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Abstract

Arboviral disease transmission by Aedes mosquitoes poses a major challenge to public health

systems in Ecuador, where constraints on health services and resource allocation call for spa-

tially informed management decisions. Employing a unique dataset of larval occurrence rec-

ords provided by the Ecuadorian Ministry of Health, we used ecological niche models (ENMs)

to estimate the current geographic distribution of Aedes aegypti in Ecuador, using mosquito

presence as a proxy for risk of disease transmission. ENMs built with the Genetic Algorithm for

Rule-Set Production (GARP) algorithm and a suite of environmental variables were assessed

for agreement and accuracy. The top model of larval mosquito presence was projected to the

year 2050 under various combinations of greenhouse gas emissions scenarios and models of

climate change. Under current climatic conditions, larval mosquitoes were not predicted in

areas of high elevation in Ecuador, such as the Andes mountain range, as well as the eastern

portion of the Amazon basin. However, all models projected to scenarios of future climate

change demonstrated potential shifts in mosquito distribution, wherein range contractions were

seen throughout most of eastern Ecuador, and areas of transitional elevation became suitable

for mosquito presence. Encroachment of Ae. aegypti into mountainous terrain was estimated

to affect up to 4,215 km2 under the most extreme scenario of climate change, an area which

would put over 12,000 people currently living in transitional areas at risk. This distributional shift

into communities at higher elevations indicates an area of concern for public health agencies,

as targeted interventions may be needed to protect vulnerable populations with limited prior

exposure to mosquito-borne diseases. Ultimately, the results of this study serve as a tool for

informing public health policy and mosquito abatement strategies in Ecuador.
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Author summary

The yellow fever mosquito (Aedes aegypti) is a medically important vector of arboviral dis-

eases in Ecuador, such as dengue fever and chikungunya. Managing Ae. aegypti is a chal-

lenge to public health agencies in Latin America, where the use of limited resources must

be planned in an efficient, targeted manner. The spatial distribution of Ae. aegypti can be

used as a proxy for risk of disease exposure, guiding policy formation and decision-mak-

ing. We used ecological niche models in this study to predict the range of Ae. aegypti in

Ecuador, based on agency larval mosquito surveillance records and layers of environmen-

tal predictors (e.g. climate, elevation, and human population). The best models of current

range were then projected to the year 2050 under a variety of greenhouse gas emissions

scenarios and models of climate change. All modeled future scenarios predicted shifts in

the range of Ae. aegypti, allowing us to assess human populations that may be at risk of

becoming exposed to Aedes vectored diseases. As climate changes, we predict that com-

munities living in areas of transitional elevation along the Andes mountain range are vul-

nerable to the expansion of Ae. aegypti.

Introduction

Mosquito-borne disease transmission poses an ongoing challenge to global public health. This

is especially true in much of Latin America, where arboviral disease management is compli-

cated by the proliferation of mosquito vectors in tropical conditions, frequently coupled with

limited resources for medical care and comprehensive vector control services [1]. In Ecuador,

the yellow fever mosquito (Aedes aegypti) is of particular medical importance as it is a compe-

tent vector for several established and emerging viral diseases, including all four serotypes of

dengue virus (DENV), chikungunya (CHKV), Zika virus (ZKV), and yellow fever virus (YFV)

[2–5]. The Ae. albopictus mosquito, also a competent vector of arboviruses, was recently

reported for the first time in the city of Guayaquil, Ecuador [6]. Mosquito-borne diseases

caused by arboviruses transmitted by Aedes spp. have no treatment beyond palliative care, and

with the exception of yellow fever, there are no clinically established vaccines [7–9]. As a result,

mosquito surveillance and control remain the best tools available for preventing and managing

outbreaks of arboviral disease.

In Ecuador, the Ministry of Health, or Ministerio de Salud Pública (MSP), oversees public

health vector control services in the country, including mosquito surveillance, indoor residual

spraying, larvicide application, and ultra-low volume (ULV) fogging. The MSP conducts larval

index (LI) surveys at the household level, wherein containers of water are sampled for mos-

quito larvae. Larval indices (e.g. household, container, and Breteau) are among the most com-

mon indicators used by public health agencies to establish mosquito presence and quantify

abundance, which are key considerations for understanding localized transmission potential

and planning larval source reduction [10]. Although cost effective relative to the delivery of

clinical services, mosquito abatement and surveillance activities are nevertheless limited by

financial constraints, necessitating informed strategies for focusing resources and personnel

[11,12]. This becomes a critical factor when developing surveillance and control programs on

very large scales, such as an entire country, where misdirection of program activities can rap-

idly deplete program funding. Advancing the understanding of where vectors of interest can

occur on the landscape would provide valuable guidance in communicating risk of exposure

and avoiding the pitfalls associated with indiscriminately rolling out interventions.
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Like many mosquito species, the presence of Aedes spp. on the landscape is closely tied to

environmental conditions [13–15]. Adult survival and larval development are largely driven

and restricted by temperature, while successful oviposition and larval emergence rely on the

persistence of standing water in the environment [16–21]. In contrast with other medically

important mosquito species in the region, such as Anopheline vectors of malaria, Ae. aegypti
typically does very well in heavily urbanized environments, largely due to their reproductive

strategy of exploiting small volumes of water in manmade containers around the home as lar-

val habitats [22]. In landscapes with heterogeneous topography, elevation also serves as a limit-

ing factor for mosquito distributions, as temperature and precipitation change with elevation

[23,24]. Situated in northwestern South America, Ecuador exemplifies high landscape diver-

sity, with hot, humid areas of low elevation along the Pacific coast in the west and interior

Amazon basin in the east, and the cool, arid Andes mountain range in the central portion of

the country (Fig 1). Historically, the western coastal and interior regions experience a much

higher incidence in mosquito-borne diseases than mountainous areas, where sharp increases

in elevation and decreases in temperature limit the geographic distribution and vectorial

capacity of the mosquito vector.

The present-day distribution of Ae. aegypti is broadly defined by regional temperature and

precipitation trends, but global climate change has the potential to significantly alter the future

geographic range of mosquito vectors [3]. The Intergovernmental Panel on Climate Change

has established four representative concentration pathways (RCP), or different scenarios for

future greenhouse gas emissions, which are the basis for modeling future climates. Even under

the most conservative of these scenarios (RCP 2.6), mean global temperatures are projected to

increase [25]. As temperature trends increase globally, it has been estimated that observed pat-

terns in the distribution of mosquito vectors will shift accordingly; previous studies have pro-

jected that Aedes mosquitoes will increase their global range as temperature and rainfall

patterns become more suitable under various climate change scenarios [18,26–28]. Modeling

and visualizing changes in mosquito distributions at the national level will provide a useful

tool for managing disease and planning the delivery of health services, as public health

resources can be better allocated in anticipation of disease emergence in naïve populations

driven by mosquito range expansions.

Ecological niche models (ENMs) have been used to estimate current potential distributions

in insect populations, including mosquitoes, as well as range expansions resulting from envi-

ronmental and climate changes [29–32]. Ecological niche modeling methodologies have been

applied to many systems, spanning regional to global scales, in an effort to estimate Ae. aegypti
distribution and the associated risk of exposure to humans, often indicating that water avail-

ability and land cover factor heavily into overall mosquito habitat suitability [3,29,33,34]. In

Ecuador and other areas of Latin America, elevation also becomes a limiting factor for Ae.
aegypti presence, though it is suggested that climate change may allow for the encroachment of

mosquitoes into higher elevations [32,35]. While many prior studies have utilized records of

adult stages of mosquitoes for ENMs, this study leverages existing larval surveillance data col-

lected in Ecuador as an indicator of species presence, providing a predictive tool about the

source of mosquitoes in the environment. This complements predictive models for adult

stages, particularly in considering potential for intervention, as it can target larvicidal

approaches, rather than reactive adulticidal spraying methods. The Genetic Algorithm for

Rule-Set Production (GARP) is a machine-learning algorithm that builds species ENMs using

presence-only occurrence records and continuous environmental variables [36]. The genetic

algorithm (GA) employed by GARP to build rule-sets for distribution models is stochastic in

nature, resulting in a set of models from a single dataset of species occurrence records and

allowing for the assessment of agreement between resulting models. This methodology offers a
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robust option for modeling the potential distribution of species on a landscape from presence-

only records, as absence of a species is difficult to discern through historical records and field

sampling (e.g. entomological surveys) [36,37]. GARP also provides a platform for projecting

future climate scenarios onto the landscape with the natively generated rule-sets for species

distribution prediction, allowing for the estimation of future geographic distributions [38].

Assessing current and future vector distributions in an ENM framework is useful for defin-

ing the spatial distribution and possible changes in risk exposure, using mosquito presence as a

proxy for transmission risk. Previous work in Ecuador’s southern coast has focused on describ-

ing interannual variation in dengue transmission for a single region [39,40]. In this study, we

contribute to the available climate-informed tools used by the public health sector in Ecuador to

assist decision-making, examining potential geographic shifts in risk at broader spatial and

Fig 1. Ecuador, situated on the northwestern coast of South America (inset), has historically high prevalence of

mosquito-borne diseases. The Ecuadorian Ministerio de Salud Pública (MSP) conducted household entomological

surveys of Aedes aegypti throughout the country from 2000–2012. Spatially unique larval index (LI) occurrence records

(n = 478) collected in the survey were aggregated to cities and towns and used to model the ecological distribution of

Ae. aegypti in Ecuador. This figure was produced in ArcMap 10.4 (ESRI, Redlands, CA) using shapefiles from the

GADM database of Global Administrative Areas, ver. 2.8 (gadm.org), elevation data freely available from NASA’s

Shuttle Radar Topography Mission (jpl.nasa.gov/srtm), and georeferenced mosquito surveillance data provided by the

MSP and edited by CAL.

https://doi.org/10.1371/journal.pntd.0007322.g001
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temporal scales. We had three main objectives 1) use an ENM approach to estimate the current

geographic range of Ae. aegypti in Ecuador using a unique set of larval survey data; 2) use pro-

jected climate data to model the future geographic range under a variety of climate change sce-

narios; and 3) compare current and future climate models to describe changes in Ae. aegypti
range over time, where we hypothesized that larval Ae. aegypti distribution in Ecuador would

expand into areas of higher elevation with projected increases in global temperature.

Methods

Data sources

Presence only data on the occurrence of Ae. aegypti in Ecuador were made available for this

study by the MSP. From 2000–2012 the MSP sampled aquatic larval mosquitoes from standing

water in and around households in cities and towns throughout mainland Ecuador following

standard protocols for entomological surveillance recommended by the World Health Organi-

zation [41]. These data were collected year-round by vector control technicians from the

National Service for the Control of Vector-Borne Diseases (SNEM) of the MSP as part of rou-

tine vector surveillance activities. Upon entering households, technicians visually inspected all

potential larval habitat sites inside and outside of the home. Live samples of juvenile mosqui-

toes from positive containers were collected and transported to local vector control offices,

where laboratory technicians confirmed species identification. Although the possibility for

confusion with Ae. albopictus exists, this species was only recently detected in Ecuador [6].

Originally used by the MSP as an indicator of mosquito abundance around households, posi-

tive LI records for Ae. aegypti were used in this study to indicate the presence of mosquitoes at

a given location. These occurrence data were de-identified from households and aggregated to

the administrative level of parroquia (township or parish) by the MSP for each year of the

study. Figures were produced in ArcMap (ver. 10.4, ESRI, Redlands, CA) using shapefiles

from the GADM database of Global Administrative Areas, ver. 2.8 (gadm.org), elevation data

freely available from NASA’s Shuttle Radar Topography Mission (jpl.nasa.gov/srtm), georefer-

enced mosquito surveillance data provided by the MSP and edited by the authors for this proj-

ect, and ENM output produced in the course of this study.

Informed disaggregation

Parroquias (n = 991) represented in this data set range in size from roughly 2 km2 to over

8,000 km2. Therefore, we felt it prudent to reduce this high spatial variation prior to analyses.

To correct for this extreme variation in the spatial resolution of aggregated presence data, the

number of positive LI locations in a given parroquia were reassigned from the centroid of the

administrative boundary to the centroids of cities, barrios (neighborhoods), and villages where

MSP mosquito surveillance was conducted,� 5km in urban extent. Human settlements were

identified via a combination of OpenStreetMap (http://openstreetmap.org) and Google Earth

(http://earth.google.com) satellite imagery in ArcMap. While satellite images were used to

identify population dense areas, guiding disaggregation of LI data, this imagery was not used

in mapping or creation of figures. Given the potential for uncertainty, a conservative approach

to disaggregation was taken, where occurrence records were not included in the final dataset

in cases of spatial ambiguity (e.g. cities larger than 5km in extent with a single occurrence

record, multiple developments in an administrative unit exceeding the number of surveys con-

ducted, etc). This method of informed disaggregation allowed for better spatial representation

and improved model performance compared to ENMs built with aggregated data, without

compromising de-identification (S1 Table).
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Socio-environmental data acquisition

Environmental coverage datasets for current climatic conditions, comprised of rasterized ele-

vation and 19 derived biophysical variables (Bioclim), were compiled using publicly available

interpolated weather station data (WorldClim ver. 1.4., http://worldclim.org) (Table 1) [42].

WorldClim provides long-term climate averages based on weather station records from 1950–

2000, a period coinciding with the start of the MSP’s larval survey. Although more contempo-

rary long-term averages of interpolated climate are available, these datasets have yet to incor-

porate models of future climate conditions into publicly available products. Because Ae.
aegypti is primarily considered an urban vector in close association with human development,

gridded human population density, adjusted to data from the United Nations World Popula-

tion Prospects 2015 Revision, was also included as an environmental predictor for initial

model building as a proxy for built land covers (Socioeconomic Data and Applications Center

(SEDAC) Gridded Population of the World (GPW)) [43,44]. A resolution of 2.5 arc-minutes

(i.e. 5km grid cells) was chosen for all raster layers to reflect variability in the resolution of geo-

located data.

Environmental coverages for estimated future climatic conditions in the year 2050 were

taken from forecasted Bioclim variables, allowing for direct comparison between current and

future predicted ranges. We chose three general circulation models (GCMs) of physical cli-

mate processes commonly used in projecting shifts in species distributions, the Beijing Climate

Center Climate System Model (BCC-CSM-1), National Center for Atmospheric Research

Community Climate System Model (CCSM4), and the Hadley Centre Global Environment

Model version 2, Earth-System configuration (HADGEM2-ES) under the four standard emis-

sions scenarios (RCP 2.6, RCP 4.5, RCP 6.0, RCP 8.5) [25,45–49]. Gridded human population

data available through SEDAC are only projected through the year 2020 [43]. To obtain

Table 1. Environmental variables used in building GARP models for Aedes aegypti in Ecuador.

Environmental Variable (unit) Coded Variable Name Data Source

Elevation (m) Elev Worldclim

Annual Mean Temperature (˚C) Bio 1 Bioclim

Mean Diurnal Range (˚C) Bio 2 Bioclim

Isothermality Bio 3 Bioclim

Temperature Seasonality Bio 4 Bioclim

Max Temp of Warmest Month (˚C) Bio 5 Bioclim

Min Temp of Coldest Month (˚C) Bio 6 Bioclim

Temperature Annual Range (˚C) Bio 7 Bioclim

Mean Temp of Wettest Quarter (˚C) Bio 8 Bioclim

Mean Temp of Driest Quarter (˚C) Bio 9 Bioclim

Mean Temp of Warmest Quarter (˚C) Bio 10 Bioclim

Mean Temp of Coldest Quarter (˚C) Bio 11 Bioclim

Annual Precipitation (mm) Bio 12 Bioclim

Precip of Wettest Month (mm) Bio 13 Bioclim

Precip of Driest Month (mm) Bio 14 Bioclim

Precip Seasonality Bio 15 Bioclim

Precip of Wettest Quarter (mm) Bio 16 Bioclim

Precip of Driest Quarter (mm) Bio 17 Bioclim

Precip of Warmest Quarter (mm) Bio 18 Bioclim

Precip of Coldest Quarter (mm) Bio 19 Bioclim

Human Population Density GPW SEDAC Gridded Population of the World (GPW)

https://doi.org/10.1371/journal.pntd.0007322.t001
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human population for the year 2050, a simple linear extrapolation, wherein we assume a stable

rate of growth, was performed on a pixel-by-pixel basis in ArcMap with available years of

SEDAC data. Although a rudimentary means of estimating human population growth, the

resulting trend mirrors more sophisticated cohort-based population estimates for Ecuador

projected for the same time period [50,51].

Ecological niche modeling

Ecological niche models reflecting current and future climate conditions were built using

DesktopGARP ver. 1.1.3 (DG) [37]. Although more contemporary methods of building ENMs

are available, GARP was chosen for this study because of its demonstrated ability to produce

models that are transferable to novel time periods [52]. Furthermore, while other methods of

estimating species distributions are known to overfit geographic models to training data, an

issue which could exacerbate any spurious errors in our disaggregated occurrence data, GARP

has been shown in other studies to exclude a degree of outlier data from geographic predic-

tions [53,54]. LI point records and environmental coverage datasets were prepared for model-

ing using the ‘GARPTools’ package (co-developed by C.G. Haase and J.K. Blackburn) in the

program R (ver. 3.3.1). Spatially unique LI records (n = 478) were split into 75% training

(n = 358) and 25% testing datasets (n = 119) for ten randomly selected iterations; training data-

sets were used in model building and testing datasets were used to compute model accuracy

metrics [36,37,55,56]. Ten experiments were run in DG, each using one of the randomly

selected LI training datasets and the full set of current environmental coverage variables

(Table 2). Each experiment was run for 200 models, allowing for a maximum of 1,000 itera-

tions with a convergence limit of 0.01. Occurrence training data were internally partitioned in

DG into 75% training/25% testing for model building and subset selection, and top models

were selected using the ‘Best Subsets’ option, specifying a 10% hard omission threshold and

50% commission threshold [57]. The top ten best subsets models from each GARP experiment

were summated with the GARPTools package to assess model agreement and accuracy. Model

accuracy metrics for each GARP experiment were calculated from the 25% testing dataset

withheld from the model building process. Three standard measures of accuracy, calculated in

GARPTools, were used to compare best subsets from each experiment: receiver operator char-

acteristic (ROC) curve with area under the curve (AUC), commission (i.e. false positives), and

omission (i.e. false negatives) [58]. The AUC is an indicator of a model’s ability to predict

areas of species presence versus absence, with an AUC of 0.5 indicating a model that performs

no better than random, and an AUC of 1.0 indicating a perfect model [58]. We additionally

Table 2. Accuracy metrics for best model subsets built using the full set of environmental coverage variables. Each experiment was performed with a randomly cho-

sen subset (75%) of LI presence points. The subset of LI presence points used in variable selection is shown in bold.

Experiment AUC Avg. Commission Avg. Omission Avg. pAUC Avg. AUC Ratio

1 0.72 63.98 3.70 0.72 1.44

2 0.73 64.19 3.19 0.72 1.44

3 0.68 59.49 8.40 0.68 1.37

4 0.73 62.01 5.96 0.72 1.44

5 0.67 67.02 5.55 0.68 1.36

6 0.73 60.86 4.03 0.73 1.47

7 0.70 67.18 2.69 0.71 1.42

8 0.76 64.88 5.63 0.77 1.54

9 0.74 58.78 4.45 0.73 1.47

10 0.72 60.92 5.63 0.72 1.44

https://doi.org/10.1371/journal.pntd.0007322.t002
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performed partial ROC (pROC) analyses for model accuracy, a method which addresses some

of the limitations identified in the classic ROC approach [59]. Partial ROC analyses were per-

formed with Niche Toolbox (ver. 0.2.5.4), specifying an omission threshold of E = 10 and 1000

bootstrap replicates, where resulting AUC ratios >1 indicate that model predictions are signif-

icantly better than random (p< 0.01) [59,60].

The model building process was then repeated in DG with the best performing training

dataset (i.e. high AUC relative to low omission) to compare full model performance with more

parsimonious sets of environmental variables. In addition to variable combinations selected

based on previous literature, the GARPTools package was used to extract ruleset trends from

the full model (e.g. prevalence and importance of given variables in the resulting model) to

assemble additional candidate variable sets for model comparison. The subset of models with

the highest AUC and lowest omission (i.e. best model) was chosen as the most probable esti-

mate of current larval mosquito geographic distribution, and rulesets generated from the best

model were then projected to the year 2050 for all combinations of GCMs and RCPs. To com-

pare the relative changes in geographic predictions between current and future climate scenar-

ios, the best subsets of current and projected future models for each RCP scenario were

recoded as binary geographic distributions (i.e. presence and absence) in ArcMap, where cells

with model agreement of� 6 were considered present. Recoded distributions were combined

using the ‘Raster Calculator’ tool in the Spatial Analyst extension of the program ArcMap,

allowing for the visualization of range agreement across GCMs. The number of people at risk

in areas of expanding mosquito distribution, where range expansion was predicted under at

least one GCM, was estimated in ArcMap, using the Raster Calculator tool to extract informa-

tion on GPW and extrapolated population for the year 2050.

Results

The original dataset of LI occurrences in Ecuador, provided by the MSP, consisted of 3,655

collection events aggregated to 374 parroquia centroids, indicating the number of parroquias

that had positive surveillance results for Ae. aegypti larvae during the study period. Disaggre-

gation of these data yielded 478 spatially unique locations within these parroquias, correspond-

ing with areas of human habitation regularly surveyed by the MSP. Incorporating prior

knowledge regarding the agency’s collection of data in developed areas allowed for the adop-

tion of a finer spatial scale for analysis without changing the overall distribution of larval mos-

quito presence in Ecuador (e.g. mosquitoes remained conspicuously absent in most high-

elevation parroquias located in the Andes mountains).

Much of Ecuador was predicted to be suitable for the presence of Ae. aegypti larvae under

current climatic conditions, with the notable exception of the eastern portion of the country

associated with the Amazon basin and high elevation areas associated with the Andes moun-

tain range, running north to south through the center of the country (Fig 2). This iteration of

model subsets generated by GARP had the highest AUC, relative to low omission

(AUC = 0.73, Avg. Commission = 63.47, Avg. Omission = 3.02), and was built with a reduced

set of environmental variables including elevation, human population, maximum temperature

of the warmest month, annual temperature range, mean temperature of the wettest month,

mean temperature of the driest month, mean temperature of the warmest quarter, mean tem-

perature of the coldest quarter, precipitation of the wettest month, precipitation seasonality,

precipitation of the driest quarter, and precipitation of the coldest quarter (Table 3).

The projected geographic distribution of larval Ae. aegypti for the year 2050 (Figs 3B–3D,

3F–3H and S1 and S2), built with the best-performing selection of environmental coverages

under four climate change scenarios, showed marked changes in pattern when compared with
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Fig 2. Agreement of best model subsets built with best-ranked suite of environmental variables for larval Aedes aegypti presence in Ecuador under

current climate conditions. Models had high levels of agreement in the western coastal lowlands, and lower levels of agreement in the eastern Amazon

basin. This figure was produced in ArcMap 10.4 (ESRI, Redlands, CA) using rasters of model output produced with DesktopGARP (ver. 1.1.3), and

elevation data freely available from NASA’s Shuttle Radar Topography Mission (jpl.nasa.gov/srtm).

https://doi.org/10.1371/journal.pntd.0007322.g002
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estimated mosquito presence under current conditions (Figs 3A and 3E and S1 and S2). Poten-

tial distributional shifts were generally consistent across GCMs, with slight range expansions

into areas of higher elevation and large portions of the eastern Amazonian basin predicting

mosquito absence (Figs 3 and S1 and S2). Combining the current and future model agreement

rasters for best subset models by RCP revealed predicted areas of geographic stability in west-

ern Ecuador and the eastern foothills of the Andes, range contraction throughout much of

Amazon basin in the east, and range expansions along transitional elevation boundaries over

time (Fig 4). Range expansions and contractions were generally consistent across climate mod-

els, with the magnitude of distribution change increasing with more extreme climate change

scenarios (Fig 4). Similarly, the human population with the potential to experience increased

exposure to mosquito presence generally increases with RCP, with an additional 9,473

(RCP2.6), 11,155 (RCP4.5), 10,492 (RCP6.0), and 12,939 (RCP8.5) people currently living in

areas of transitional elevation estimated at risk of becoming exposed under different climate

change scenarios (Table 4).

Discussion

The predicted current geographic distribution of Ae. aegypti suitability in Ecuador, under cur-

rent climate conditions, largely reflects present-day risk maps for many of the mosquito-borne

diseases currently circulating in the country, wherein populations living at high altitudes are

not considered at-risk for transmission [61]. Predicted larval distributions are roughly contin-

uous in the eastern and western portions of Ecuador, but are sharply restricted along increas-

ing elevation gradients in the central portion of the country, the area corresponding with the

location of the Andes mountain range (Fig 2) [9]. This conspicuous absence of mosquitoes in

the Andes reflects the generally protective nature of high mountain elevations from mosquito

Table 3. Accuracy metrics for best model subsets built using the best-ranked training dataset and selected subsets of environmental coverages. The variable subset

used in building the final models is shown in bold.

Variable Subset AUC Avg. Commission Avg. Omission Avg. pAUC Avg. AUC Ratio

Full Model 0.77 64.88 5.63 0.73 1.47

Elev, GPW, Bio 5,7,8,9,10–11,13,15 0.71 67.38 2.60 0.70 1.40

Elev, GPW, Bio 2,5,7–11,13,15–17 0.71 67.32 3.28 0.69 1.39

Elev, GPW, Bio 1,5,6,8,10–11,14,17,19 0.63 65.68 8.32 0.64 1.29

Elev, Bio 5,8,10,16,17 0.62 64.30 12.01 0.64 1.29

Elev, GPW, Bio 5,8,10,16,17 0.66 67.95 2.60 0.64 1.28

Elev, Bio 3,5,8,10,12–13,16–17,19 0.65 68.37 3.19 0.64 1.29

Elev, GPW, Bio 3,5,8,10,12–13,16–17,19 0.66 69.88 2.18 0.64 1.28

Elev, Bio 1,3,5,7,8,9,11–13,15–17,19 0.71 64.62 6.13 0.70 1.40

Elev,GPW, Bio 1,3,5,7–9,11–13,15–17,19 0.72 63.39 3.28 0.70 1.41

Elev, Bio 1–3,5,7–13,15–17,19 0.71 61.85 4.54 0.68 1.37

Elev, GPW, Bio 1–3,5,7–12,13,15–17,19 0.72 64.09 2.94 0.71 1.42

Elev, Bio 5,7–11,13,15 0.70 65.29 4.12 0.69 1.39

Elev, GPW, Bio 5,7–11,13,15,17,19 0.73 63.47 3.02 0.71 1.43

Elev, GPW, Bio 1,3,5,7–11,13,15–17,19 0.71 66.20 2.06 0.69 1.39

Elev, GPW, Bio5,7–11,13,15–17,19 0.69 67.60 3.19 0.67 1.35

Elev, GPW, Bio 5,7,8,9,11,13,15,17,19 0.71 66.22 2.44 0.69 1.39

Elev, GPW, Bio 1,5,7–11,13,15,17,19 0.71 66.90 2.18 0.69 1.40

Elev, GPW, Bio 1,3,5,7–13,15–17,19 0.71 63.54 3.11 0.69 1.39

Elev, Bio 5,7–11,13,15,17,19 0.71 63.24 4.62 0.69 1.40

GPW, Bio 5,7–11,13,15,17,19 0.71 64.70 3.61 0.69 1.39
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presence, with all models predicting larval mosquito absence throughout central Ecuador (Figs

2–4 and S1 and S2). The predicted low habitat suitability for Ae. aegypti in the eastern portion

of the Amazon basin is notable, as this is a region currently perceived as potentially higher risk

for mosquito exposure by public health officials relative to mountainous regions, mostly owing

to its low elevation, despite having generally low human population density (Fig 2). Although

similar in elevation to regions of active disease transmission in the West, the hydrology and

seasonal temperature patterns of the Amazon basin differ considerably from coastal areas. Pre-

vious work in this region suggests a great deal of spatial variability in the basin with regards to

climate patterns, which drive differences in biodiversity [62–64]. Given that the mosquito life

cycle depends heavily on the availability of water in the environment, spatial discrepancies in

precipitation could account for the low model agreement of mosquito habitat suitability in the

easternmost portion of the Amazon.

Range expansion of Ae. aegypti into higher elevations as a result of changing climate was

supported across GCM models and emissions scenarios (Figs 3–4 and S1 and S2). All best

model subsets suggest that areas of transitional elevation along the eastern and western periph-

eries of the Andes mountains may experience some level of increased exposure to the presence

of mosquitoes, though much of the mountain range, including densely populated areas like the

capital city, Quito, will remain unsuitable habitat. The intrusion of Ae. aegypti into areas of

transitioning elevation represents a potential area of concern for public health managers, as

communities in these areas are largely protected from mosquito exposure and associated

Fig 3. Agreement of best model subsets built with best ranked suite of environmental variables for larval Aedes aegypti presence in Ecuador under A)

current climate conditions and future climate conditions projected to the year 2050 under Representative Concentration Pathway (RCP) 2.6 (B1,C1,D1) and

8.5 (B2,C2,D2) for the B) BCC-CSM-1, C) CCSM4, and D) HADGEM2-ES General Circulation Models (GCM) climate models. This figure was produced in

ArcMap 10.4 (ESRI, Redlands, CA) using rasters of model output produced with DesktopGARP (ver. 1.1.3), and elevation data freely available from NASA’s Shuttle

Radar Topography Mission (jpl.nasa.gov/srtm).

https://doi.org/10.1371/journal.pntd.0007322.g003
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Fig 4. Best model subsets for current and future climate (GCMs projected to the year 2050) were combined by RCP emissions scenarios to illustrate the

estimated contraction and expansion of larval Aedes aegypti geographic range in Ecuador. This figure was produced in ArcMap 10.4 (ESRI, Redlands, CA)

using rasters of model output produced with DesktopGARP (ver. 1.1.3), and elevation data freely available from NASA’s Shuttle Radar Topography Mission

(jpl.nasa.gov/srtm).

https://doi.org/10.1371/journal.pntd.0007322.g004
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diseases under current climatic conditions. Excluding travel-related cases, reporting of arbo-

viral diseases in Ecuador’s mountain dwelling populations is quite low, although there are low-

lying valleys near Quito that may be suitable for arbovirus transmission. Accordingly, the MSP

primarily directs mosquito-borne disease outreach and intervention efforts to high-risk com-

munities, particularly in large coastal cities with consistently high disease incidence, such as

Guayaquil and Machala. As a result, communities situated in the foothills of the Andes will not

necessarily have the same baseline risk perceptions and preventative behaviors as those com-

munities burdened with historically high incidence of mosquito-borne diseases. This sets the

stage for potential disparities in preventative knowledge and health services should Aedes mos-

quitoes expand into naïve populations [5,65].

Models projected to future climate scenarios predict the extirpation of Ae. aegypti in several

areas of Ecuador, with a particularly large range contraction in the Amazon basin shown

across scenarios. This finding is consistent with other studies on potential geographic shifts in

arthropod vectors in response to climate change, which demonstrate that increasing tempera-

tures do not necessarily lead to net increases in geographic disease risk, but rather shifts in dis-

tribution as high temperatures decrease habitat suitability [32,66]. While our models do not

account for the possibility of vector populations adapting to changing climate, evidence sug-

gests that ectotherms have a limited capacity for exceeding physiological thermal limits [67].

The potential loss of mosquito habitat in Ecuador has considerable implications for the public

health sector. Localized extinctions would conserve valuable health resources by triggering

allocation shifts as unsuitable areas no longer support active disease transmission.

Our findings are broadly consistent with a previous coarser scale ENM analysis of adult

mosquitoes in Ecuador, which suggests that while Aedes mosquitoes may shift into highland

areas under changing climate conditions, the total area of suitable habitat will ultimately

decrease as localized climatic conditions favor extirpation [32]. However, models of Aedes dis-

tribution in the previous study were made through the year 2100, representing an extended

time horizon for guiding agency decision making. While predicted ranges in 2100 are visually

similar to results presented here, notable discrepancies exist between the spatial distributions

predicted in our models and the previous study for 2050, where the previous model predicts

widespread absence of mosquitoes in central Ecuador and presence throughout much of the

eastern Amazon basin. In contrast to our methods, Escobar et al. [32] used a different niche

modeling algorithm, a different model of climate change (A2), a coarser spatial resolution (20

km), and combined global species occurrence for two adult arbovirus vectors, Ae. aegypti and

Ae. albopictus, to predict pooled arbovirus risk throughout Ecuador. Though Ae. aegpyti and

Ae. albopictus are competent vectors of diseases that occur in Ecuador (e.g. dengue, chikungu-

nya, Zika), these species differ significantly in their physiology, possibly driving observed dis-

crepancies between the models of pooled adult Aedes spp. risk and larval Ae. aegypti range

[68]. Reaching consensus across ENMs is a known area of conflict in ecology that requires

more research, where various methodologies can lead to vastly different forecasts of geo-

graphic distributions and risk, making direct comparisons between models difficult [69].

Table 4. Estimated human population inhabiting areas of transitional elevation in Ecuador, which may experience increased exposure to moquito-borne disease

transmission under climate change.

Representative Concentration Pathway (RCP) GPW 2010 Population Projected 2050 Population Area (km2)

RCP 2.6 9,473 15,399 2,755

RCP 4.5 11,155 18,439 3,530

RCP 6.0 10,492 17,100 3,155

RCP 8.5 12,939 21,298 4,215

https://doi.org/10.1371/journal.pntd.0007322.t004
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Future studies combining multiple approaches and comparing the impact of input on models

could help resolve this conundrum.

The scale of analysis used in this study presents a limitation in applying resulting ENMs for

local management decisions. We chose a moderately low spatial resolution for this study (5km

raster cells) to reflect the highest level of precision that could be assigned to larval mosquito

occurrence (i.e. points could be matched to cities or clusters of villages, but not to individual

households or neighborhoods). Arboviral disease transmission and larval mosquito presence,

especially for Ae. aegypti, are typically managed at the household or neighborhood level, and

although we can use these results to discuss regional changes in mosquito distribution

throughout Ecuador, we cannot overstate the findings as a means to assess risk at the level of

disease transmission [70]. Furthermore, the LI survey conducted by the MSP was limited in

that focus was placed on sampling areas with perceived arbovirus transmission risk throughout

Ecuador, especially households in densely populated urban centers and established communi-

ties where cases had been reported in the past. Low accessibility and human population density

in Ecuador’s eastern basin region may have contributed to under sampling of mosquito pres-

ence in these areas, possibly accounting for low model agreement in this area. Ultimately,

robust vector surveillance for Ae. aegypti in eastern Ecuador would be required to validate

absence in this region, though such intensive ground-truthing would be wrought with logisti-

cal concerns, including diversion of scarce surveillance resources from high-demand manage-

ment districts and the inherent difficulty of establishing “true” absence via surveys.

Aedes aegypti is a globally invasive species, owing much of its success to its close connection

with human activity and urban environments. As such, predicted habitat suitability does not

guarantee the introduction and establishment of a species in the future due to a myriad of fac-

tors, such as physical and geographical barriers to movement [71]. Patterns of human move-

ment and land use also have the potential to influence mosquito expansion in ways that we

cannot predict with ENMs. Additionally, microclimate can become a critical factor in deter-

mining true habitat suitability, and there are many examples of anthropogenic behaviors and

structures providing a buffering effect, or refuge, against climatic conditions that would be

otherwise physiologically limiting to insect vectors [5,72–75]. Dramatic shifts in species com-

positions in Ecuador, mediated by elevation, also occur on very fine spatial scales [76,77].

Moving forward, observed areas of range expansion on the edge of unsuitable habitat may be

better modeled at finer resolutions, which would aid in making community-targeted manage-

ment decisions based on estimated risk.

Based on the results of this study, we conclude that the geographic distribution of Ae.
aegypti in Ecuador will be impacted by projected shifts in climate. Extensive changes in mod-

eled vector distributions were observed even under the most conservative climate change sce-

nario, and these changes, although consistent in pattern, became more evident with

increasingly high greenhouse gas emissions scenarios. Although there is a continued need for

surveillance activities, these findings enable us to anticipate transitioning risk of arboviral dis-

eases in a spatial context throughout Ecuador, allowing for long-term planning of agency vec-

tor control strategies.
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