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Abstract
Alopecia Areata (AA) is characterised by an autoimmune response to hair follicles (HFs)
and its exact pathobiology remains unclear. The current study aims to look into the
molecular changes in the skin of AA patients as well as the potential underlying molecular
mechanisms of AA in order to identify potential candidates for early detection and
treatment of AA. We applied Weighted Gene Co‐expression Network Analysis
(WGCNA) to identify key modules, hub genes, and mRNA–miRNA regulatory networks
associated with AA. Furthermore, Chi2 as a machine‐learning algorithm was used to
compute the gene importance in AA. Finally, drug‐target construction revealed the po-
tential of repositioning drugs for the treatment of AA. Our analysis using four AA data
sets established a network strongly correlated to AA pathogenicity based on GZMA,
OXCT2, HOXC13, KRT40, COMP, CHAC1, and KRT83 hub genes. Interestingly,
machine learning introduced these genes as important in AA pathogenicity. Besides that,
using another ten data sets, we showed that CHAC1 could clearly distinguish AA from
similar clinical phenotypes, such as scarring alopecia due to psoriasis. Also, two FDA‐
approved drug candidates and 30 experimentally validated miRNAs were identified that
affected the co‐expression network. Using transcriptome analysis, suggested CHAC1 as a
potential diagnostic predictor to diagnose AA.
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1 | INTRODUCTION

Alopecia Areata (AA) is a common, polygenic, non‐scarring
dermatologic autoimmune disease that occurs after immune
infiltrates around the hair follicles (HFs) in the actively
growing anagen phase and results in hair loss of varying
severity that may persist for life [1]. It is the most prevalent
autoimmune disease that affects both males and females in
children and adults and hair of all colours [2]. It presents
with round patches of hair loss on the scalp and can

progress to Alopecia Totalis (AT) and Alopecia Universalis
(AU) [3]. AA affects 2% of the population worldwide, and its
incidence in adults is lower than in children, and it is rising
over time and varies significantly by area [4]. Though AA is
not life‐threatening, it can bring considerable psychological
stress to patients and seriously impact their quality of life [5].
The pathobiology of AA is incompletely understood.
Lesional biopsies of AA patients have shown a decrease in
the anagen‐to‐telogen ratio [6], rise of CD8+ T cells, in-
flammatory markers (IL‐2, IL2RA, JAK3, and IL‐15), T
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helper type (Th) 1 pathway cytokines (IL‐12/IL‐23p40,
CXCL10, CXCL9, and IFN‐gþ), and Th2 pathway cytokines
(IL‐13, IL‐32, CCL17, and CCL18), and keratins down-
regulation (KRT35, KRT75, and KRT86) [7]. Upregulation
of the phosphosignal transducer and transcription activator
(STAT)1/pSTAT3 was also detected in HFs of AA patients
but not in uninfluenced controls [8]. Furthermore, environ-
mental insults, such as viral infections, trauma, and genetic
predisposition, can be effective [1, 9]. To date, there are no
FDA‐approved drugs for AA. Multiple empiric options,
including observation, intralesional steroids, topical immu-
notherapy, or broad immunosuppressive, are used for AA
treatment [1]. As the molecular mechanism underlying these
diseases is not entirely defined [1, 10], more research is
needed to uncover the molecular mechanism and identify
new promising therapeutic targets for AA. Recently, some
studies investigated the roles of some specific molecules [11,
12] and several genes [13, 14] in the pathogenesis of AA.
Because of the large amounts of data produced by RNA‐Seq
and micro‐array technologies, new approaches are required to
effectively extract meaningful associations from highly
multivariate data sets [5, 6]. Numerous classification and
evaluation metrics for identifying differentially expressed
genes (DEGs) in microarray data have been investigated [15].
There are several methods for assessing DEGs in different
diseases like AA. Several machine learning algorithms, such
as support vector machines, random forests, and Chi2 clas-
sifiers are used for the prediction of biomarkers for specific
diagnosis of the disease [16, 17]. Weighted gene co‐
expression network analysis (WGCNA) is considered a bio-
informatic tool for exploring intrinsic transcriptome organi-
sation [18, 19]. WGCNA can be used to find modules of
highly correlated genes for summarising such clusters using
the module Eigengene (ME) or an intramodular hub gene to
relate modules to each other and external sample character-
istics. Finally, candidate biomarkers or therapeutic targets can
be identified using correlation networks [20, 21]. This
method has been successfully applied before in diverse bio-
logical contexts to identify regulatory genes and networks
[22]. In the current in silico work, we applied two different
computational methods, machine learning and systems
biology approaches, for analysing a microarray data set from
the Gene Expression Omnibus (GEO) database from AA
patients and healthy controls to investigate the molecular
level changes in the skin of AA patients and the potential
underlying molecular mechanisms of AA to determine the
putative candidates for early detection and treatment of AA.

2 | MATERIALS AND METHODS

2.1 | Data set identification and
preprocessing

We used four previously published microarray gene
expression data sets from the GEO database (https://www.
ncbi.nlm.nih.gov/geo/) for skin samples from 19 AA

patients and 14 controls (Table 1). These data sets were
based on the GPL570 [HG‐U133_Plus_2] platform. First,
for each of the data sets, the raw data were log2 trans-
formed, quantile‐normalised, and probe IDs were converted
to gene symbols. When multiple probes were mapped to
the same gene, median values were used to represent the
expression of that gene. Consequently, the batch correction
was performed on the four data sets based on the
expression of common genes using ‘combat’ and ‘sva’ (SVA
R package) functions. Finally, gene symbols were filtered
across all samples through their variance. Only genes with
variances ranked in the top 4000 were selected for subse-
quent analyses.

2.2 | Identification of differentially
expressed genes

The R/Bioconductor package ‘Limma’ version 3.28.14 was
used to screen DEGs between AA and normal groups from
4 data sets [26]. The raw data were corrected, and quantile‐
normalisation was performed using the using normalize
Quantiles function of the limma package. Genes with
Adjust p‐value < 0.01 and |log2FC| ≥ 2 were considered
as differentially expressed. The biological processes (BP) and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis were also conducted, and cor-
responding results were structured and visualised by the
Clupedia plugin of Cytoscape software 3.0. Cluepedia in-
tegrates and summarises enriched terms into major biolog-
ical networks via KEGG/BioCarta pathways and creates an
applicable, organised, and functional annotation term
network.

2.3 | Construct co‐expression modules of
AA

The R‐based package of WGCNA version 1.63 was used for
the construction of the gene co‐expression network of pa-
tients and control groups [27]. Shortly, according to the
Pearson test, the matrix of the gene expression profile was
converted to the matrix of pairwise gene similarity, accom-
panied by a translation to the adjacency matrix. According
to the scale‐free gene co‐expression of the topological al-
gorithm already defined, the adjacency matrix met the scale‐

TABLE 1 Data set information

ID in GEO Platform ID Sample type Samplesa Reference

GSE45512 GPL570 Scalp skin biopsies 10 (23)

GSE80342 12 (24)

GSE58573 5 (23)

GSE74761 6 (25)

aIndicates the number of samples included in our study.
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free topology criterion when the β value is considered to be
5. After that, the Topological Overlap Matrix (TOM) and
dissimilarity TOM (dissTOM) were generated using similarity
and dissimilarity modules in TOM. Finally, a minimum
module size of 30 genes and a cut height of 0.32 were
considered for the creation of the clusters of highly inter-
connected genes.

2.4 | Construct module‐trait relationships of
AA

In order to recognise modules that were significantly related to
the evaluated clinical trait, expression profiles of each module
were summarised via its ME as the eigenvector correlated to
the first principal component of the expression matrix. The
relationship between MEs and the clinical feature was assessed
by the Pearson test, and if p < 0.05, then the module and
clinical trait were regarded as a statistical correlation. The gene
significance (G.S) values were used for measuring individual
genes’ associations with the AA. Also, module membership (M.
M) was defined as the correlation of the ME and the gene
expression profile for each module. If the G.S and M.M were
positively correlated, the most significant (central) elements in
the modules were closely associated with the trait [28]. So, they
can be used to construct the network and identify the hub
genes.

2.5 | Module preservation analysis

To confirm the reliability of the recognised module with a
significant correlation to AA, we performed the module
preservation analysis using GSE68801 data sets. Preservation
analysis is based on estimating gene correlation with the ME,
differences between what is observed and what is obtained by
random permutation. One can check whether the values
found in the reference network are correlated for the same
genes within the other network. In this regard, the first 4000
genes with the highest coefficient of variation were used as an
input to assess the level of module preservation in each data
set. The degree of module preservation was measured
through Zsummary statistics, in which Zsummary < 2 shows no
preservation, 2 < Zsummary < 10 indicates weak–moderate
preservation, and Zsummary > 10 suggested strong evidence
for preservation.

2.6 | Feature selection by Chi2

Chi2 is another popular feature selection method that can
be used to eliminate some irrelevant attributes. The χ2

test is a statistical test applied to determine the de-
pendency of two events. The following formula is used to
compute χ2:

χ2
c ¼

X2

i¼1

Xk

j¼1

�
Aij − Eij

�2

Eij
ð1Þ

c ¼ ðn − 1Þðm − 1Þ ð2Þ

where c is the degree of freedom, n is the number of
samples, m is the number of attributes, A stands for actual and
E stands for expected value. To apply the χ2 test for feature
selection, we can calculate the χ2 value between each feature
and the target class. Then, we can select the desired number of
features with the best χ2 scores. In other words, if a feature is
independent of the target, it is not informative in the classi-
fying process.

In this paper, we face a huge data set with many genes as
the features. Hence, we apply the χ2 feature selection algorithm
[17] to select the most important genes. The algorithm begins
with a high significance level (sigLevel) for all numeric attri-
butes for discretisation. Each attribute is sorted according to its
values. Then, we calculate the χ2 value for every pair of adja-
cent intervals with the following equation (at the beginning,
each pattern is put into its own interval that contains only one
value of an attribute).

χ2 ¼
X2

i¼1

Xk

j¼1

�
Aij − Eij

�2

Eij
ð3Þ

Eij ¼ Ri ∗ Cj

.
N ð4Þ

Ri ¼
Xk

i¼1

Aij ð5Þ

Ci ¼
X2

i¼1

Aij ð6Þ

N ¼
X2

i¼1

Ri ð7Þ

where k is the number of classes, Aij is the number of patterns
in the ith interval and jth class, Eij is the expected frequency of
Aij, Ri is the number of patterns in the ith interval, and Cj is
the number of patterns in the jth class.

Afterwards, we merge the pair of
adjacent intervals with the lowest χ2 value. Merging

continues until all pairs of intervals have χ2 values exceeding
the parameter determined by sigLevel. The above process is
repeated with a decreased sigLevel until an inconsistency rate
δ is exceeded in the discretised data. Algorithm 1 shows the χ2

discretisation and feature selection process with more details.
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Algorithm 1: χ2 Discretisation and Feature selection
algorithm

Phase 1:
Initialise significance level to a high value
(e.g. sigLevel = 0.5)
While the inconsistency rate in data is less
than threshold δ.
For all continuous attributes
Sort training data based on attribute
Create an interval for each instance of
the training data, and initialise the
intervals.
While intervals can be merged (some χ2

value is below the threshold).
Calculate the χ2 value for each pair of
adjacent intervals using Equation (3).
Select the pair with the lowest χ2 value
and merge this pair into one interval.

Decrease the significance level.
Phase 2:
Starting with the lowest significance level
of phase 1, associate each attribute with
the level. For all mergeable attributes,
until no attributes can be merged
Sort training data based on the attribute
Create an interval for each instance of the
training data, and initialise the
intervals.
While intervals can be merged (some χ2

value is below the threshold).
Calculate the χ2 value for each pair of
adjacent intervals using Equation (3).
Select the pair with the lowest χ2 value
and merge this pair into one interval.

If inconsistency rate in training data
does not exceed predefined threshold δ,
then decrease significance level for this
attribute
elsemarktheattributeasnon-mergeable.

2.7 | Functional enrichment analysis of
significant module

Functional enrichment analysis of qualified modules was per-
formed using Cluepedia software. Enriched ontological terms
and pathways with the threshold of Benjamin‐adjusted p‐
value < 0.05 were selected.

2.8 | Hub‐gene detection and co‐expression
network reconstruction

Genes with both G.S and M.M ≥ 0.85 were chosen as hub
genes if differentially expressed compared to control samples.

A Venn diagram was generated using the ‘Venny’ v 2.1 soft-
ware, available freely at (http://bioinfogp.cnb.csic.es/tools/
venny/). Functional networks were constructed by GeneMA-
NIA (https://genemania.org/) and visualised using Cytoscape
v 3.0 software [29].

2.9 | Evaluation of selected hub genes
behaviour in other dermatological diseases

In order to evaluate the expression behaviour of selected hub
genes in other skin lesions clinically similar to AA, including
psoriatic alopecia and androgenic alopecia (AGA), we per-
formed DEGs analysis on related data sets, including
GSE78097, GSE75890, GSE14905, GSE78097, GSE79704,
GSE109248, GSE52471, and GSE90594, in the same way
mentioned in 2.2 [28].

2.10 | Evaluation of selected hub‐gene
behaviour in other types of AA

To further evaluate the role of selected hub genes in alopecia
pathogenicity, we used GSE68801 as another AA data set for
WGCNA network reconstruction. This data set contained the
most extensive AA samples with specific disease staging to
patch‐type AA (AAP), AT, and AU. This analysis aimed to find
out the expression behaviour of similar hub genes between the
two data sets.

2.11 | Identification of candidate regulatory
miRNAs and drugs

The miRNA regulatory network was built for recognised hub
genes using the miRTarBase database (http://mirtarbase.cuhk.
edu.cn/php/index.php). Also, the well‐known Drug‐Gene
Interaction Database (DGIDB) (http://www.dgidb.org/) was
used to connect functional and FDA‐approved drug‐able hub
genes [30].

3 | RESULTS

3.1 | Preprocessing and identification of
DEGs

Preprocessing of data, including quantile normalisation, was
performed to reduce the effects of technical noises. A total
of 82 genes were identified as DEGs with the threshold of
Adjust p‐value < 0.01, and |log2FC| ≥ 2, including nine
upregulated and 73 downregulated genes (Figure 1a). These
85 DEGs were then nominated for downstream analysis.
Hair cycle, keratinisation, and cornification are the most
important biological functions and pathways of the DEGs
(Figure 1b).
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3.2 | Identification of associated modules
with AA pathogenicity

A total of 4000 genes were included in WGCNA based on a
variance of expression values. No outlier was found by sample
clustering in 33 samples (Figure S1). Subsequently, β = 5 was
identified as a soft‐threshold power for the construction of a
weighted co‐expression network (Figure S2). As a result, the
hierarchical clustering dendrogram identified 11 modules
illustrated in the branches of the dendrogram with different
colours (Figure S3). To consider the association of the modules
with the presence of AA in samples and module–module
correlation, eigengenes were calculated for each module. As
was indicated, blue, brown, and yellow modules were highly

correlated with AA disease (Figure 2a and Table 2). According
to the module preservation analysis result, with a Zsummary of 4,
the brown module could not meet the criteria and failed to
qualify for downstream analysis. On the other hand, the blue
and yellow modules with Zsummary equal to 30 and 23,
respectively, were selected for subsequent enrichment and hub‐
gene selection (Figure 2b).

3.3 | GO and KEGG analysis of qualified
modules

The critical biological process and KEGG pathways related
to the selected modules were visualised using the EnrichR in

F I GURE 1 Characterisation of differentially expressed genes (DEGs) in Alopecia Areata (AA). DEG volcano plot (a). This graph represents the genes that
are upregulated and downregulated in AA samples. The fold change of genes is displayed by the horizontal axis. The −log10P‐value, as determined by the
student's t‐test, is reflected on the vertical axis. (b) the functional group pie chart, which includes specific annotation terms identified within the DEGs. As
previously stated, twenty‐two BP terms and pathways are related to DEGs, which are summarised in four major biological networks, including the hair cycle
(40.91 percent), keratinisation (27.27 percent), chemokine activity (18.18 percent), and cornification (13.64 percent)

KARAMI ET AL. - 177



Figure 3. The most significant pathway associated with the
blue and yellow modules was cytokine–cytokine receptor
interaction. On the other hand, positive regulation of
chemotaxis, negative regulation of endopeptidase activity,
and mitotic metaphase plate congression were the most
important biological functions of the blue module genes.
The yellow module genes were mostly in the biological
process, including the cytokine‐mediated signalling pathway,

regulation of immune response, and positive regulation of T
cell activation.

3.4 | Chi2 as a machine learning algorithm

Figure 4 shows the result of extracting the 30 essential genes
from the first 4000 genes of the four mentioned data sets.

F I GURE 2 (a) Module‐trait relationship and enrichment analysis of an interested module, (a): Each row corresponds to a module Eigengene (ME), and the
column corresponds to Alopecia Areata (AA) status. Numbers indicate the corresponding correlation and p‐value in each cell; (b): Module preservation analysis.
The GSE68801 data set was used to analyse the preservation attribute. Zsummary2 demonstrates no preservation, 2Zsummary10 indicates weak‐moderate
preservation, and Zsummary > 10 exhibits higher preservation. The blue and yellow modules with a significant correlation and a Zsummary > 10 were chosen for
further analysis

TABLE 2 Module colour characteristics.
The number of genes on each module was
varied from 31 (dark grey) to 1414 (blue).
According to module preservation results, the
blue and yellow modules with maximum
Zsummary were selected for subsequent
enrichment and hub‐gene selection

Module colours # Genes Correlation p‐value Zsummary Qualified

Blue 1414 −0.84 1.00E‐09 30 ✓

Brown 486 0.8 3.00E‐08 4.1 �

Cyan 496 0.43 0.01 13 �

Dark grey 31 −0.071 0.7 1.2 �

Dark turquoise 33 −0.062 0.7 6.8 �

Green 448 −0.44 0.01 22 �

Light yellow 45 −0.077 0.7 11 �

Magenta 96 −0.068 0.7 5.4 �

Midnight blue 195 0.13 0.5 16 �

Red 297 0.2 0.3 16 �

Yellow 459 0.71 3.00E‐06 24 ✓
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These genes were then compared to those genes that were
selected from WGCNA for hub‐gene selection.

3.5 | Hub‐gene detection and co‐expression
network reconstruction

As previously explained in the M&M section, G.S is defined as
the absolute value describing the relationship between the gene

and the clinical trait, while the M.M describes the correlation
between the eigengene and the gene expression profile. Thus,
gene candidates were searched among the top‐scoring gene ac-
cording to M.M and G.S parameters. The correlation between
features (M.M andG.S) of the selectedmodules (Figure 5a) led to
the detection of hub genes of interest that were highly associated
with AA pathogenesis. The genes with maximum M.M and G.S
scores in eachmodule were then compared to theDEGs list, and
similar genes were considered as final hub genes (Figure 5b).
These final hub genes included GZMA, OXCT2, HOXC13,
KRT40, COMP, CHAC1, and KRT83 (Figure 5c). The co‐
expression network of the blue and yellow module hub genes
was reconstructed using GeneMANIA and Cytoscape software.

3.6 | Evaluation of selected hub genes
behaviour in other dermatological diseases

The expression patterns of all seven selected hub genes from
AA data sets were compared to those of psoriasis and AGA in
7 related data sets. As indicated in Figure 6a, all selected hub
genes present a similar expression pattern among AA, psori-
asis, and AGA data sets, except four genes, including CHAC1,
COMP, and HOXC13. Among them, CHAC1 has a signifi-
cant difference between AA and psoriasis data sets. These
findings indicated a potential role for the CHAC1 gene in
distinguishing AA from psoriatic alopecia.

F I GURE 3 KEGG and GO functional enrichment analysis of qualified modules. In the blue module: (a) KEGG and (b) BP analysis results. In yellow
module: (c) KEGG and (d) BP analysis results

F I GURE 4 The gene importance computation using χ^2
Discretisation and feature selection algorithm
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3.7 | Evaluation of selected hub genes
behaviour in other types of AA

The WGCNA analysis of GSE68801 identified two new
modules that were significantly correlated to the AAP trait
(data not shown). Functional enrichment of these modules
revealed biological pathways shared with blue and yellow
modules that were closely related to AA development [1]. For

instance, dysregulation of immune regulatory switch‐off
mechanisms that limit the course of inflammation and cyto-
kine production to prevent excessive tissue damage is the main
physiopathology of autoimmune disorders such as AA [2].
Moreover, immune cell filtration around HFs is prominently
made up of T cell subpopulations, which exhibit antagonistic
activities in terms of activation or suppression of the exciting
inflammation [31]. Notably, several studies support the

F I GURE 5 (a): Each module's GS and MM characteristics (a): Modules strongly associated with Alopecia Areata (AA) status (control vs. patient) Each point
represents an individual gene within each module, which is plotted on the y‐axis by GS and the x‐axis by MM; (b): A comparison of blue and yellow module hub
genes and differentially expressed genes (DEGs). To construct the co‐expression network, similar genes between lists were selected. Following the selection of
these similar genes, the GeneMANIA database was used for co‐expression network construction; (c): Log2FC of chosen hub genes
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contribution of IFN‐γ‐driven immune response as the primary
driver of AA pathogenesis by CD8+ cytotoxic T cell recruit-
ment to impair the maintenance of the immune privilege of the
HF [32].

Moreover, network analysis and hub‐gene detection of
selected modules from GSE49451 revealed that GZMA,
OXCT2, HOXC13, and CHAC1 hub genes were shared be-
tween two data sets, robustly confirming significant implication
in AA development.

To better understand the exact molecular mechanism of
these seven common hub genes in AA development, the
transcriptional profile of these hub genes in the AAP group
was compared to that of AT and AU groups. According to

Figure 6b, a comparison of transcriptional changes in lesion
skin biopsies revealed that GZMA was positive, and OXCT2,
HOXC13, and CHAC1 were negatively associated with
inflammation status and disease severity, which indicates a
mechanistic role of these chemokines in AA development.

3.8 | MicroRNAs as upstream regulators for
common hub genes

To identify the possible molecular signature of the hub genes,
their predicted miRNAs have been analysed via miRWalk
database. Figure 7 displays experimentally validated miRNAs

F I GURE 6 (a): Expression levels of selected hub genes in common hair loss diseases such as Alopecia Areata (AA), androgenic alopecia (AGA), and
psoriasis; (b): Transcriptional changes of common hub genes with GSE68801 in another type of alopecia

KARAMI ET AL. - 181



of selected hub genes. As a result, the two hub genes regulated
by these miRNAs were HOXC13 and CHAC1.

3.9 | Drug‐target network construction

To analyse the drug development perspective of the blue
module, we tested if it harbours known targets of AA drugs.
This target in the module included GZMA (Cyclosporine and
Zidovudine) (Figure 7). The presence of the target in the
module of interest suggested that these drugs potentially
impact AA and could be considered as possible candidates for
further research in this respect.

4 | DISCUSSION

Alopecia Areata (AA) is an autoimmune skin disease charac-
terised by non‐scarring hair loss resulting from damage to the
HF immune privilege by T cells, leading to non‐scarring hair
loss and small patches of baldness on the scalp and/or entire
body [33]. The lack of knowledge regarding precise patho-
physiology, unpredictable disease onset and progression,
absence of preventive and effective drugs as well as adverse
effects of current treatments highlights the importance of
better understanding the molecular basis of the disease and
recognising putative treatment targets [33, 34].

Histologically, AA is characterised by an immune infiltrate
centred around the hair bulb. Substantial differences in histo-
logical appearance have not been described when comparing
AAP, AT, and AU samples. However, others have cited that
disease duration may impact the amount of peribulbar infil-
trate, with more acute cases being reported as having relatively
more robust inflammation and chronic cases as having less [1].
On the other hand, despite clinically based diagnosis of AA,
distinctive inflammatory and epidermal biomarkers will be
helpful for physicians and pathologists to recognise AA among
multiple similar scarring and non‐scarring forms of alopecia
such as psoriatic alopecia and androgenic alopecia that may
resemble clinical features of AA and lead to making appro-
priate therapeutic choices [35, 36]. Here, we aimed to distin-
guish this type of autoimmune disease based on the gene
expression pattern. Our comprehensive analysis using four AA
data sets based on WGCNA and machine learning identified
two correlated modules to AA pathogenicity, which leads to
the construction of a co‐expression network based on GZMA,
OXCT2, HOXC13, KRT40, COMP, CHAC1, and KRT83
hub genes. It is noteworthy to highlight that the dysregulation
of a majority of these hub genes was reported in a recent
bioinformatic study [37]. However, only an ordinary DEGs
analysis has been performed on two data sets without a cell‐
specific genome‐wide method considering gene–gene con-
nectivity patterns and functional gene significance that war-
rants further studies.

F I GURE 7 A network of selected hub genes' miRNA–mRNA and drug‐target interactions. For each selected hub gene, experimentally validated miRNAs
(turquoise) were obtained from the miRTarBase database, and FDA‐approved drugs (green) were obtained from the DGIDB database
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Cation Transport Regulator‐Like Protein 1 (CHAC1) is a
recently identified enzyme involved in the γ− glutamyl cycle
that takes part in glutathione depletion and the accumulation
of reactive oxygen species (ROS), leading to unbalanced
cellular redox levels [38, 39]. Furthermore, CHAC1 was
discovered to participate as a component of the unfolded
protein response (UPR) pathway, which is a stress‐signalling
pathway induced by the presence of misfolded proteins in
the endoplasmic reticulum as a result of alternations in the
redox state, calcium levels, and other stressful cellular condi-
tions, which in turn, promotes the expression of several pro‐
apoptotic proteins, such as CHAC1, leading to programmed
cell death such as apoptosis or ferroptosis [39–41]. Interest-
ingly, emerging data suggest that abnormalities of the pro-
grammed cell death pathway in response to existing oxidative
stress result in the survival of aberrant cells presenting
damaged self‐antigens to the immune system and may play an
important role in initiating the inflammatory response result in
autoimmune diseases, such as AA [42, 43]. Moreover, the
downregulation of CHAC1 in AA‐related microarray data sets
has been confirmed by previous in silico studies [37, 44, 45].
These findings strengthen the hypothesis that downregulation
of the pro‐apoptotic CHAC1 in AA lesions may robustly
contribute to the activation of the immune system by self‐
antigens, breaking immune tolerance, and consequently initi-
ating autoimmunity in AA, triggered by environmental stresses.

Additionally, it has been identified that the overexpression
of CHAC1 is associated with the poor outcomes of various
cancers, including uveal melanoma, breast, and ovarian cancer,
due to its substantial role in promoting tumour cell prolifera-
tion and migration [46, 47]. However, considering the critical
involvement of CHAC1 in glioma apoptotic cell death, the
suppression of neuroblastoma cell proliferation and mediating
antitumour activity of artesunate, nisin, and temozolomide
highlights the opposite regulatory function of CHAC1 in cell
proliferation and migration of different tumour tissues [39, 47,
48]. It is noteworthy that, consistent with previous studies, in
contrast to the significant downregulation of CHAC1 in
affected AA skin, we found an increase in CHAC1 expression
in psoriatic epidermis compared with normal skin, which
suggests specific pathological mechanisms discriminating AA
from other inflammatory hair loss disorders such as psoriasis
[37, 49]. However, the possible mechanisms underlying
CHAC1 dysregulation in skin epithelial cells during AA and
psoriasis development remained to be elucidated.

Homoeobox Protein Hox‐C13 (HOXC13) is a member of
the HoxC gene cluster recruited for unique and necessary
functions in the development of some ectodermal organs,
including hair, nail, and filiform papilla [38, 50]. The fact that
both downregulation and upregulation of HOXC13 affect the
regular expression of hard keratins specific to the hair and led
to hair loss, as illustrated both by the brittle hair resulting in the
alopecia phenotype, displayed by mice lacking the function of
HOXC13, and by the hairless phenotype of mouse models
overexpressing HOXC13, resembling ichthyosis, further high-
lights the vital regulatory role of HOXC13 expression levels
over various keratin genes [51–55]. Consistent with our results,

HOXC13 downregulation during AA development has been
recently identified using DEG analysis [37, 45].

As depicted in Figure 6, further network‐based drug
repositioning is constructed to discover new and potent drugs
for AA treatment. However, some of these drug predictions
have been shown to be beneficial for AA therapy. For instance,
oral and topical Cyclosporine therapy has been used for severe
cases, and combination therapy with these drugs has been
suggested to be a useful treatment for severe AA [56–58]. The
immunomodulatory properties of statins highlight the efficacy
of these drugs against various inflammatory dermatological
conditions such as AA, acne, and vitiligo, as reported by some
studies [59, 60]. However, the predictable effects of immune‐
stimulated agents, including antiretroviral drugs on general-
ised hair loss and AA development, have been described
before following treatment with Zidovudine [61].

Although our in‐silico findings may lead to a deeper un-
derstanding of AA pathogenicity, we have not verified the
biological functions of the selected hub genes in AA. Nor have
we determined how suggested miRNAs and approved drugs
target the hub genes related to AA. Therefore, more in vitro
and in vivo experiments are still needed, and we will continue
to focus on this issue in our further studies.

5 | CONCLUSION

Considering the lack of knowledge regarding precise patho-
physiology, unpredictable disease onset and progression,
absence of preventive and effective drugs as well as adverse
effects of current treatments, we aim to explore the molecular
mechanism of AA by incorporating the merits of two different
computational methods, machine learning and systems biology
approaches, using gene expression microarray data sets. To
summarise, our results showed significantly correlated genes,
which can be used as candidate genes in AA pathogenicity for
further evaluations. Among them, the CHAC1 gene has the
potential to distinguish Psoriatic alopecia from AA and can be
used for the determination of alopecia severity. Also, drug‐
target network analysis confirmed that 2 FDA‐approved
drugs are potential candidates for the treatment of AA pa-
tients. Our findings also indicated that the seven experimentally
validated miRNAs controlled the co‐expression network
through 2 hub genes. Further studies on blood and tissue
verification of these hub genes and relative pathways are still
needed.
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