasia type 1 (rcd1) in Irish setters [9-11]
and another involved in PRA in Sloughis [12]. Mutations
have also been found in PDC in the Miniature schnauzer
[13], RPEG5 in Briards with retinal dystrophy [14-16],
PDEGA in Cardigan Welsh corgis with rod-cone dysplasia
type 3 (rcd3) [17], RHO in English and Bull mastiffs with
autosomal dominant PRA [18], and RPGR in Samoyeds
and Siberian huskies with X-linked PRA [19]. In addition
to this, 3 loci have been mapped: early retinal degenera-
tion (erd) in the Norwegian elkhound [20] to CFA27, rod
cone dysplasia type 2 (rcd2) in the collie [21] to CFA7, and
progressive rod-cone degeneration (prcd) in CFA9. This
last one is the most widespread of these diseases since it
occurs in the American and English cocker spaniels, Lab-
rador retriever and Miniature poodle [22]. Crossing exper-
iments involving affected miniature poodles and English
and American cocker spaniels showed that prcd is allelic in
these breeds [23]. The mapping of the PRA locus in the
American Eskimo dog suggests the disease in this breed is
also pred [7]. Most recently a mutation has been described
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in a new gene prcd which is believed to be causal for this
disease [24].

The Finnish lapphund has a long history, descending
from Scandinavian spitz type dogs. For a long time it has
been a working dog, although its role as a family dog is
growing, as its popularity increases, particularly in Fin-
land. The breed standard was first established in 1945,
and has been revised several times. Dogs from unregis-
tered parents may still be admitted to the breed if they
meet the breed's standard. A number of PRA cases have
been found in the breed, but no clinical or genetic studies
have been performed so we decided to investigate its cause
using genomic mapping techniques.

Results

Progressive retinal atrophy in the Finnish lapphund
Affected Finnish lapphunds have been reported in Fin-
land and in the UK; the prevalence of the disease is
unknown. By ophthalmoscopic examination it was seen
that the early signs of the disease include subtle retinal
vascular attenuation, tapetal hyperreflectivity and pale
grey optic discs. As the disease progressed tapetal hyper-
reflectivity and vascular attenuation became more obvi-
ous. In some cases there was non-tapetal pigment
migration. In dogs ophthalmoscopically examined regu-
larly from birth, the first signs of the disease were noticed
at the age of 4 to 6 years, placing it within the late onset
group of PRA diseases.

To date, no multigenerational families have been fol-
lowed to determine the mode of inheritance of the disease
in the Finnish lapphund; however, the distribution of
known cases within the breed does not support auto-
somal dominant or X-linked inheritance (Figure 1).

Pedigree analysis of 21 affected individuals revealed that
16 of them share as a common ancestor one of the found-
ers of the registered breed. That this ancestor is a founder
of the registered breed and is itself an obligate carrier sug-
gests that the mutation antedates the registered breed.

DNA pools and pedigree analysis of the cases

Autozygosity mapping, by DNA pooling was used as the
initial step to map the Finnish lapphund PRA locus. To
test the suitability of the DNA pooling approach, and to
ensure that rare alleles would be detected, thus avoiding
false negative results, DNA from two individuals were
mixed in different proportions raging from 1:0 to 1:10.
These two individuals were heterozygous for the FH2309
marker, having only one allele in common. All three alle-
les were detected when the DNA were mixed, irrespective
of the ratio between the two DNAs. Next, two DNA pools
were made, one with DNA from 12 Finnish lapphund
cases, and the other with DNA from 12 obligate carriers
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Figure |
GALKI microsatellite genotypes in Finnish lapphunds. All the individuals included in the study are represented in this

figure along with their GALK| genotype. The allele associated with the disease is "d". Only individuals that have already devel-
oped the disease are represented as filled symbols. Arrowheads point to individuals used for DNA pooling.
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(parents or offspring of the affected dogs represented in
the case pool). The pedigree of the dogs in the case pool
was analysed using PedHunter [25] in search of a possible
common ancestor. Such a dog was identified as one of the
male founders of the registered breed. The number of mei-
oses between the cases and the common ancestor ranged
from 8 to 15 (average 11.67). The shortest region of iden-
tity by descent [26] was estimated to span 10.05 cM and
corresponded to the affected dog furthest removed (at 15
meioses) from the common ancestor.

Locus mapping

To map the locus, 133 microsatellite markers were stud-
ied. Seventeen of these were chosen for their proximity to
14 loci known to be involved in dog or human retinal dis-
eases, or being expressed in the retina: ABCA4, CNGAI,
GNAT1, GNGT1, NRL, PDC, PDEGA, PDEGD, PDEG,
PRCD, RDS, RLBP1, ROM1 and SAG. The rest of the mark-
ers were selected to cover the whole of the autosomes at
intervals of approximately 20 cM. For 117 markers
(87.97%) similar levels of heterozygosity were observed
in both pools; 13 markers (9.77%) were uninformative,
and 3 markers (2.26%) exhibited a shift towards homozy-
gosity in the case pool: FH2175 (CFA16), FH2189
(CFA14) and GALK1 (CFA9).

Individual genotyping was performed with the 3 markers
exhibiting the shift, using the same 12 cases and 12 con-
trols used in the DNA pools. Only for GALK1 was the shift
towards homozygosity confirmed, with 11 cases
homozygous for the same allele, and the remaining one
heterozygous. In contrast to this, half of the controls were
heterozygous (all of them having one copy of the same
allele as the cases, as expected from obligate carriers), and
the rest were homozygous for the same allele as the cases.
The CLUMP test [27] gave some support to the association
between GALK1 and the locus for the disease in this small
set of samples (T1 p = 0.10465, T2 p = 0.024138, T3 p =
0.024184, T4 p = 0.060339).

To characterise in more detail the region close to GALK1,
additional markers were added and tested with the DNA
pools. The markers and their position in the dog genome
[28] (version 2.1) were: TK1 (7.5 Mb), FH3359 (10.34
Mb), C03304 (14.28 Mb), FH2263 (16.42 Mb),
REN198P23 (18.09 Mb), FH3596 (18.12 Mb), and
C09.173 (18.86 Mb). However, no differences in the level
of heterozygosity were observed between the pools and
no homozygosity was observed among the cases.

GALKI individual genotyping

Next, 4 cases and 59 controls were added to the previous
set, and all 87 samples were tested for the GALK1 marker
using a fluorescent-labelled primer (Fig. 1). The allele fre-
quencies among cases and controls were significantly dif-
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ferent (T1 p = 0.001164, LOD = 2.93; T2 p = 0.000046,
LOD = 4.34; T3 p = 0.000011, LOD = 4.96; T4 p =
0.000455, LOD = 3.34). T3 assumes association of the
mutation with a single allele and the LOD approaches 5.

GALKI analysis in Swedish lapphunds and Lapponian
herders

A small number of retinal atrophy cases have also been
reported for the Swedish lapphund, which is a breed
closely related to the Finnish lapphund, so a group of 7
samples was assembled. The 3 cases belonged to a nuclear
family (2 full sibs and a half sib to them, with ages at diag-
nosis of 12 years 7 months and 11 years 5 months for the
full sibs, and 9 years 4 months for the half sib). Among
the controls, 3 belonged to a different nuclear family (2
half-sibs and a maternal uncle), while a fourth control
belonged to a separate family.

All 3 cases in the Swedish lapphund were homozygous for
the same GALK1 microsatellite allele (allele "d") as
affected Finnish lapphunds, while all controls were heter-
ozygous and all of them carried one copy of allele d.

The Lapponian herder is a breed closely related to the two
previous ones and a few retinal atrophy cases have also
been reported. Clinically, the disease appears to be similar
to the one observed in the Finnish lapphund.

Samples from 3 Lapponian herder cases and 6 controls
(including four obligate carriers) were obtained. The 2
cases from Finland were diagnosed at 3 years 10 months
and 3 years 1 month. The third case, from Norway, was
diagnosed at 3 years 3 months. All 3 cases were hetero-
zygous for the GALK1 marker, and only one of the 6 alle-
les in this group corresponded to allele d, the one present
in homozygous state among the cases in the other two
breeds. In the controls, only an obligate carrier dam had
one copy of allele d but it was not transmitted to a
descendant case.

Discussion

We have used DNA pooling [29-32], a particular form of
autozygosity mapping, to map the PRA locus in the Finn-
ish lapphund, using a low marker density and a small ini-
tial set of cases and controls. The results suggest that the
PRA disease in the Finnish lapphund may be prcd. The
study that mapped the prcd locus established its location
in the centromeric region of chromosome 9 and all cases
in that study had the same homozygous genotype for the
GALK1 microsatellite [22,33]. Homozygosity mapping of
the PRA locus in the American Eskimo dog also showed
that all affected dogs were homozygous for the GALK1
marker, while six different alleles were seen among the
controls [7]. As in other breeds with prcd, the disease in
the Finnish lapphund is a late-onset retinal degeneration

Page 4 of 7

(page number not for citation purposes)



BMC Veterinary Research 2007, 3:14

with signs progressing from mild to severe. However, no
electroretinogram or ultrastructural studies have been per-
formed in this breed.

The initial results with pooled DNA showed a reduction in
heterozygosity for the GALK1 marker in the cases, when
compared to the controls. Individual genotyping of the
individuals represented in the DNA pools confirmed the
homozygosity for all the cases, except one, while among
the controls heterozygous genotypes were observed, as
expected from obligate carriers, plus some homozygous
individuals. The single heterozygous genotype observed
among the cases in the DNA pooling stage may be due to
a recombination event. Alternatively, it may represent a
phenocopy, having a retinal disease different from that in
the rest of the cases. If this case has the same disease as the
rest of affected Finnish lapphunds, excluding the GALK1
region on the basis of this single heterozygote may lead to
a false negative result. A certain number of non-
homozygous cases are expected in the region harbouring
the disease locus, due to recombination events [26]. The
proportion of these individuals depends both on the
number of meioses between the origin of the mutation
and the cases being examined, and on the average spacing
between the markers used [26]. The CLUMP tests applied
to the individual genotyping results of these 12 cases and
12 controls resulted in significant differences for tests T2
and T3. Tests T1 and T4 were non-significant. This differ-
ences in the level of significance are the result of the dif-
ferent ways in which the tests handle the alleles, starting
from the same contingency test. The levels of significance
would also have been influenced by the small number of
samples used (24 alleles in each set) and by the fact that
the controls were all obligate carriers, meaning that allele
differences between the two sets would be smaller than
that if non-related controls had been used. At least half of
the alleles in the initial controls were expected to be
shared with the cases and, as mentioned before, some
controls had the same genotype as the cases. Taking all of
this into account, it was considered that PRA locus for this
breed could be close to the GALK1 marker. When addi-
tional samples were tested, all four tests were significant,
with T2 and T3 again showing the highest values.

Other markers on chromosome 9 did not show a shift
towards homozygosity in the DNA pools. Given that the
results for the GALK1 marker were significant, and that no
other markers showed a shift towards homozygosity that
could be corroborated with individual genotyping, it is
considered unlikely that the GALK1 region may represent
a false positive.

The individual genotyping of a larger set of Finnish lapp-
hunds resulted in three cases, out of a total of 16, hetero-
zygous for the GALK1 microsatellite. Two of them
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(individuals 522 and 40 in Figure 1) had one copy of
allele d, which was homozygous for the other cases, while
this allele was absent from the other case (individual
472). In the third case, which does not share any allele
with the rest of the cases, recombination events may have
occurred in the lineage leading to it. Alternatively, this
individual may have a different retinal disease. This dog
was diagnosed at the age of 4 years 8 months and its char-
acteristics were similar to those of other cases in this
breed: slight hyper reflectivity, thin veins and pale grey
optic nerve head. The dog was examined three times (at
ages of 1 year 8 months, 2 years 8 months and 3 years 8
months) before the first signs of disease appeared. The last
examination was done at 5 years and 6 months. There was
very little or no progression and no pigment migration. It
is possible that a different retinal disease is present in this
individual. Finding the PRA mutation in the Finnish lap-
phund may help to solve this case.

Some of the individuals used as controls were very young
so it is possible that some may develop the disease in the
future, as they grow older. According to the results of the
GALK1 microsatellite, some of them share the same geno-
type as the cases. In association studies, as in any other
mapping approach, phenotypes of cases and controls
should be correctly assigned. However, this may be diffi-
cult sometimes. For example, in late-onset diseases there
is the risk of including as controls some individuals which
may not have yet developed the disease. Nevertheless,
even when a small number of individuals are incorrectly
assigned to one set or another, it may still be possible to
map the disease locus [34], although with some loss of
power. In this context, it has been suggested that
unscreened individuals, being plentiful and easy to
obtain, may be used as controls, in situations where
screening them is difficult or impossible, as long as
enough controls are included in the study to compensate
for the loss of power derived from the inclusion of some
cases among the controls [35].

In the Swedish lapphund and the Lapponian herder,
which are breeds closely related to the Finnish lapphund,
some PRA cases have also been reported. This suggests
they may all have the same type of PRA. For the GALK1
microsatellite, the genotype of affected Swedish lapp-
hunds was the same as in Finnish lapphunds. However,
for the Lapponian herder only one of the three cases had
the same allele as the one present in the PRA cases of the
other 2 breeds. This could imply that there have been
recombination events between GALK1 and the PRA locus
in this breed, or that the retinal disease is a different one.
Studying a larger set of individuals, or identifying the
mutation in the other 2 breeds, may help solve this prob-
lem.
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Conclusion

Association studies, including autozygosity mapping may
be a practical way of mapping genes underlying canine
diseases, using dogs from the pet population, since this
approach exploits the particular characteristics of dog
breed populations. The PRA locus in the Finnish lapp-
hund was mapped to the centromeric region of choromo-
some 9, which harbours the prcd locus. If the gene
underlying the disease in the Scandinavian breeds is con-
firmed to be the same as that causing prcd, this would add
2 more breeds to those already known to have this form
of PRA.

Methods

Samples

Blood samples and pedigree information were obtained
from breeders, pet owners and veterinarians. The status of
Finnish lapphunds from Finland was determined by oph-
thalmoscopic eye examination by one of us (KW). Dogs
were examined by indirect ophthalmoscopy and slit lamp
biomicroscopy under the Finnish Kennel Club program
for eradication of inherited eye diseases in dogs. Mydriasis
was induced in all eyes with topical tropicamide. First
degree relatives of Finnish lapphund cases were called for
eye-examination. Some individuals from this breed, as
well as Swedish lapphunds and Lapponian herders, were
unavailable for ophthalmoscopic examination by the
authors, so the status of the dogs was determined from
eye-test certificates obtained from national eye schemes
administered through veterinary ophthalmic specialists.
The average age for the controls was 7 years 4 months
(standard deviation 2.7, 95% confidence interval 0.022).

Pedigree analysis

PedHunter [25] was used to search for the most recent
common ancestor of the cases' parents and to determine
the number of meioses from the cases to this ancestor. The
length of the smallest region identical by descent [26] was
estimated from the number of meioses separating the
cases from the common ancestor, assuming a length of
26.5 Morgans for the canine genome [36].

DNA pooling

For the DNA pooling experiments, DNA from 12 cases
(the "case pool") was pooled by mixing equal amounts of
DNA from each one of them. For the controls ("control
pool") equal amounts of DNA were mixed from 12 first
degree relatives (parents or offspring) of the cases repre-
sented in the case pool; thus, all these relatives were obli-
gate carriers. Seventeen of the 133 microsatellite were less
than 12 Mb from genes known to be involved in retinal
diseases in dogs or humans, or known to be expressed in
the retina (ABCA4, CNGA1, GNAT1, GNGT1, NRL, PDC,
PDEGA, PDEGD, PDEG, PRCD, RDS, RLBP1, ROM1 and
SAG). The rest of the markers were distributed throughout
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the dog genome. The average spacing between the 133
markers was 20 ¢cM. Markers were amplified, using the
pooled DNA, with radiolabelled forward primers ([y-
32P]ATP, Amersham Biosciences, 10 uCi/ul, 3000 Ci/
mmole) and touchdown-PCR. Samples were run in dena-
turing sequencing gels and detected by autoradiography.
For the markers showing a shift towards homozygosity in
the case pool, the results were confirmed through individ-
ual genotyping of the original set of 12 cases and 12 con-
trols using the same procedure as above.

After this initial mapping showed the presence of the
locus on chromosome 9, additional markers on this chro-
mosome were studied with the DNA pools as described
above, as well as by individual genotyping.

GALKI individual genotyping

Further individual genotyping for the GALK1 microsatel-
lite marker was done in a larger set of Finnish lapphunds,
as well as in a group of Swedish lapphunds and Lappo-
nian herders, with a dye-labelled forward primer and a
CEQ 8000 automatic sequencer (Beckman Coulter).

Association analysis

Finnish lapphund GALK1 microsatellite allele distribu-
tion in cases and controls was analysed with the CLUMP
program [27], version 23. This program calculates the chi
squared value of the observed results and assesses its sig-
nificance by determining the number of times that value
is obtained from randomly generated data in contingency
tables with the same marginal values as those in the table
with the observed results. Four tests are performed with
this program. T1 is the chi square obtained from the orig-
inal contingency table. For the rest of the tests (T2, T3 and
T4) the columns of the original table are rearranged before
estimating the chi squared value; the level of significance
is determined from simulated data in tables with the same
marginal values as the rearranged tables. For T2, alleles
with expected values of less than 5 are lumped together;
for T3 a 2-by-2 table is generated from the observed values
by comparing each column in turn against the rest of the
clumped columns; the table giving the maximum chi
squared value is used to simulate tables with the same
marginal totals. For T4, a 2-by-2 table is obtained from the
original table by clumping columns so that the maximum
chi-squared value is obtained. LOD scores were calculated
from the CLUMP output p values as log(1-p/p), where p
is the probability that there is no difference between the
observed allele distribution (in cases and controls) and
that expected based on the distribution in the whole pop-
ulation.
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