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Abstract

Nanoceria (CeO2, cerium oxide nanoparticles) is proposed as a therapeutic for multiple disorders. 

In blood, nanoceria becomes protein-coated, changing its surface properties to yield a different 

presentation to cells. There is little information on the interaction of nanoceria with blood 

proteins. The current study is the first to report the proteomics identification of plasma and 

serum proteins adsorbed to nanoceria. The results identify a number of plasma and serum 

proteins interacting with nanoceria, proteins whose normal activities regulate numerous cell 

functions: antioxidant/detoxification, energy regulation, lipoproteins, signaling, complement, 

immune function, coagulation, iron homeostasis, proteolysis, inflammation, protein folding, 

protease inhibition, adhesion, protein/RNA degradation, and hormonal. The principal implications 

of this study are: 1) The protein corona may positively or negatively affect nanoceria cellular 

uptake, subsequent organ bioprocessing, and effects; and 2) Nanoceria adsorption may alter 

protein structure and function, including pro- and inflammatory effects. Consequently, prior to 

their use as therapeutic agents, better understanding of the effects of nanoceria protein coating is 

warranted.
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INTRODUCTION

Nanoceria (aka: ceria (CeO2) nanoparticles) have extensive uses as an industrial abrasive 

in chemical mechanical polishing/planarization, a catalyst in diesel fuel, and are being 

developed for use in fuel cells and batteries [1–5]. While there is little indication of 

nanoceria-induced adverse environmental effects at current exposure rates from use as a 

fuel catalyst [6], it is critical to understand its interaction with mammalian components. 

Nanoceria have anti-inflammatory and pro-/antioxidant activity [2,7–10]. Their antioxidant 

properties are based on its ability to reversibly bind oxygen and cycle between the Ce3+ 

(reduced) and Ce4+ (oxidized) forms at its surface [2,8,11]. Further, studies showed that 

nanoceria can protect cells against reactive oxygen species (ROS) such as superoxide 

radical anion and hydrogen peroxide, thereby suggesting it might have SOD- and catalase-

mimicking activity [3,9,12,13]. In contrast, there are reports of nanoceria-induced pro-

oxidant effects including lipid peroxidation, elevation of cytokines, and GSH depletion 

[10,14–16].

Nanoceria has been suggested for potential use in nanomedicine for the treatment of many 

conditions, including ischemia; diabetic cardiomyopathy; gastric, ovarian, pancreatic, and 

breast cancer; macular degeneration; and Alzheimer disease, among other disorders [3,17]. 

For most therapeutic purposes, nanoceria will need to be administered via systemic or 

pulmonary routes due to its very limited oral bioavailability [10]. Once in the blood, 

nanoparticles become coated by proteins to form a protein corona, which changes their 

surface properties, and “what the cell sees” [18–20]. However, there is limited information 

on nanoceria interaction with blood proteins. It has been shown that nanoceria adsorbs 

proteins from serum [21,22], that net negatively charged albumin and fibrinogen and net 

positively charged lysozyme can adsorb onto nanoceria surfaces [23–29], and that nanoceria 

interacts with immunoglobulins [24,29]. However, these studies do not provide insight 

into the blood proteins that adsorb onto nanoceria surfaces in vivo. Proteins adsorbed 

by nanoparticles appear to be unique to each nanoparticle, creating a “fingerprint for 

nanoparticle identification” [22,30]. Different proteins in plasma/serum could influence 

the resultant biological properties of nanoceria. Reportedly, nanomaterials adsorb different 

proteins from plasma vs. serum [31] and nanoceria’s surface coating can affect its cell 

interaction [32]. Hence, it is critical to understand the interaction of nanoceria with blood 

proteins.

To our knowledge, this is the first in vitro study that used a proteomics approach to identify 

the proteins from serum and plasma that adsorbed to nanoceria. The results indicate that a 

number of proteins from plasma and serum interact with nanoceria. These proteins in their 

normal state are known to play important roles in regulating numerous cell functions, hence 

binding of ceria nanoparticles to proteins could affect their functions and thereby could have 

detrimental effect on normal cellular and physiological processes.
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MATERIALS AND METHODS

All materials used were purchased from Sigma-Aldrich unless stated otherwise.

Nanoceria synthesis and characterization

Nanoceria synthesis and characterization were described [28]. Hydrodynamic diameter of 

the citrate-coated nanoceria before plasma or serum exposure was determined from one 

observation, and after plasma or serum exposure on two observations each. Zeta potential 

was determined at physiological pH (for the citrate-coated nanoceria and in rat plasma and 

serum) from four determinations.

Plasma and serum preparation

Animal work was approved by the University of Kentucky Institutional Animal Care and 

Use Committee. Five male Sprague-Dawley rats, weighing 328 ± 21 g (mean ± SD), 

obtained from Harlan, Indianapolis, IN, were deeply anesthetized to obtain whole blood via 

cardiac puncture of the left ventricle with a 1 cc syringe. Blood was transferred to sterile 

500 μl EDTA tubes and immediately centrifuged at 2500 rpm for 5 min to obtain plasma. 

Plasma was distributed into aliquots, frozen in liquid nitrogen, and stored at −80°C until 

subsequent analysis. For serum preparation, blood was delivered to sterile tubes containing 

no anticoagulants. Upon clotting, the tubes were centrifuged and the serum distributed into 

aliquots, frozen in liquid nitrogen, and stored at −80°C until further investigation.

Nanoceria incubation with plasma or serum

The protocol for nanoceria incubation with plasma or serum and identification of associated 

proteins is shown in Figure 1. Briefly, to 50 μl of 5 weight percent, citrate-coated nanoceria 

aqueous dispersion, 450 μl of plasma or serum were added. Samples were incubated at 

37°C for 1 h with shaking at 500 rpm. Nanoceria was pelleted at 5000 × g for 5 min. 

The supernatant was collected and stored at −80°C as the unbound protein sample for SDS-

PAGE analysis. The pellet was washed three times in 0.5 ml PBS to remove the unbound 

or loosely bound proteins then resuspended in 100 μl of distilled water as a sample for 

the analysis of nanoceria-bound proteins. Four replicates were conducted with each blood 

derivative.

SDS-PAGE analysis

The bound proteins were removed from the nanoceria by adding SDS-PAGE loading buffer 

to 20 μl of the suspended pellet and boiling the samples for 5 min at 100°C. The proteins 

were separated by 12% SDS-PAGE. The gels were fixed and stained overnight in SYPRO® 

ruby (Bio-Rad).

Cerium quantitation in SDS-PAGE gel

Selected regions of the SDS-PAGE gel were cut out for cerium quantitation. Samples 

were obtained from the tops and centers (at ~80 kDa) of lanes 5 and 8 of below figure. 

Spike recovery of a sample from the middle of lane 5 showed 95% recovery. Samples 

were digested in a 2:1 mixture of trace metal grade HNO3 and concentrated H2O2. The 
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resulting digestates were analyzed by inductively coupled plasma mass spectrometry (ICP-

MS; Agilent 7500cx, Santa Clara, CA) using external Ce standards and Tb as an internal 

standard. Duplicates, reagent blanks, and spike recovery samples were included in each 

analytical batch. These methods have been described in more detail in a previous publication 

[33].

Protein preparation for mass spectrometry

The DI-suspended plasma- (or serum-) coated nanoceria were centrifuged at 5000 × g for 

1 min to pellet the particles, the supernatant decanted and the pellets dried by SpeedVac® 

and analyzed as particle samples. To each sample, 25 μl of 8 M urea/2 mM dithiothreitol 

(DTT)/50 mM ammonium bicarbonate (NH4HCO3) were added and the samples incubated 

at 65°C for 30 min (samples were agitated twice to keep the nanoparticles suspended). 

The samples were cooled to room temperature, followed by addition of 25 μl of 50 mM 

iodoacetic acid (IAA) and incubation in the dark for 15 min. The samples were then diluted 

with 170 μl 50 mM NH4HCO3 and incubated overnight at 37°C with 4 μl of trypsin 

(Promega, modified trypsin, frozen, about 0.5 μg/μl). Following overnight protein digestion, 

100 μl of 1% formic acid (FA) were added to the samples, which were then desalted with 

C18 spin columns (The Nest Group, P/N SUM SS18V). Briefly, for desalting, samples were 

loaded onto the columns, washed 3 times with 100 μl 5% acetonitrile (ACN)/0.1% FA, and 

eluted twice with 100 mL 50% ACN/0.1% FA followed by concentration to about 5 to 10 

mL by SpeedVac®. The samples were analyzed by MS/MS.

MS/MS-based protein identification

Several sample types were compared.—Plasma or serum alone was compared to 

proteins from nanoceria that had been incubated with plasma or serum, as shown in Figure 

1. The proteomics methods employed were described [34–36]. Briefly:

Image analysis: Band intensities from SYPRO® Ruby-stained 1D-gel images of samples 

were compared, and protein bands showing greater staining intensities of proteins from 

nanoceria exposed to plasma or serum were selected for analyses.

In-gel trypsin digestion/peptide extraction: Protein bands from plasma or serum 

identified as significantly altered were excised from 1D-gels and transferred to individual 

Eppendorf microcentrifuge tubes for trypsin digestion as described [37]. In brief, DTT and 

IAA were used to break and cap disulfide bonds and the gel plug was incubated overnight 

at 37°C with shaking in modified trypsin solution. Salts and contaminants were removed 

from the tryptic peptide solutions using C18 ZipTips®. Tryptic peptide solutions were 

reconstituted in 10 μL of a 5% ACN/0.1% FA solution and stored at −80°C until MS/MS 

analysis.

NanoLC-MS with data dependent scan: Tryptic peptide solutions were analyzed by 

a nanoAcquity (Waters, Milford, MA)-LTQ Orbitrap XL (Thermo Scientific, San Jose, CA) 

platform with a data dependent scan mode. An in-house packed capillary column (0.1 × 

130 mm packed with 3.6 μm, 200 Å XB-C18) was used for separation using 0.1% FA and 

ACN/0.1% FA at 200 nl/min. The spectra obtained by MS were measured by the orbitrap at 
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30,000 resolution and the MS/MS spectra of the six most intense parent ions in the MS scan 

were acquired by the orbitrap at 7,500 resolution.

Data analysis and statistics

Nanoceria hydrodynamic sizes before and after plasma and serum exposure were compared 

by the Kolmogorov– Smirnov test. The Proteome Discoverer v1.4 version of the Swiss-Prot 

database by SEQUEST (Thermo Scientific) was used to interrogate the MS data files of each 

sample. At least two high-confidence peptide matches were used for protein identification 

where the false discovery rate was <1%. Proteins that were matched with the same peptides 

were reported as one protein group. Protein data reported from these analyses include: the 

Swiss-Prot accession number, the percentage of the protein sequence identified by matching 

peptides, the number of peptide sequences identified by the MS/MS analysis, the confidence 

score of the protein, the expected molecular weight, and predicted isoelectric point.

Protein contents determined from SDS-PAGE gels were compared by Student’s t-test. 
Statistical significance was accepted at p<0.05.

RESULTS AND DISCUSSION

The nanoceria primary particle size averaged 12 (S.D. 2.9) nm, consistent with BET 

results of 71 m2/gm, which is equivalent to 11 nm. The particles were crystalline and 

polyhedral, with an isoelectric point of 3.0 [28]. The nanoceria hydrodynamic diameter 

before incubation with rat plasma or serum reveals considerable agglomeration of the 

as- prepared nanoceria in water, when compared to its primary particle size. Interaction 

with rat plasma or serum increased the nanoceria hydrodynamic size, perhaps due to 

protein adsorption (Figure 2). The hydrodynamic diameter distributions of the two serum 

replicates were not statistically different so the results were averaged. The two replicates of 

hydrodynamic diameters after plasma exposure had similar profiles. Although statistically 

different, we averaged the results. The nanoceria hydrodynamic diameter distributions 

after plasma or serum exposure were significantly different from each other and from the 

pre-exposure nanoceria distribution. The nanoceria citrate coating might be displaced by 

proteins [22] or remain on the surface and bind proteins [38]. Thermogravimetric analysis 

results show an ~3% weight loss of the as-prepared nanoceria attributed to water and other 

components and an additional ~1% loss after the nanoceria had been through the procedure 

in the absence of plasma or serum exposure (Figure 3). After incubation with rat plasma or 

serum, there was an additional ~6% weight loss over the temperature range of BSA weight 

loss [39] attributed to proteins coating the nanoceria. Nanoceria incubation with rat plasma 

or serum decreased the zeta potential (Table 1). The decrease in absolute zeta potential can 

be attributed to protein coating from plasma and serum.

There have been many studies utilizing systemic and pulmonary nanoceria administration, 

the latter resulting in <1% of the nanoceria entering systemic circulation [40–42]. However, 

little is known as to what happens to nanoceria after it enters the circulatory system. In the 

present study, nanoceria incubated with plasma or serum led to increased protein size, shown 

as proteins that do not migrate into gels in contrast to plasma or serum alone, suggesting 

some nanoceria plasma and serum protein interaction (Figure 4A). The zeta potential 
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decrease after plasma or serum exposure also suggests nanoceria-protein interaction. Zeta 

potential decrease during serum protein incubation, although over a much longer time, was 

shown [22]. We hypothesize that some of the plasma/serum proteins bound to nanoceria 

play a role in nanoceria agglomeration. To identify which plasma or serum proteins were 

associated with nanoceria, we employed proteomics.

Samples from the SDS-PAGE gel showed 1002 and 5648 ng cerium/mg gel at the top of 

lanes 5 and 8 (Figure 4A), respectively, but only 0.4 and 0.5 ng/mg gel in the center of 

those lanes, respectively, indicating that the separated proteins were essentially cerium-free. 

We treated the pellet with SDS-sample buffer followed by centrifugation and loading of 

the supernatant onto the gel. Based on our observation of intense staining at the top 

of the gel, we speculate that the speed we used for centrifugation did not pellet down 

all the ceria; some small nanoceria-protein complexes formed that have strong binding. 

When the proteins dissociated from the plasma/serum-incubated nanoceria were analyzed 

by SDS-PAGE, differences in protein profiles were observed, i.e., different bands and 

band intensities appear among proteins released from nanoceria that had been exposed 

to serum compared to plasma (Figure 4A arrows). Semi-quantitative densitometry analysis 

of total nanoceria-bound proteins showed that nanoceria incubated with serum samples 

had greater protein intensity than plasma-incubated nanoceria (Figure 4B). Since nanoceria 

incubation in plasma and serum was performed under identical conditions including addition 

of the same amount of proteins, differences in the protein profile observed on 1D-gel 

electrophoresis could be due to differences in the composition or amount of nanoceria-bound 

proteins. Serum is collected from blood after coagulation; therefore, some proteins involved 

in coagulation were removed that might lead to an enhanced ability of nanoceria to interact 

with other proteins. Table 2 shows proteins associated with nanoceria from either or both 

plasma and serum. Most of the proteins not eluted from serum-exposed nanoceria but 

eluted from plasma-exposed nanoceria are involved in blood coagulation. Interestingly, both 

plasma- and serum-incubated protein profiles showed a few strong bands as indicated by 

arrows in Figure 4A. This increased protein band intensity compared to the original plasma 

and serum samples suggests that nanoceria may preferentially and selectively bind these 

proteins, leading to their enrichment. Differential binding affinity of nanoceria for blood 

proteins has been shown. The binding affinity of fibrinogen with nanoceria was 40 pM 

whereas it was 37 nM with human serum albumin [25]. Nanoceria protein coating could 

affect its stability, distribution, and functional roles.

To identify the proteins bound to nanoceria we subjected the proteins that had been bound 

to nanoceria to mass spectrometry-based proteomics. As can be seen from Table 2, most 

of the proteins that were identified from plasma- or serum-exposed nanoceria are common 

to both, suggesting that nanoceria might have selective preference to bind these proteins. A 

total of 87 proteins in plasma or serum interacted with nanoceria. Of these, 27 were unique 

plasma proteins, one was a unique serum protein, and 59 proteins in both plasma and serum 

associated with nanoceria (Figure 5). Further studies need to be conducted to understand 

the mechanisms underlying nanoceria’s preference to bind certain proteins and the resultant 

effects on both the proteins and nanoceria.
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Coupled MS/MS and database interrogation-identified proteins bound to nanoceria 

were grouped into the following functional categories: antioxidant/detoxification; energy 

regulation; cell signaling; lipoprotein; complement pathways; immunoglobulin/immune 

function; blood coagulation; cellular iron homeostasis; proteolysis; inflammation, protein 

folding; protease inhibitors; carrier proteins; cell adhesion; protein/RNA degradation; and 

hormones (Table 2). Some comments about selected proteins within most of these categories 

follow:

Antioxidant/detoxification:

The antioxidant activity of GPx3 depends upon its ability to convert lipid peroxides (or 

hydrogen peroxide) into the corresponding alcohol (or water), using glutathione as reducing 

equivalent. Since GPX plays a critical role as an antioxidant protein, its interaction with 

nanoceria conceivably could contribute to an altered cellular defense system.

Glucose metabolism regulation:

GAPDH is not just an important enzyme of glycolytic pathway, which facilitates 

the enzymatic conversion of glyceraldehyde 3-phosphate to 1,3-biphosphoglycerate in 

glycolysis, but this enzyme also has other diverse functions [43–45]. Owing to its multiple 

isoforms and cellular localizations, GAPDH interacts with various small molecules, proteins 

and membranes, which are involved in normal as well as pathologic cellular functions 

including but not limited to transcription activation, apoptosis, and endocytosis [44,46]. 

Consequently, we speculate that binding of GAPDH to nanoceria conceivably might favor 

the transport of these particles via endocytosis processes into different cellular locations and 

into multiple organs.

Cell signaling:

Phospholipase A2 belongs to family of phospholipase (PL) enzymes that hydrolyze 

phospholipids into fatty acids and other lipophilic substances. PLA2 cleaves the sn-2 

acyl chain of phospholipids releasing unsaturated fatty acids, one of which is arachidonic 

acid, a lipid secondary messenger involved in cellular signaling and in inflammatory 

responses. Moreover, arachidonic acid is a major source of the lipid peroxidation product, 

4-hydroxynonenal (HNE), which covalently binds proteins to change their structure and 

decrease their function [47]. If the binding of PLA2 to nanoceria negatively impacts the 

function of this PL, membrane integrity may be compromised and cell death processes 

promoted. On the other hand, if binding of PLA2 to nanoceria stabilizes this PL, this 

conceivably could contribute to several inflammatory diseases, including coronary artery 

disease [48], and acute respiratory distress syndrome [49], with both possibilities causing 

cellular damage.

Lipoproteins:

Apolipoproteins (Apo) regulate the transport and distribution of lipids (including cholesterol 

in some cases) through the lymphatic and circulatory systems, serve as a cofactors or 

catalysts for lipid metabolic reactions, and maintain structure of lipoprotein particles. 

Moreover, ApoA1 is involved in regulating levels of the pro-inflammatory cytokine, TNFa 
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[50], while plasma levels of ApoJ (clusterin) are correlated to protein aggregation and 

neurodegeneration [51]. Owing to their multiple functions, Apo regulate cellular lipoprotein 

metabolism [52]. Binding of lipoproteins to nanoceria might promote their transport or 

absorption to other organs such as liver and may affect its distribution and accumulation 

in the cells of different organs. Indeed, we previously showed that when nanoceria are 

administered systemically, liver accumulation is observed that is highly persistent and 

damaging to this critical organ [53]. Unexpectedly, following 90 days after systemic 

administration of nanoceria, we demonstrated that nanoceria are bio-transformed by the 

liver into different shapes and production of antioxidant Ce3+ [54], at a time that coincides 

with return to baseline of the elevated oxidative stress in brain [15]. ApoE, which is essential 

for the normal catabolism of trigyceride-rich lipoprotein constituents, also meditates the 

transport and uptake of cholesterol and lipid by interacting with different cellular receptors, 

including the low density lipoprotein (LDL) receptor.

Complement pathways:

Complement pathways (CP) are an integral part of the innate immune system or non-specific 

immune response and they complement the antibiotic activity of antibodies in biological 

systems by augmenting the opsonization of bacteria by antibodies. CP can also be activated 

early in infection in the absence of antibodies. The interaction between nanoceria and the 

proteomics-identified proteins of the complement system could result from a binding affinity 

of these proteins to nanoceria, and this binding conceivably might activate this cellular 

defense system even in the absence of pathogenic insults.

Immunoglobulin/immune function:

Immunoglobulins (Ig) are large, Y-shaped glycoproteins produced by B-cells and used by 

the immune system to identify and neutralize foreign objects such as bacteria and viruses. 

Interaction of Ig with nanoceria conceivably could materially affect these functions in a 

negative manner, potentially posing a risk to individuals who were treated with nanoceria-

based antioxidant therapeutics as has been proposed [55].

Blood coagulation:

As noted above, plasma levels of this category of proteins bound to nanoceria were more 

numerous identified by proteomics than those in serum, since such proteins were used to 

initiate blood clotting. Such a demarcation of binding of blood clotting proteins to nanoceria 

between plasma and ceria gives confidence that the proteomics methods employed give 

biologically relevant results.

Iron homeostasis:

Transferrin is a key protein for binding iron ions. Adventitious iron is dangerous to cells, 

since Fe2+ is a pro-oxidant, converting hydrogen peroxide to hydroxyl free radicals via 

Fenton chemistry, which can lead to cell death [56]. Hence, binding loose iron ions is critical 

for cell survival. However, transferrin in both plasma and serum bind to nanoceria, thereby 

likely diminishing its iron-binding function and potentially posing a danger if nanoceria 

were used therapeutically.
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Proteolysis:

Plasma kallikrein is a serine protease that cleaves kininogen to produce the pro-

inflammatory peptide, bradykinin. Hence, it is conceivable that binding of plasma kallikrein 

(not detected in serum) to nanoceria is protective by decreasing inflammatory processes.

Protease inhibitors:

Unregulated activation of matrix metalloproteinases is associated with many disease states 

[57]. Metalloproteinase inhibitors contribute to the regulation of these enzymes [58]. 

Therefore, binding of metalloproteinase inhibitor-3 to nanoceria conceivably could weaken 

regulation of metalloproteinases, leading to nicks in endothelial tissues and consequent 

development of thrombosis. In contrast to high molecular weight kininogen, low molecular 

weight kininogen does not protect kallikrein from inactivation by C1 inhibitor. Therefore, 

adsorption of low molecular weight kininogen to nanoceria may be protective by preventing 

development of bradykinin-mediated inflammatory processes. Fetuin-B, an inhibitor of 

ovastacin and meprin-metalloproteinases, is suggested to be a potential contributor in 

proteinaceous networks involved in immune defense, extracellular matrix assembly, cell 

signaling, among other functions. Consequently, fetuin-B association with nanoceria could 

inhibit its function with implications for fibrosis, inflammation, cancer, and certain 

neurodegenerative disorders [59].

Carrier/cargo proteins:

Hemopexin is a heme scavenging protein, thereby contributing to inhibition of heme-

induced free radical formation. This protective effect is related to hemopexin-mediated 

induction of heme oxygenase-1 activity [60]. Vitamin D-binding protein complexes much 

of the vitamin D in plasma or serum. Decreases in vitamin D are associated with numerous 

clinical disorders, including Alzheimer disease [61]. Consequently, association of vitamin 

D- binding protein with nanoceria may make vitamin D less available for health.

CONCLUSION

To our knowledge, this is the first proteomics study to identify plasma and serum proteins 

that coat nanoceria. One potential outcome of nanoceria protein coating is to enhance 

nanoceria uptake by cells. Nanoceria protein binding has been shown to alter protein 

structure. This may affect nanoceria’s pro- and/or anti-inflammatory properties. Here, 

consideration of various functional classes of proteins leads to the notion that, while 

many proteins adsorbed onto nanoceria would have negative consequences, some cellular 

effects would be more protective in nature by appropriate nanoceria binding. Hence, a 

better understanding of the interaction between nanoceria and plasma and serum proteins is 

essential. Protein binding might affect the function of nanoceria as well the functions of the 

proteins bound to them. As noted above, nanoceria has been proposed as a therapeutic agent, 

so it is our opinion that such uses are premature until critical evaluation of how nanoceria 

behave once in the body, especially in the blood and organs.
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Figure 1: 
The experimental design for identification of the plasma and serum proteins bound to 

nanoceria.
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Figure 2: 
Nanoceria hydrodynamic diameter before and after rat plasma or serumexposure. Solid line 

is before procedure exposure, dotted line after plasma, and dashed line after serum exposure.
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Figure 3: 
Thermogravimetric analysis curves of the as-synthesized nanoceria (solid line), nanoceria 

that had been through the procedure (dash-dot-dash line), rat plasma-incubated 

nanoceria(dotted line), and rat serum-incubated nanoceria (dashed line).
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Figure 4: 
The protein profile of plasma and serum proteins bound to nanoceria. (A). Lane 1: 

Molecular weight markers, Lane 2: Nanoceria alone, Lane 3: Plasma, Lane 4: Unbound 

plasma proteins, Lane 5: Bound plasma proteins, Lane 6: Serum, Lane 7: Unbound serum 

proteins, Lane 8: Bound serum proteins. Arrows indicate bands with different proteins 

in plasma- vs. serum-incubated nanoceria samples. (B) ImageQuant image analysis of 

SDS-PAGE lanes 8 vs. 5 showed a greater percentage of the serum proteins interact 

with nanoceria than the plasma proteins. The gel image is representative of 4 independent 

experiments, for which the results are shown in B as mean ± S.D.

Butterfield et al. Page 17

J Nanomed Nanotechnol. Author manuscript; available in PMC 2021 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Venn diagram showing distribution of proteomics-identified, plasma or serum proteins 

associated with nanoceria.
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Table 1:

Nanoceria zeta potential before and after incubation with rat plasma and serum. Values are mean ± S.D.

Sample Zeta potential (mV)

Nanoceria −48

Rat plasma-exposed nanoceria −28

Rat serum-exposed nanoceria −20
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Table 2:

Proteins and their functional classification that were identified from rat plasma and/or serum bound to 

citrate-coated nanoceria.

Functions Plasma Serum

1. Antioxidant/detoxification

Glutathione peroxidase 3 x x

2. Energy regulation

Creatine kinase M-type x x

Glyceraldehyde-3-phosphate dehydrogenase x x

Adenylate kinase isoenzyme 1 - x

3. Cell signaling

Phospholipase A1 x -

Phospholipase A2 x x

Insulin-like growth factor I x x

4. Lipoproteins

Apolipoprotein A-I x x

Apolipoprotein A-II x x

Apolipoprotein A-IV x x

Apolipoprotein B-100 x x

Apolipoprotein C-II x x

Apolipoprotein E x x

Apolipoprotein H x x

Apolipoprotein N x x

Apolipoprotein J (Clusterin) x -

5. Complement pathways

Complement C3 x x

Complement C4 x x

Complement component C6 x x

Complement component C8 x x

Complement component C9 x x

Complement component factor h-like 1 x x

C4b-binding protein alpha chain x x

C4b-binding protein beta chain x x

Clusterin x -

Protein C4-2 x x

Protein C8a x x

Protein Cfb x -

Protein Cfh x x

Protein F5 x x

Protein Serpinf1 x x
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Functions Plasma Serum

Mannose-binding protein A x x

6. Immunoglobulins/immune function

Ig gamma-2A chain C region x x

Ig gamma-2B chain C region x x

Ig gamma-2C chain C region x x

Ig kappa chain C region, A allele x x

Macrophage stimulating 1 x -

7. Blood coagulation

Coagulation factor II, isoform CRA_a x x

Coagulation factor VII x x

Coagulation factor X x x

Coagulation factor XII x -

Coagulation factor XIII A chain x -

Coagulation factor XIII, beta subunit x -

Fibrinogen beta chain x x

Isoform Gamma-A of Fibrinogen gamma chain x x

Heparin cofactor 2 x -

Carboxypeptidase B2 x -

Carboxypeptidase N catalytic chain x -

Plasminogen x x

Platelet factor 4 x -

Procollagen, type VI, alpha 3 x x

Vitamin K-dependent protein C x x

Vitamin K-dependent protein S x x

Protein Mmrn1 x -

Protein Serpinc1 x -

Protein Serpinf1 x x

Alpha-1-antiproteinase x x

CXC chemokine RTCK1 x x

8. Cellular iron homeostasis

Serotransferrin x x

Protein RGD1310507 x -

Protein RGD1564614 x -

9. Proteolysis

Protein Serpina4 x -

Plasma kallikrein x -

10. Protein folding

78 kDa glucose-regulated protein x x

11. Protease inhibitors (just inhibitors)
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Functions Plasma Serum

Alpha-1-macroglobulin x x

Glia-derived nexin x -

Isoform LMW of Kininogen-1 x -

Inter alpha-trypsin inhibitor, heavy chain 4 x x

Inter alpha-trypsin inhibitor, heavy chain 1 x x

Metalloproteinase inhibitor 3 x x

Serine protease inhibitor A3N x x

Protein AMBP x -

Serine protease inhibitor x -

Fetuin-B x -

12. Carrier/cargo proteins

Alpha-2-HS-glycoprotein x x

Albumin x x

Hemopexin x x

Vitamin D-binding protein x -

Transthyretin x x

Retinol binding protein 4 x x

13. Cell adhesion/extra cellular matrix/structural

Anastellin x x

Extracellular matrix protein 1 x -

Gelsolin x x

14. Bone morphogenetic protein

Secreted phosphoprotein 24 x -

15. Protein/RNA degradation

Cullin-associated NEDD8-dissociated protein 
1 x x

16. Hormone

Cystatin-related protein 1 x -

17. Unknown functions

Alpha-2-glycoprotein 1 x x

Putative lysozyme C-2 x -
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