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A B S T R A C T

Diffusion MRI is an exquisitely sensitive probe of tissue microstructure, and is currently the only non-invasive
measure of the brain's fibre architecture. As this technique becomes more sophisticated and microstructurally
informative, there is increasing value in comparing diffusion MRI with microscopic imaging in the same tissue
samples. This study compared estimates of fibre orientation dispersion in white matter derived from diffusion
MRI to reference measures of dispersion obtained from polarized light imaging and histology.

Three post-mortem brain specimens were scanned with diffusion MRI and analyzed with a two-compartment
dispersion model. The specimens were then sectioned for microscopy, including polarized light imaging
estimates of fibre orientation and histological quantitative estimates of myelin and astrocytes. Dispersion
estimates were correlated on region – and voxel-wise levels in the corpus callosum, the centrum semiovale and
the corticospinal tract.

The region-wise analysis yielded correlation coefficients of r = 0.79 for the diffusion MRI and histology
comparison, while r = 0.60 was reported for the comparison with polarized light imaging. In the corpus
callosum, we observed a pattern of higher dispersion at the midline compared to its lateral aspects. This pattern
was present in all modalities and the dispersion profiles from microscopy and diffusion MRI were highly
correlated. The astrocytes appeared to have minor contribution to dispersion observed with diffusion MRI.

These results demonstrate that fibre orientation dispersion estimates from diffusion MRI represents the
tissue architecture well. Dispersion models might be improved by more faithfully incorporating an informed
mapping based on microscopy data.

Introduction

By measuring diffusive motion of water molecules in tissue non-
invasively, diffusion Magnetic Resonance Imaging (dMRI) aims to
unravel tissue features at a much smaller scale than the imaging
resolution. Obstruction of diffusion due to the presence of cellular
membranes and macromolecules allows us to infer the microstructural
tissue architecture that is reflected by the diffusion signal (Beaulieu,

2002). In addition to estimating microstructural tissue properties, a
key challenge in dMRI is to recover within-voxel fibre configurations.
Methods that have been developed to enable the reconstruction of
crossing fibres in the brain are relatively well established (Behrens
et al., 2003; Ozarslan et al., 2006; Tournier et al., 2007; Tuch, 2004;
Wedeen et al., 2005), especially if the crossings have a high separation
angle. More recently, models have been developed for specifically
assessing fibre orientation dispersion using dMRI (Sotiropoulos

http://dx.doi.org/10.1016/j.neuroimage.2017.06.001
Received 14 December 2016; Accepted 1 June 2017

⁎ Correspondence to: Department of Anatomy, Radboud UMC, Geert Grooteplein Noord 21, 6500 HB, Nijmegen, The Netherlands.
⁎⁎ Corresponding author.

1 These authors contributed equally to this work.
E-mail address: jeroen.mollink@radboudumc.nl (J. Mollink).

NeuroImage 157 (2017) 561–574

Available online 08 June 2017
1053-8119/ © 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).

MARK

http://www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
http://dx.doi.org/10.1016/j.neuroimage.2017.06.001
http://dx.doi.org/10.1016/j.neuroimage.2017.06.001
http://dx.doi.org/10.1016/j.neuroimage.2017.06.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2017.06.001&domain=pdf


et al., 2012; Tariq et al., 2016; Zhang et al., 2012) or dMR spectroscopy
(Ronen et al., 2014). Others have focussed on the effect of dispersing
geometries on the diffusion signal through Monte Carlo simulations
(Kleinnijenhuis et al., 2015; Nilsson et al., 2012). Estimating disper-
sion has the potential to improve current tractography algorithms for
delineating white matter pathways (Behrens and Jbabdi, 2009; Rowe
et al., 2013) or serve as a marker of local fibre coherence, which may
provide novel markers of neuropathology. In addition, the diffusion
MRI signal from a large portion of white matter is better explained by a
model that incorporates dispersion (Ghosh et al., 2016) than models of
crossing fibres (Jeurissen et al., 2013).

Comparison of estimates against reference measurements is an
essential contribution to the development of increasingly advanced
models of fibre architecture. One approach is to use simulations (Balls
and Frank, 2009; Hall and Alexander, 2009) or physical phantoms
(Fieremans et al., 2008) to generate dMRI data that mimic those
obtained from real biological tissue. The primary advantage of such an
approach is the control over the fibre configuration to be investigated.
A different approach is to directly compare dMRI data to a reference
measure in the same tissue, for example by acquiring post-mortem
MRI data and microscopy in the same tissue sample. Most commonly,
the tissue is stained to highlight specific features of interest, from which
quantitative measures can be derived relating to the parameters
generated by the dMRI model, for example, when tissue is stained
for neurites to estimate intra-cellular volume fractions of white matter.
Regarding fibre architecture, many studies focus on evaluating primary
fibre orientations, for example using Fourier analysis (Budde et al.,
2011; Choe et al., 2012) or structure tensor analysis (Budde and Frank,
2012a; Seehaus et al., 2015). The latter was recently applied to 3D
confocal microscopy in order to estimate 3D fibre orientation distribu-
tion functions (fODF) and compare them to those reconstructed from
dMRI data (Schilling et al., 2016). While dispersion has been quanti-
fied previously in histological sections, for example in (Budde and
Annese, 2013), a direct comparison with dMRI, ideally in the same
specimens, is lacking to date.

Scanning post-mortem tissue faces several challenges compared to
in-vivo dMRI experiments. For example, the apparent diffusion
coefficient (ADC) and the fractional anisotropy (FA) are known to
reduce in formalin fixed tissue (D’Arceuil and de Crespigny, 2007). In
addition, the T2 relaxation time of fixed tissue is decreased compared to
brain tissue of living subjects (Pfefferbaum et al., 2004; Shepherd et al.,
2009). However, dMRI data with high SNR can be obtained from post-
mortem tissue, because such experiments are less restricted by scan
times and can be performed at systems operating at ultra-high field
strengths.

In this study, we evaluated estimates of fibre orientation dispersion
in white matter from post-mortem human brain specimens using a
parametric dMRI dispersion model (Sotiropoulos et al., 2012) and
equivalent measures derived from microscopy data. Specifically, we use
polarized light imaging (PLI) measures of fibre orientation and
immunohistochemical stains for myelin and astrocytes. We demon-
strate good agreement between dMRI estimates of fibre orientation and
equivalent measures derived from microscopy in the same three tissue
samples.

Methods

Tissue specimens

Three post-mortem human brains were acquired with permission
from the Oxford Brain Bank at the John Radcliffe Hospital in
Headington, United Kingdom. The brains were immersion-fixed with
formalin after extraction from the skull. Details on the history of each
specimen can be found in Table 1. At the level of the anterior
commissure, coronal slabs of 5 mm thickness were excised that
included the medial part of the corpus callosum (CC), the centrum

semiovale (CSO), part of the corticospinal tract (CST), the cingulate
cortex and the superior frontal cortex. The samples originated from the
anterior body of the CC, i.e. regions 3 and 4 according to Witelson's
parcellation scheme (Witelson, 1989).

Formalin fixation is known to reduce the T2 relaxation time of
tissue, which is detrimental to SNR in MRI, but can be reversed by
soaking samples in saline (Shepherd et al., 2009). The samples were
immersed in phosphate buffered saline to remove excess formalin 72 h
prior to imaging. 48 h later the samples were transferred to a syringe
filled with Fluorinert (FC-3283, 3 M™, St. Paul, USA), a hydrogen-free
liquid that is susceptibility-matched to tissue to maximize field homo-
geneity, but which contributes no signal. Where necessary, the speci-
mens were immobilized by placing additional gauzes inside the syringe.

MRI acquisition

The imaging pipeline for the specimens is illustrated in Fig. 1. MR
imaging was performed on a 9.4 T 160 mm horizontal bore VNMRS
preclinical MRI system equipped with a 100 mm bore gradient insert
(Varian Inc, CA, USA). The maximum gradient strength was 400 mT/m
with a slew rate of 2162 mT/m/ms in all axes. RF transmission and
reception was performed using a 26 mm ID quadrature birdcage coil
(Rapid Biomedical GmbH, Germany). Diffusion-weighted images were
acquired with a spin-echo sequence (TE = 29 ms, TR = 2.4 s) using
single line readout and b = 5000 s/mm2 (δ = 6 ms and Δ = 16 ms).
High b-values were required to obtain sufficient diffusion contrast for
estimating dispersion, as demonstrated in (Sotiropoulos et al., 2012)
using b-values as high as b = 8000 s/mm2 in post-mortem macaque
brain. A total of 120 gradient directions were acquired in addition to
four images with negligible diffusion weighting (b ≈ 8 s/mm2). The
field-of-view covered the samples in the sagittal plane of the scanner
(51.2 mm × 38.4 mm) and was sampled with a 128 × 96 matrix. This
lead to an in-plane resolution of 0.4 × 0.4 mm, which was matched
with a slice thickness of 0.4 mm for isotropic voxels. The average SNR
for the b = 5000 s/mm2 data was 15.5 and 18.6 for grey and white
matter, respectively. To reduce Gibbs ringing, the complex k-space data
of all volumes were filtered with a Tukey window (α = 0.5). Diffusion
tensor images (DTI) were obtained using FMRIB's Diffusion Toolbox
(FDT) in FSL (Jenkinson et al., 2012) to compute mean diffusivity
maps. These maps were solely used image registration with PLI and
histology data. However, no diffusivity values were derived from the
DTI analysis.

dMRI-derived dispersion

The dMRI dispersion model separates the diffusion signal into
isotropic and anisotropic fractions. Dispersion is estimated from the
anisotropic fraction, which aims to describe both intra- and extra-
cellular compartments. The isotropic fraction likely captures both free
water and non-neuronal cells (Azevedo et al., 2009). This model
describes the fODF using a Bingham distribution (Fig. 2), which
provides a quantitative estimate of fibre dispersion representing the
fanning and bending fibre geometries that appear throughout the brain
(Sotiropoulos et al., 2012; Tariq et al., 2016). The Bingham distribution

Table 1
Post-mortem specimen details. Abbreviations: PMI; post-mortem interval, i.e. time
between death and start of fixation, FT; fixation time, i.e. the time between start of
fixation and MRI, COD; cause of death.

# PMI
(hours)

FT (months) Sex Age (years) COD

1 48 22 M 65 Myocardial Infarction
2 48 30 M 51 Chronic Obstructive

Pulmonary Disease
3 16 7.5 M 91 Heart failure
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(spherical version of a Gaussian distribution) is parametrised with a 3
× 3 rank-2 matrix whose non-zero eigenvalues k1 and k2 quantify
dispersion along two orthogonal axes, with low k corresponding to high
dispersion. For anisotropic dispersion, k1 > k2, while for isotropic
dispersion k1 = k2 = κ (equivalent to the Watson distribution). A brief
overview of the formulation of this dispersion model is given in
Appendix A, with further details and discussion of its implementation
given elsewhere (Sotiropoulos et al., 2012).

In keeping with previous work (Tariq et al., 2016; Zhang et al.,
2012), an Orientation Dispersion Index (ODI) was defined. Here, we
quantify the ODI in a 2D plane, because the fibre orientations derived
from the microscopy data were restricted to 2D. A mathematical
description to derive 2D dispersion is given in Appendix B. The

eigenvalue, k2D, that quantifies dispersion in a plane parallel to the
microscopy data was used to compute the ODI as in Eq. (1). An ODI of
0 corresponds to perfectly aligned within-voxel fibre orientations (no
dispersion), while an ODI of 1 represents a uniform distribution of
fibres on a circle.

ODI
π

arctan k= 2 (1/ )D2 (1)

In addition to the dispersion model, fODFs were obtained. The
fODFs were solely collected to compare the alignment of fibre orienta-
tion between dMRI and microscopy-derived fibre orientation distribu-
tions (FOD) after co-registration, but no dispersion estimates were
derived from the fODFs. The fODFs were obtained via Constrained
Spherical Deconvolution (CSD). Spherical harmonics coefficients up to
the 8th order were fitted in MRtrix (Tournier et al., 2013). Because the
microscopy techniques yield fibre orientation in 2D, the fODF of each
voxel was projected into a 2D plane. A convex hull was calculated from
the 2D projection and referred to as fODF2D hereafter.

Microscopy

Estimates of dMRI dispersion were compared to two microscopic
imaging approaches: polarized light imaging (PLI) and immunhisto-
chemical staining. After MRI, each sample was sliced along the middle,
in the coronal plane, to generate two slabs of approximately equal
thickness (Fig. 1). One of the slabs was frozen for PLI and the other was
processed and paraffin embedded for histology. Frozen tissues are ideal
for PLI as lipids in the myelin sheath are preserved. Fibre orientation
distributions were derived from both PLI and histology using structure
tensor analysis, as described below.

Fig. 1. Imaging pipeline for three formalin fixed brain specimens to study fibre orientation dispersion. dMRI data were collected with 120 directions at 9.4 T, to which a parametric
dispersion model was fit. After scanning, samples were cut coronally into two slabs that were processed separately to obtain fibre orientations at microscopic level. For one slab, PLI data
were collected from serial sections, spanning ~1 mm in the cutting direction. The other part of the sample was immunohistochemically stained for proteo-lipid protein (PLP) as a
measure of myelin content and for glial fibrillary acidic protein (GFAP) as a measure for astrocytes.

Fig. 2. Probability density function of the Bingham distribution. The left image depicts a
fibre population presenting anisotropic dispersion to which a Bingham distribution is
fitted. From the Bingham distribution on the right, concentration parameters k1 and k2
can be extracted which are reciprocally related to dispersion.
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Polarized light imaging
PLI enables quantification of fibre orientations at microscopic

resolution based on the optical property of birefringence (Axer et al.,
2011a; Larsen et al., 2007). The myelin sheath surrounding axons is
birefringent de Campos Vidal et al., 1980), and results in a transmitted
light intensity that depends on the angle between the myelin sheath
and a polarizing filter on the microscope. Fibre orientation estimates
are generated in PLI by acquiring a series of images with varying
polarizer angle. The resulting light intensity exhibits a sinusoidal
variation, the phase of which indicates in-plane fibre orientation.

For PLI, the tissue slabs were immersed in a 30% sucrose-solution
for one week to prevent the formation of ice crystals during freezing
and to preserve tissue morphology. After cryoprotection, the tissues
were frozen to −80 °C. One day later the tissue slabs were sectioned at
−12 °C in the coronal plane using a cryostat (Leica, Germany), at a
thickness of 60 µm. Sixteen sections were collected in a serial manner
for each specimen, covering a distance of ~1 mm in the cutting
direction. Images were taken on a Leica DM4000B microscope
(Leica, Germany) equipped with a polarizer, a rotatable polarizer (the
analyser), a quarter wave plate (QWP) and a white LED light source.
The fast axis of the QWP was oriented 45° with respect to the
transmission axis of the polarizer to create circularly polarized light.
The rotating analyser then captured the phase shift induced by the
myelin sheath. Images were taken at 18 equiangular rotations ranging
from 0° to 170° with a 1.25x magnifying objective yielding a resolution
of 4 µm/pix. Background correction of the images was performed as
described elsewhere (Dammers et al., 2010). Fibre orientations were
derived by fitting the light intensity at each pixel to a sinusoid, the
phase of which gives the in-plane orientation (Axer et al., 2011b) (see
Appendix C). A histogram of the fibre orientations from a local
neighbourhood of 100 × 100 pixels across 6 slices (i.e. 0.4 × 0.4 ×
0.36 mm) was computed to obtain a fibre orientation distribution
(FOD).

Histology
After embedding in paraffin, samples were cut into 6 µm thick

sections for immunohistochemistry. The tissue sections were stained
with antibodies against myelin proteo-lipid protein (PLP; MCA839G;
Bio-Rad; 1:1000) or glial fibrillary acidic protein (GFAP; Z0334;
DAKO; 1:2000) for astrocytes and visualised using DAKO REAL™
EnVision™ Detection System (K5007) with diaminobenzidine (DAB)
chromogen. Sections were counterstained with haematoxylin. For every
specimen, six sections were stained, three for each protein. Digitization
of the stained sections was performed on a Leica Aperio Scanscope AT
Turbo slidescanner (Leica, Germany) using x40 magnifying objective,
leading to a resolution of 0.28 µm/pix.

Structure tensor analysis
Fibre orientations in the histological images were obtained via

texture analysis. The histological FODs were derived after structure
tensor analysis of the images (Bigun and Granlund, 1987). Images were
first subdivided into patches of 1400 × 1400 pixels, roughly matching
the dimensions of an MRI-voxel in our experiment. From the myelin
images, the red colour-channel was used for analysis. The astrocyte
images were first transformed to the HSV colourspace. The saturation
channel was then extracted as it was mostly represented by astrocyte
staining without much contribution from the background staining. For
both stains, the cell-nuclei were removed from the images using colour-
based segmentation which was facilitated by their blue appearance. To
do so, an empirically defined RGB threshold was used to define a mask
representing the cell-nuclei. Examples of these pre-processing steps are
depicted in Supplementary Figure S.1. Structure tensor analysis was
performed on each of the processed patches separately. We calculated a
fibre orientation estimate at every pixel as described previously (Budde
and Frank, 2012b; Rezakhaniha et al., 2012) (see Appendix D for a
mathematical formulation). Fibre orientations were extracted from

pixels above a staining intensity threshold to minimize the effect of
background staining. The FOD was then computed as the histogram of
the extracted fibre orientations. An overview of the FOD derivation can
be found in Fig. 3.

Microscopy-derived dispersion
Analogous to the dMRI dispersion model, the Bingham distribution

was fitted to the microscopy-derived FODs (Riedel, 2015). The
Bingham eigenvalues were extracted to obtain microscopic orientation
dispersion. However, the Bingham distribution is parameterized in 3D,
whereas the microscopy FODs are in 2D. Fitting the Bingham to the 2D
microscopic FODs theoretically sets k1 → ∞, leading to a single
dispersion axis, since the FOD is a delta function in the third
dimension. Hence, the eigenvalue representing the only non-zero
dispersion was used to compute an orientation dispersion index
(ODI) as defined in Eq. (1).

Registration

For MRI - microscopy comparisons with spatial specificity, an
essential step is the alignment of each modality into the same space.
Pixel-wise comparison is even possible with sufficiently accurate
alignment of the microscopy slices to the MRI data. However, tissue
processing steps such as fixation, embedding and cutting cause non-
linear deformations to the tissue sections, making this a much more
difficult alignment than is faced in conventional MRI. Here, a 2D
deformable registration was employed using a Modality Independent
Neighbourhood Descriptor (MIND) (Heinrich et al., 2012). The images
used in calculating alignment for each modality were: the mean
diffusivity maps for MRI, the transmittance maps for PLI (i.e. I0 maps,
see Appendix C), and the greyscale stained images for histology. The

Fig. 3. Microscopic fibre orientation analysis for histological and PLI data. Structure
tensor analysis was performed on histology (left column). Here, a simulated fibre
configuration is shown for demonstration purposes. Fibre orientation at each pixel was
derived by estimating the direction of local intensity gradients. An FOD (red) can then be
calculated by taking the histogram of fibre orientations in a neighbourhood comparable
to the size of an MRI-voxel. For PLI data, a similar FOD can be obtained (blue). Instead
of analysing texture in an image, PLI yields a fibre orientation at each pixel after PLI-
signal processing. Like the structure tensor analysis, an FOD was extracted by computing
the histogram of orientations from the PLI vector field in a local neighbourhood.
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computed deformation fields were then applied to the corresponding
FOD maps to be able to compare FODs from individual voxels between
the modalities. Prior to transforming the FOD images, the fibre
orientations were reoriented in order to preserve the fibre orientations
relative to the bulk anatomy. For each point in the deformation field, a
local affine transformation can be computed as described previously
(Alexander et al., 2001). The rotation induced by this affine transfor-
mation was used to reorient the FODs.

Comparison of dMRI and microscopy dispersion

Regions of interest
Three regions of interest (ROIs) were defined in the specimens with

known increasing grades of dispersion: the corpus callosum (CC), the
corticospinal tract (CST) and the centrum semiovale (CSO). The masks
for the ROIs are shown in Fig. 10 for specimen 1. Our goal in including
the CSO is to span the broad range of ODI values found in the brain.
The CSO is a region of crossing fibres, which is an extreme form of
dispersion that would ideally be described by a more complex model,
such as a sum of multiple Bingham distributions. The comparison of
the diffusion signal against microscopy in the CSO is therefore
informative, but ODI values themselves are to be interpreted with
caution. Average ODI values were extracted from each ROI and
correlated against each other. For the corpus callosum a more detailed
comparison was given by averaging ODI values along the superior-
inferior direction, yielding left-to-right dispersion profiles which were
correlated across modalities. Finally, a voxel-wise comparison of
dispersion was facilitated by co-registration of the different modalities.

Role of astrocytes
As a secondary goal, we evaluated whether dMRI dispersion is

better explained by both myelinated axons and astrocytes, compared to
only myelinated axons. A combination of FODs derived from the
myelin and astrocyte histology was defined as FODMA:

FOD θ f FOD θ f FOD θ( ) = ∙ ( )+ ∙ ( )MA M M A A (2)

Here, FODM and FODA are the myelin and the astrocyte derived
FODs, respectively. Likewise, fM represents the volume fraction of
myelin and fA is the volume fraction of astrocytes. The FODs were
defined along orientation angles θ. As described in section 2.4.3, fibre
orientations were only extracted from pixels above a certain staining
intensity after pre-processing the images. The percentage of pixels above
this staining intensity was defined as the area fraction for the studied
structure. From the area fraction, a volume fraction was estimated via a
numerical simulation. In brief, a 3D voxel space was created in which
randomly oriented fibres were generated at increasing volume fractions.
For each increase in volume fraction, a virtual slice was extracted from
the 3D volume. From the slice, an area fraction was estimated by

segmenting the fibres and counting the number of pixels relative to the
total area, just as in the histological images. In such a way, an informed
mapping was constructed that relates the measured area fraction to a
volume fraction (see Fig. 5 and Supplementary Figure S.3). Hence, to
obtain fM and fA, the computed area fractions were converted to volume
fractions based on the mapping. In addition, the volume fractions were
equally scaled for each location such that fM + fA = 1.

Results

Registration

Fig. 4 depicts the alignment of all three modalities, i.e. mean
diffusivity maps (dMRI), transmittance maps (PLI) and the greyscale
stains (histology) using co-registration with the MIND algorithm. The
approach provided good alignment of the images by computing a local
similarity metric rather than a global similarity metric such as mutual
information that is used in many common registration frameworks for
biomedical imaging. The local similarity metric is modality indepen-
dent and was found to be well suited for our MRI – microscopy
comparisons. Judging from the close correspondence between the
boundaries (within the size of a voxel, i.e. 0.4 mm) of the CC, alignment
of the different modalities appears to have reached good accuracy
despite the severe deformations commonly associated with tissue
processing for microscopy. However, some misalignment is also visible
in some cortical regions, for example between dMRI and histology in
specimen 3 indicated by the white arrow. As a result, we expect voxel-
wise comparisons to be more robust in the CC than in some of the other
regions contained in these samples.

FOD microscopy

The PLI and histology images allow the relative contribution of
distinct sources of dispersion to be distinguished. To achieve this,
FODs were obtained from the myelin (FODM) and the astrocyte (FODA)
histology data and combined (Eq. (2)) to yield the aggregate FODMA.
Fig. 5 depicts two regions in the corpus callosum that illustrate these
two sources of dispersion. The images were first pre-processed to
highlight the feature of interest, as described above. Structure tensor
analysis was performed to obtain a fibre orientation at every pixel. In
the myelin image, fibre populations oriented at large angles (~40
degrees) to one another are running in close proximity within a
relatively small field-of-view. In general, the astrocyte processes follow
the orientation of the highly anisotropic matrix of axons in which they
are embedded, though in a less ordered manner, yielding wider FODs
and thus higher dispersion.

A representative slice of the PLI-derived fibre orientation maps is
given in Fig. 6 for each specimen, with colour representing orientation

Fig. 4. Contour plots depicting the alignment of the modalities after registration using the MIND algorithm. Shown are the mean diffusivity maps superimposed with either PLI (edges
of transmittance maps in blue) or histology (edges of myelin stain in red) for each specimen. In most areas, the alignment is highly accurate (within the size of a voxel, i.e. 0.4 mm), while
the white arrows indicate regions where the registration did not overlap the corresponding modalities.
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Fig. 5. Fibre orientation analysis in histology. Structure tensor analysis was performed to obtain a fibre orientation at each pixel. The left panels show the original images of two field-of-
views depicted from the corpus callosum (white boxes). In both cases, the stain of interest is brown and blue/purple is a counterstain that depicts cell nuclei. To highlight the feature of
interest (i.e. myelin or astrocytes), the images were first pre-processed as shown in the right panels. Next, structure tensor analysis was performed on the processed images. Fibre
orientations were extracted only from pixels above a certain staining intensity. For illustration purposes, the neighbourhood over which an FOD is computed here is smaller than the size
of an MRI-voxel in our experiment.

Fig. 6. PLI fibre orientation maps of each specimen. In-plane orientation is colour-coded according to the sphere on the bottom left. CC regions of interest in the middle row are taken
from the blue boxes in the images (left column). The red and yellow boxes indicate areas in the centrum semiovale and the corticospinal tract, respectively and are given in Fig. 7. FODs
from a neighbourhood size of 0.4 × 0.4 mm (white lines) are superimposed on the high-resolution fibre orientation maps (shown colour-coded). The dashed boxes illustrate a
neighbourhood corresponding to a typical dMRI voxel for in-vivo experiments (2 mm). FODs from these dashed boxes are depicted in the polar plots on the right and exhibit greater
dispersion than the smaller neighbourhoods.
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(note that the colour-map only codes the in-plane orientation and
therefore differs from those typically used in dMRI, as shown in the
lower left-hand corner). At the mesoscopic scale, the corpus callosum
exhibits a considerable amount of heterogeneity of fibre orientation. A
loss of coherence is evident at the midline, where small fascicles appear
to intertwine and change direction. FODs at the scale of the MRI voxels
in our experiment (0.4 mm) are shown for a 3.2 × 3.2 mm region at the
midline of the corpus callosum (middle column). When computing the
FODs at the scale the size of a voxel for a typical in-vivo dMRI
experiment (2 mm; dashed region) dispersion increases, as can be seen
in the polar plots (right column).

Fig. 7 depicts the PLI FODs for the CST and the CSO from locations
indicated by the yellow and red boxes in Fig. 6, respectively. The CST
has been established to exhibit higher dispersion than CC; this is not
evident in the PLI images, which is likely due to sectioning of the tissue
samples in the coronal orientation, whereas the major axis of disper-
sion in the CST is along the anterior-posterior direction. The crossing
of fibres from the CC and CST in the CSO are clearly visible as these run
in the coronal plane. A third bundle crosses in the CSO, the superior
longitudinal fasciculus, which runs into the imaging plane; fibres
perpendicular to the section cannot be estimated using our PLI setup
and therefore these fibres are likely the source of the black speckling in
the CSO.

To evaluate the overall correspondence of the FODs calculated from
the different modalities within each 0.4 × 0.4 mm neighbourhood, we
calculated the correlation coefficients between amplitudes (in a polar
coordinate system) of the microscopy-derived FODs and dMRI-derived
fODFs2D (Fig. 8). FODs in the CC are in general highly correlated, while
regions such as the CSO or the cingulum exhibit weaker, or even
negative, correlations. The discrepancy in these more complex fibre

geometries and fibres perpendicular to the image plane are in part due
to projecting 3D fODFs onto the 2D plane. Poor agreement in the
cingulum is particularly to be expected given that these fibres run
approximately into the plane of sectioning. The maps in Fig. 8 indicate
both that the FODs and fODFs2D are generally in agreement (with the
correlation coefficients likely dominated by directional similarity) and
that spatial alignment is of sufficient quality to attempt comparisons
between the techniques at the voxel (pixel) level.

Dispersion

An overview of dispersion estimates for each specimen and
modality is given in Fig. 9. The histological dispersion shown here
was derived from the myelin FODM. Broadly similar patterns can be
recognized in the ODI maps, with high dispersion in crossing fibre
regions like the CSO and lower dispersion in the CC. However, on a
voxel-wise level, not all regions across the modalities show a consistent
pattern of dispersion. In terms of absolute values, dMRI and histology
exhibit similar dispersion values, while dispersion from PLI is con-
siderably lower. Focusing on the CC, the midline exhibits more
dispersion as compared to its lateral aspects in all modalities. The
highest dispersion is found in the CSO due to the crossing of the CC,
the CST and superior longitudinal fasciculus. However, we hypothe-
sized that dispersion in the CST is lower than in the CSO, but for dMRI
the difference appears to be little.

The region-wise analysis yielded an average ODI for each specimen
across the modalities and different ROIs. Scatterplots relating dMRI
dispersion to either PLI or histology (myelin) dispersion are given in
Fig. 10. A higher correlation was found between dMRI and histology (r
= 0.79) than between dMRI and PLI (r = 0.60). In addition, the trend

Fig. 7. PLI fibre orientation maps for the corticospinal tract (yellow) and the centrum semiovale (red). See Fig. 6 for further description.
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line between dMRI and histological dispersion almost equals a one-to-
one relationship. CC dispersion was found to be the lowest, while the
CSO exhibited higher dispersion than the CST for PLI and histology.
However, for dMRI the dispersion was roughly similar in the two latter
regions.

Fig. 11 plots the average ODI profiles for each left-to-right location
of the CC. Two histology-based dispersion profiles are shown: one
based purely on the myelin staining and one combining myelin and
astrocyte stains based on the combined FODMA (Eq. (2)). The ODI
consistently peaks in the medial part of the corpus callosum both
across modalities and specimens. Dispersion derived from myelin
alone better reflects the dMRI dispersion than dispersion derived from
both myelin and astrocytes. These results suggest that, although
astrocytes exhibit dispersion, their contribution to the shape of the
dMRI profile is small.

A correlation of the dispersion profiles across the CC demonstrated
very similar patterns of dispersion for the different modalities, with the
highest correlation coefficient reported for specimen 2 between the
dMRI and PLI dispersion profiles (r = 0.93), see Fig. 12. These high
correlation coefficients were to some extent driven by the low-vs-high

dispersion clusters in the CC (corresponding to the medial and lateral
CC). This was especially evident for specimen 1, where little correlation
is found when only ODIs below 0.1 (for dMRI) were considered,
reflecting the very narrow range of ODI values in the lateral CC. For
specimens 2 and 3, however, the slopes of the low ODIs follow a similar
trend compared to all ODI values and, in case for PLI, even with
comparable correlation coefficients.

Fig. 13 features a voxel-wise comparison of dispersion in the CC.
Each dot is colour-coded according to its medial-lateral location across
the CC. Overall, lower correlation coefficients (r = 0.64 and r = 0.67 for
histology and PLI, respectively) are found as compared to the ROI
analysis. The correlations are influenced by outlier voxels in the medial
part of the CC, where fibre structure is chaotic (see Fig. 6). Because
dispersion is more heterogeneous in the medial CC, minor misalign-
ments could be one source of disagreement between modalities. Voxel-
wise comparisons of dispersion for the CST and CSO are given in
Fig. 14. While for the CSO moderate correlation (r = 0.52 and r = 0.60
for histology and PLI, respectively) was found, lowest correlation
coefficients were reported for the CST (r = 0.31 for both histology
and PLI).

Fig. 8. Correlation of microscopy derived FOD and fODF2D amongst modalities in each of the three specimens. The top row depicts the correlation coefficients between the FOD from a
stack of 6 PLI slices (dimensions: 0.4 × 0.4 × 0.36 mm) and the fODF2D from the corresponding MRI slice (0.4 mm isotropic voxels). The histological FODs were obtained from the
average of three myelin and three astrocytes stains combined (i.e. FODMA). The bottom row depicts the FODs from each modality for a voxel that is representative for the region of
interest marked with the white rectangles above.

Fig. 9. Orientation dispersion maps across specimens and modalities. Dispersion in the dMRI was estimated for each voxel by fitting a dispersion model parametrised by the Bingham
distribution (Appendix A). Dispersion in the microscopy images was estimated by fitting the Bingham distribution to the FODs in a local neighbourhood comparable to the size of an MRI
voxel. The histological dispersion is derived from myelin only (i.e. FODM). Lower dispersion values were found in PLI (note the difference in the range of the colour bar), while dMRI and
histological dispersion have similar ODI values. Focusing on the corpus callosum, an increased amount of dispersion at the midline is consistently observed across the modalities and
specimens.
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Discussion

This study investigated fibre orientation dispersion in white matter
derived from dMRI and microscopy. Estimates of dispersion were
previously reported in human brain tissue with MRI using either dMRI
(Sotiropoulos et al., 2012; Tariq et al., 2016; Zhang et al., 2012) or
dMRS (Ronen et al., 2014) and with structure tensor analysis of
histological sections (Budde and Annese, 2013); however, an evalua-
tion across modalities has been lacking to date. Here, we estimated
dispersion from dMRI data using a two-compartment model and
compared these against dispersion estimates derived from microscopy
data, including PLI and histology.

The most pertinent question addressed in our study is whether
dispersion estimated from dMRI is a result of actual fibre orientation
dispersion or primarily determined by orthogonal diffusion due to
variation in other microstructural properties like axon diameter or
extracellular volume fraction. The ROI analysis yielded strong correla-
tion between dispersion derived from dMRI and histology, and a
somewhat weaker correlation for dMRI and PLI (Fig. 10). Focusing on
the CC, we found very high correlation between dispersion profiles
from left-to-right, and lower correlations at voxel-wise level (Figs. 12
and 13). Overall this provides strong evidence that the dispersion
estimates from dMRI models capture actual microstructural fibre
orientation dispersion. This conclusion was substantiated using two
independent measures of fibre orientation: the birefringence of the
myelin sheaths using PLI and the texture of myelinated fibres
visualised with proteo-lipid-protein stains for myelin.

The ROIs were selected based on their expected variation in disper-
sion, with the CC expressing low dispersion, the CST medium dispersion
and the CSO high dispersion due to crossing fibres. However, the

distinction between medium and high dispersion was not apparent for
dMRI, with the CST and CSO yielding similar dispersion (Fig. 10). The
strongest correlations were found in the CC (Figs. 13 and 14), for which
the fanning is largely in the imaging plane of microscopy. For the CST and
CSO, the fibre configurations extend through the imaging plane of
microscopy, which may explain the relatively worse agreement with
dMRI in these regions. The CST has its primary fanning along the
anterior-posterior direction, and as such, the PLI derived FODs demon-
strate relatively little dispersion in the CST (Fig. 7). The CSO exhibits well-
established crossings along all three dimensions, but only two of these are
captured by the microscopy images. Thus, although dMRI derived
dispersion was extracted along the imaging plane of microscopy, the
specific anatomy for each ROI may have played a role in the correlation
coefficients reported here.

The microscopy techniques employed in this study face some intrinsic
limitations due to the restrictions of 2D measurements. PLI has potential
to quantify the 3D fibre orientation by estimating the inclination angle
(see Eq. (C.2), in Appendix C). However, with data acquired from the PLI
setup used here, the inclination angle has an ambiguous solution and
requires assumptions about tissue properties including the birefringence
of myelin and the slice thickness. This limitation can be overcome by
changing the propagation direction of the light through the specimen,
either by tilting the microscope stage (Axer et al., 2011b; Wiese et al.,
2014) or changing the direction of the light with micro-lens arrays
(Oldenbourg, 2008). Alternatively, one could obtain reference measure-
ments of 3D FODs using confocal microscopy with 3D structure tensor
analysis (Khan et al., 2015; Schilling et al., 2016) or optical coherence
tomography (Magnain et al., 2014; Srinivasan et al., 2012). The latter is
also less susceptible to tissue deformations, as the image acquisition is
performed en bloc prior to cutting.

Fig. 10. ROI analysis of dispersion estimates (ODI) in the corpus callosum (CC), the corticospinal tract (CST) and the centrum semiovale (CSO). The dots represent different specimens
and regions, with each dot is colour-coded according to the region it belongs to. A trend line (dashed black) is given for the relation between modalities in addition to the trend line
indicating a one-to-one relationship (solid blue).

Fig. 11. Dispersion profiles in the corpus callosum for dMRI, PLI and histology. Profiles were obtained by masking the dispersion maps with a corpus callosum mask as in the example
on the top left. The mean along superior-inferior directions and across slices resulted in the dispersion profiles shown here. Similar to the pattern in the spatial maps (Fig. 9), an
increased amount of dispersion is evident around the midline compared to the lateral aspects of the corpus callosum. PLI exhibits lowest dispersion in the corpus callosum, whereas
histology and dMRI yield similar values. However, when astrocytes (in addition to myelin) were incorporated for the histological dispersion estimate (i.e. derived from FODMA), higher
dispersion values are obtained.
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Validation studies of dMRI often consider reference measurements
derived from microscopy as being a gold standard. Typically, micro-
scopy focuses on a specific feature of interest inside tissue that is
related to the output of the dMRI model, for example myelinated axons
and astrocytes in the present study. As such, other structures that
possibly also influence the dMRI results may be overlooked. In that
sense, 3D electron microscopy is perhaps the only technique to be
considered as gold standard, as it is capable to quantify the full
complexity of tissue microstructure at ultra-high resolution (Mikula
et al., 2012). However, such experiments are limited to very small
regions of interest, very laborious and requires sophisticated segmen-
tation algorithms to identify tissue compartments. With regards to the
former, PLI is a relatively novel imaging technique and just a few
studies utilized it to evaluate dMRI results, though in a qualitative
manner (Caspers et al., 2015; Leuze et al., 2014). Here we show for the
first time a quantitative analysis of PLI and the results from this study
may inform future studies considering PLI as a reference measure-
ment.

The pattern of variable dispersion observed in the CC deviates from
the general assumption that it is a uniformly coherent fibre bundle of
axons running parallel to one another. The observation of higher
dispersion on the midline implies a reorientation of fibre trajectories at
this level. The functional significance of this anatomical peculiarity, if
any, is unclear. One appealing hypothesis is that fibres change direction
at the midline to connect to heterotopic areas. Alternatively, it could be
an epiphenomenon of callosal development. Several glial structures

near the midline play an important role in the formation of the CC
(Paul et al., 2007; Ren et al., 2006; Shu et al., 2003) and dispersion
may be a remnant of the development of the CC.

Although the dispersion profiles measured with the different
modalities showed a strong correlation (Fig. 12), PLI yielded lower
ODI values than dMRI and histology. The spatial resolution of the PLI
images may be the source of this discrepancy. At 4 µm/pix and a slice
thickness of 60 µm, the orientation estimate of each PLI-pixel produces
a single value that is the average of several dozens of myelinated axons
within that neighbourhood. Hence, there is no sense in which the
intrinsic PLI signal can be “broadened” by dispersion at the imaged
resolution (Dohmen et al., 2015), unlike dMRI. Each myelin sheath
acts as a wave retarder that induces a phase shift to the circularly
polarized light. The net phase shift is simply a summation of all phase
shifts induced by all myelin sheaths inside the pixel, creating the PLI
signal. In contrast to dMRI, it is not possible to resolve within-pixel
fibre configurations with PLI. Dispersion within a PLI pixel therefore
cannot be quantified, and it is likely that PLI underestimates to some
degree the dispersion values present in the full 3D tissue section.

Dispersion of two white matter compartments was investigated,
myelinated axons and astrocytes, using the histology images. Diffusion
in the extracellular space and in non-myelinated axons also contributes
to dispersion, but these compartments were not evaluated in this study.
However, the geometry of the extra-cellular space will be primarily
defined by axons in white matter and similarly we think it is reasonable
to assume that non-myelinated axons follow the same trajectory as

Fig. 12. Scatter plots of the dispersion profiles extracted from the corpus callosum as in Fig. 11. The top depicted the comparison of PLI and dMRI, while the bottom row shows
histology (myelin only) and dMRI. Correlation coefficients were calculated for all points together and separately for ODIs below 0.1, to see if a similar trend exists for a smaller fraction of
the data. The solid trend lines indicate whether low ODIs follow a similar behaviour as the relationship of all ODI values together (dashed trend lines).

Fig. 13. Voxel-wise correlation of dispersion estimates in the corpus callosum for PLI and histology compared to dMRI. Each dot is colour-coded according to their medial-lateral
position in the corpus callosum. Notice that the outliers primarily correspond to high ODIs in the centre of the corpus callosum.
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myelinated axons. Thus, it was assumed that these compartments
exhibit similar degrees of dispersion at a certain location as myelinated
axons.

The primary type of astrocytes in white matter, fibrous astrocytes,
have elongated processes (Kettenman and Ransom, 2013). It was
hypothesized that this microstructure impedes diffusion and may
contribute to diffusion anisotropy and dispersion. To test this hypoth-
esis, we compared FODs based solely on myelin histology to an
aggregate FOD including both myelin and astrocytes. Volume fractions
for the myelin and astrocyte compartments were calculated based on
area fractions in the histological images (Supplementary Figure S.3). The
mapping between the area and volume fraction was based on a
simulation that assumed a packing of randomly oriented fibres.
Though this packing may not entirely hold true for myelinated axons
and astrocytes, it provides some sense in how to convert the area fraction
into a volume fraction. The average astrocyte volume fractions for our
specimens ranged from fA = 0.06 − 0.12, which agrees with the volume
fractions found in literature, i.e. fA = 0.1- 0.2 (Kettenman and Ransom,
2013). A closer resemblance between dMRI and histology was obtained
when dispersion was only derived from the myelin FODs (Fig. 11).
Because the dispersion estimated from astrocytes is much higher than
that estimated from myelin, the aggregate FODMA yielded higher
dispersion than the myelin FODM (Fig. 5). A regression analysis was
performed on the dispersion profiles derived from FODM and FODA to
consider whether any linear combination of the measured myelin and
astrocyte FODs could improve (which could reflect, for example, a
different volume fraction than that derived from our areal fraction
simulations). This analysis yielded no contribution from astrocytes in
addition to myelin to explain the dMRI dispersion profiles (data not
shown). Taken together, these results suggest that, although exhibiting a
similar spatial pattern of dispersion across the CC, astrocytic processes
do not contribute significantly to the dMRI dispersion estimates.

The present study employs a dMRI dispersion model that assumes a
stick-like fibre response function which allows no diffusion perpendi-
cular to it. Though the isotropic compartment should account for
diffusion in the perpendicular direction, it is plausible that the stick
implementation overestimates dispersion. Indeed, using a forward
simulation it can be shown that a model with cigar-like response
function, in which some perpendicular diffusion occurs, generates a
very similar FOD to a model with dispersion and a stick-like response
function (Supplementary Figure S.4). Accurate estimation of the
response function could help improve microstructure models such as
the one employed here, as well as spherical deconvolution techniques
that aim to estimate the fODF from dMRI data. Currently, the response
function is often estimated in the CC (Tax et al., 2014; Tournier et al.,
2004). Our results demonstrate that dispersion in the CC cannot be
neglected and is likely to have an effect on the estimated fibre response
function and thus the fODF (Parker et al., 2013). Our framework could
provide a way to calibrate the response function based on microscopy
data. By matching the dispersion estimates from dMRI and histology, a
mapping between the ground-truth fibre architecture and the dMRI
representation may be obtained. Such a mapping would enable more
accurate estimate of the fODF, which we aim to address in future work.

Finally it should be noted that this study considered one specific
model (Sotiropoulos et al., 2012) to estimate dispersion from dMRI
data. Recently, NODDI-Bingham (Tariq et al., 2016) was developed
which generates very similar output parameters, as it also employs a
Bingham distribution to characterize the fODF. It is beyond the scope
of this study to compare these different dispersion models with each
other, but it would certainly be of great interest whether other dMRI
models provide a better match to the microscopy estimates. The data
presented here may thus be a useful test-bed to further evaluate
different models. Although not used in this study, the acquired dMRI
protocol acquired two b-value shells, with an additional 120 gradient

Fig. 14. Voxel-wise comparison of orientation dispersion index (ODI) of dMRI with either histology (left) or PLI (right) in the corticospinal tract and the centrum semiovale.
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directions acquired at b = 2500 s/mm2. Data presented in this study is
publically available at http://www.fmrib.ox.ac.uk/DigitalBrainBank,
allowing other researchers to use it to evaluate their models.

Conclusion

This work compared fibre orientation dispersion values derived
from dMRI data using a two-compartment model with microscopic
correlates. In terms of average dispersion profiles, high correlation was
found between the dMRI and microscopy, both across regions and
within the CC. Though correlative patterns of dispersion were found
between the modalities, the absolute dispersion values were different,
with the highest values reported for histology, followed by dMRI and
lowest for PLI. A separate analysis suggests that astrocytes do not
significantly contribute to the dispersion estimates in dMRI. Beyond an
evaluation of dispersion estimates from dMRI, this kind of data may

serve as a useful tool to study the mapping between ground-truth
microstructure and its representation by dMRI. In particular, a
microscopy informed estimation of the fibre response function will be
addressed in future work.
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Appendix A. Dispersion model

The fibre orientation dispersion inside a voxel was estimated with a parametric two-compartment model (Sotiropoulos et al., 2012). In the case
of perfectly aligned axons, the model can be simplified to a fully isotropic compartment and a stick-like compartment with diffusion completely
restricted to be along the orientation of the stick (Behrens et al., 2003):

⎡
⎣⎢
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b d b d g v
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− − ( )k k k
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(A.1)

Here, Sk is a diffusion measurement of the kth gradient along direction gk with b-value bk, S0 a measurement with zero diffusion weighting and d
a scalar diffusion coefficient. The volume fraction of the anisotropic compartment is given by f ∈ [0,1] that has orientation
v θ φ θ φ θ= [sin cos , sin sin , cos ] , φ ∈ [0-2π] and θ ∈ [0-π].

An extension to this model was implemented to capture orientation dispersion of fibres within a voxel. Instead of modelling fibres with a single
orientation, they are assumed to form a population of sticks spatially distributed according to a distribution of orientations H(θ,φ):
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Here, H(v) is a Bingham distribution FB(v;B). Its probability density function is given by:
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and 1F1(α; β; Z) is the confluent hypergeometric function of the first kind with matrix argument Z (approximated as described in (Sotiropoulos
et al., 2012)). The Bingham matrix B is 3 × 3 symmetric matrix represented as B = RTBdiagR, with R a rotation matrix and Bdiag a diagonal matrix
with two non-zero eigenvalues, k1 and k2 representing the dispersion.
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The eigenvalues are reciprocally related to dispersion, i.e. the larger the eigenvalues the less dispersion is present. In the case of isotropic fanning
k1 = k2 and a special form of the Bingham distribution appears, also known as the Watson distribution. For k1 > k2 the dispersion profile has an
anisotropic shape.

Appendix B. 2D dispersion

For comparison with microscopy, dMRI dispersion was extracted from a plane parallel to the imaging plane of the microscopy data. The
microscopy imaging plane was roughly perpendicular to the z-axis of the dMRI data. Let x be a 3D vector and the orientation distribution function
ODF defined as x → ODF(x/|x|) obtained using the dMRI dispersion model described in Appendix A. The ODF(x) is projected onto a 2D plane and
becomes pODF(x) = ODF(P.x / |P.x|), where P is a projector defined as:

⎡
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⎤
⎦
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1 0 0
0 1 0
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The resulting pODF(x) was normalised to obtain a pdf to which a Bingham distribution was fitted (Riedel, 2015). Fitting the Bingham
distribution to 2D samples theoretically sets k1 → ∞, leading to a single meaningful dispersion axis, since pODF(x) is a delta function in the third
dimension. Hence, the eigenvalue representing the only non-zero dispersion, referred to as k2D, quantifies dispersion that is parallel to the
microscopy plane.

J. Mollink et al. NeuroImage 157 (2017) 561–574

572

http://www.fmrib.ox.ac.uk/DigitalBrainBank


Appendix C. PLI signal analysis

The light intensity for a birefringent specimen inside a PLI microscopy setup is described with the Jones calculus (Jones 1941),

I ρ I ρ φ δ( ) =
2

[1 + sin(2 −2 )sin ]0
(C.1)

where,

δ π d n
λ

α≈2 ∙ Δ cos2
(C.2)

Here, I0 is the average light intensity (transmittance), ρ the polarizer orientation and φ stands for the in-plane orientation of the fibre. The
induced phase retardance (|sin δ|) is determined by the thickness of the specimen (d), the birefringence of the specimen (Δn), the wavelength of the
light (λ) and the inclination angle of the myelin sheath (α).

Appendix D. Structure tensor analysis for histological image

To estimate local orientation of fibres, structure tensor analysis (Bigun and Granlund, 1987) was applied to the histological images. A pixel-wise
method was adopted as described previously (Budde and Frank, 2012a; Rezakhaniha et al., 2012). For each pixel, a local structure tensor, a positive
2 × 2 matrix, J was defined

⎡
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where Ix and Iy are the directional derivatives of an image I(x,y) along directions x and y, respectively. The inner product of the derivatives is
convolved with a Gaussian weighting function, w, that defines the area of interest specified by a width (σ). This is inner product is defined as,
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where g(x,y) and h(x,y) are two arbitrary images. The predominant fibre orientation is given by θ,
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Appendix E. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.neuroimage.2017.06.001.
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