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Abstract: Multifunctional enzymes glutathione transferases (GSTs) are involved in the development
of chemoresistance, thus representing a promising target for a novel approach in cancer treatment.
This superfamily of polymorphic enzymes exhibits extraordinary substrate promiscuity responsible
for detoxification of numerous conventional chemotherapeutics, at the same time regulating signaling
pathways involved in cell proliferation and apoptosis. In addition to upregulated GST expression,
different cancer cell types have a unique GST signature, enabling targeted selectivity for isoenzyme
specific inhibitors and pro-drugs. As a result of extensive research, certain GST inhibitors are already
tested in clinical trials. Catalytic properties of GST isoenzymes are also exploited in bio-activation of
specific pro-drugs, enabling their targeted accumulation in cancer cells with upregulated expression
of the appropriate GST isoenzyme. Moreover, the latest approach to increase specificity in treatment
of solid tumors is development of GST pro-drugs that are derivatives of conventional anti-cancer
drugs. A future perspective is based on the design of new drugs, which would selectively target GST
overexpressing cancers more prone to developing chemoresistance, while decreasing side effects in
off-target cells.
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1. Mechanisms of Chemoresistance

Chemoresistance is a multifactorial phenomenon and a common problem in cancer treatment.
There are several mechanisms for cancer cells to acquire resistance to anti-cancer drugs [1,2]. The major
ones include drug inactivation, induction of efflux transporters, inhibition of apoptosis, cell cycle
and check points deregulation, acquired mutations and epigenetic alterations [2]. One of the most
extensively studied mechanisms is anti-cancer drug inactivation by detoxification enzymes, especially
glutathione transferases. In this line, a wide range of currently used conventional chemotherapeutics
are recognized as substrates for glutathione transferases [1,3].

2. Glutathione Transferases in Cancer

Glutathione transferases (glutathione S-transferases or GSTs) are multifunctional enzymes
involved in a number of catalytic and non-catalytic processes, still traditionally recognized as phase
II cellular detoxification system enzymes. They are able to catalyze the nucleophilic addition of
glutathione (GSH) to a wide variety of non-polar exogenous (chemical carcinogens, environmental
pollutants and even antitumor agents) and endogenous compounds, yielding more water-soluble
products, hence facilitating their elimination [4–7]. Due to the fact that reactions catalyzed by GSTs
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do not compulsorily result in detoxification of a foreign compound, sometimes GSTs are rather
involved in xenobiotic bio-activation, resulting in even more reactive GSH-conjugate than the parent
compound. This is especially true for certain mutagens, carcinogens and even some pro-drugs, which
are metabolically activated in this way [8,9].

The overall functions of this set of cellular proteins (GSTome) may be classified into:
(1) metabolism of xenobiotics and endogenous compounds, including intracellular binding and
transport of hydrophobic compounds [10], catalysis of key steps in the synthesis of leukotrienes,
prostaglandins [11] and steroid hormones [12], as well as the degradation of tyrosine [5],
and inactivation and reduction of oxidative stress by-products [13] and (2) the regulation
of cell signaling (such as protein-protein interactions with mitogen-activated protein kinases
(MAPK)) [6,14–16].

According to their intracellular localization, GSTs are divided into three major families of proteins:
cytosolic, mitochondrial and microsomal [5,17]. Based on their chemical, physical and structural
properties, seven classes are recognized within cytosolic GSTs. Apart from observed variability between
GST classes, a substantial genetic heterogeneity is found within classes, due to gene duplications,
deletions and single nucleotide polymorphisms in both coding and non-coding gene regions [18].
Mentioned genetic variations have a direct impact on GST protein structure, function and expression,
reshaping their substrate specificity and diversity as well, ultimately leading to complete lack or
lowering of enzyme activity [14].

The vast majority of polymorphisms identified within genes encoding for cytosolic GSTs comprise
single nucleotide polymorphisms (SNPs). Indeed, SNP leading to amino acid substitution from
isoleucine (Ile) to valine (Val) [19] changes catalytic and regulatory properties of the GSTP1 enzyme [20],
while GSTA1 polymorphism is represented by three, apparently linked, SNPs: -567TOG, -69COT and
-52GOA. These substitutions result in differential expression with lower transcriptional activation of
the variant GSTA1*B (-567G, -69T, -52A) than common GSTA1*A allele (-567T, -69C, -52G) [21]. Amino
acid substitution of Ala to Asp at position 140, as a result of SNP (C to A) in exon 4 of GSTO1 gene
(GSTO1*Ala140Asp), changes their deglutathionylase and thioltransferase activity [22–24]. Regarding
GSTO2 rs156697 polymorphism, SNP (A to G) leading to Asn to Asp substitution at position 142
(GSTO2*Asn142Asp) may be related to altered protein levels [25,26]. Functional significance of GST
SNPs has recently been highlighted by Hollman et al. who suggested a classification of diseases highly
related to SNPs found in GSTs, including cancers [18]. On the other hand, deletion polymorphisms of
genes encoding for human cytosolic GSTM1 and GSTT1 are rather common in human populations.
Approximately half of the population lacks GSTM1 enzyme activity, due to a homozygous deletion of
the GSTM1 gene [27] while in the case of GSTT1, gene homozygous deletion, with consequential lack
of GSTT1 enzyme activity, is present in approximately 20% of Caucasians [28].

Although GSTs seem to be ubiquitously expressed, the expression of different GST genes may
vary significantly between tissues, giving each organ a unique and complex GST profile [29]. This
inter-individual variability in GST profile further affects the biotransformation capacity of certain
tissue and the potential genotoxicity of certain carcinogens on that tissue. This variability is even
more potentiated in cancer cells [29]. In general, GSTP1 over-expression seems to be a hallmark of
proliferating cells in many solid tumors, including transitional cell carcinoma of urinary bladder [30,31],
renal cell carcinoma [32,33], ovarian cancer [34,35], breast cancer [36,37] and colorectal cancer [38,39].
Regarding other GST classes, increased expression of GSTA1 is confirmed in colorectal cancer [39],
GSTO1-1 is upregulated in transitional cell carcinoma [40], esophageal squamous cell carcinoma [41],
pancreatic cancer [42], and breast cancer [43], while GSTM1 overexpression is observed in transitional
cell carcinoma of urinary bladder [31], renal cell carcinoma [33] and breast cancer [44]. There is some
evidence on differential expression of GSTM class (GSTM2-2 and GSTM4) and GSTP1 in osteosarcoma
and soft tissue sarcoma patients [45–47]. Moreover, GSTs overexpression has also been identified
in chemoresistant cancer cell lines, which has been attributed to induction of its expression during
chemotherapy and a role in inhibiting apoptosis [48,49]. Since classical enzymatic functions of GSTs
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seem to coexist with their regulatory ones, giving them dual functionality, cytosolic GSTs are considered
relevant when it comes to cancer development and progression, but also therapy resistance.

3. Catalytic Role of Glutathione Transferases in Detoxification and/or Bio-Activation of
Anti-Cancer Drugs

Despite the low sequence identity (<10%) amongst GST superfamily members, the tertiary and
quaternary structures are remarkably consistent. All members of the GST superfamily contain an
N-terminal thioredoxin-like fold and α-helical C-terminal region. Dimeric structure enhances protein
stability and provides the active site with proper structure for catalysis. The position of the active site
is well conserved in all catalytically active cytosolic GSTs, but still there are significant differences
between classes (Figure 1) concerning the different reactions that are characteristically catalyzed.
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Figure 1. Glutathione transferases (GST) structure variability among classes: (A) Tertiary structure
of GST enzyme, consisting of “G” domain for glutathione (GSH) binding, and “H” domain for
hydrophobic substrates, adopted from Wu et al. [7], with the permission by Elsevier Ltd (Copyright
2012); (B) Crystal structures of human GSTs, adopted Protein Data Bank.

The active site is subdivided into the G site (within N-terminal domain) for GSH binding and H
site (within C-terminal domain) which binds various hydrophobic and electrophylic substrates [50].
GST Alpha, Mu and Pi classes have accessible and open G-site, while G-site in the Theta and Zeta
class is rather hidden and is not easily accessible to GSH [14]. Diversity of GSTs substrate specificities
is due to different amino acids residues in the H-site of GST isoenzymes. GST Alpha, Mu, Pi and
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Sigma classes possess tyrosine in the active site [50] while GST Theta and Zeta classes possess serine
residue [51,52] and GST Omega class a cysteine residue as a functional group [53].

Being known as enzymes of phase II of xenobiotic metabolism, their main and classic catalytic
role is to conjugate a range of hydrophobic and electrophilic compounds, including many anti-cancer
drugs and carcinogens, with GSH. These water-soluble GSH-conjugates [5] are further exported from
the cell by membrane bound multi-drug resistant protein (MRP) efflux pumps [54] and excreted by
bile or urine. In this way, secondary products of metabolism are detoxified; however, in some cases
it results in formation of product even more toxic then xenobiotic itself. Moreover, GSTs possess
antioxidant activity towards endogenously produced free radicals [14]. Even more, certain GSTs are
able to conjugate the products of lipid peroxidation, such as 4-hydroxynonenal [5]. Interestingly, theta
GST class is known to have a unique sulfatase activity [55]. Besides, some members of GSTs exhibit
several other catalytic functions, such as thiol transferase activity, thiolysis and isomerization. Namely,
GSTA, GSTM, GSTZ and GSTS exhibit isomerization catalytic activity [56,57]. Moreover, GSTA1-1,
GSTA2-2, GSTM1-1 and GSTP1-1 are capable for metabolizing prostaglandins, PGA2 and PGJ2, which
are recognized as inhibitors of cellular proliferation [58]. There is increasing evidence that GSTP class is
also involved in glutathionylation, reversible formation of disulphide bonds between protein cysteinyl
thiol and glutathione [59].

In comparison to other GSTs, omega class (GSTO) has its own range of enzymatic activities,
including thioltransferase, dehydroascorbate reductase (DHAR) and monomethylarsenate reductase
activities [60]. GSTO1-1 has been found to play a previously unappreciated role in the glutathionylation
cycle that is emerging as significant mechanism regulating protein function. Namely, GSTO1-1
deglutathionylates proteins by forming mixed disulfides with GSH. Specific deglutathionylation
by GSTO1-1 leads to the potential on/off regulation of protein function, while the polarity of the
on/off switch is likely to be protein-specific. The capacity of GSTO1-1 to specifically deglutathionylate
proteins [24] appears to be its primary physiological function and suggests a mechanism by which
GSTO1-1 could potentially regulate cellular metabolism and signaling pathways that influence the
growth and survival of cancer cells.

Some of the conventional anti-cancer drugs, such as chlorambucil [29,61–63],
cyclophosphamide [29,63], melphalan [29,62–64], carmustine [29,55,62], cisplatin [65], busulfan [66],
and thiotepa [29,63,67], are also substrates for GSTs and can be directly inactivated through conjugation
reaction with glutathione (Table 1). It seems that alkylating agents are overrepresented among
anti-cancer drugs which are GST substrates, due to the fact that they undergo well established
GST-dependent drug conjugation reactions [68]. However, there are several possible ways in which
GSTs might be responsible for chemoresistance towards anti-cancer drugs which are not known
substrates for GSTs [1].

Table 1. GST polymorphisms influence the drug resistance mechanisms of conventional
anti-cancer drugs.

Anti-Cancer Drug GST Class GST Polymorphism Influencing Drug Response

Detoxification by means of glutathione conjugation

BCNU/Carmustine
Alpha Unknown [64,68]

Mu GSTM1, GSTM3–Unknown [29,68]
Theta GSTT1–Unknown [29,68]

Busulfran Alpha, predominantly GSTA1*B (-567G, -69T, -52A) [66,69]

Brostallicin Alpha, Mu, Pi Unknown [64,68]

Carboplatin Pi, Alpha Unknown [70]

Chlorambucil
Alpha GSTA1*A (-567T, -69C, -52G) [1]

GSTA2-2, point mutations in exon 5 and 7 [29,68]
Pi GSTP1*A (Ile105/Ala114) [61]
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Table 1. Cont.

Anti-Cancer Drug GST Class GST Polymorphism Influencing Drug Response

Detoxification by means of glutathione conjugation

Cisplatin, oxaliplatin Pi, Mu, Theta Controversial [65]

Cyclophosphamide Alpha GSTA1*B (-567G, -69T, -52A) [29,68]
Pi GSTP1*B (Val105/Ala114) [29,68]

Etoposide Pi GSTP1*D (Ile105/Val114) [29,68]

Melphalan Alpha Unknown [63,64,68]
Pi GSTP1*D (Ile105/Val114) [29,68]

Paclitaxel, docetaxel Pi GSTP1*C (Val105/Val114) [29,68]

Thiotepa

Alpha GSTA1*A (-567T, -69C, -52G) [29,68]
Mu Point mutation in exone 7 [29,68]

Pi
GSTP1*A (Ile105/Ala114)

GSTP1 (Ala114Val) [67]

Thiopurines Alpha, Mu Unknown [64,68]

Detoxification by means of redox regulation

Doxorubicin Pi GSTP1, point mutations in exons 5 and 6 [29]
Other anthracyclines Alpha GSTA4–4, Unknown [63]

Other anti-cancer drugs as GST substrates*
Yet to be determined Unknown [68]

* bleomycin, dactinomycin, daunorubicin, fluorouracil, idarubicin, ifosfamid, mitomycin, mitoxantrone, vinblastine,
vincristine, vinorelbine.

Being predominantly overexpressed GST isoenzyme in cancer cells, GSTP1 plays a significant role
in resistance to chemotherapy as confirmed in pre-clinical data from cancer cell lines, but also in cancer
patients [62,71,72]. Namely, its upregulated expression has been related to worse chemotherapeutic
response to anti-cancer drugs such as cisplatin [73] and chlorambucil [74], recognized as GSTP1
substrates. On the other hand, inhibition of GSTP expression, through antisense cDNA, increases the
cancer cell sensitivity to adriamicin, cisplatin, melphalan and etoposide due to decreased detoxification
of mentioned drugs [75]. Besides GSTP1, overexpression of GSTA class has also been associated
with the resistance to various alkylating agents [76] and doxorubicin [77,78]. In this line, GSTA1-1
overexpression seems to weaken the doxorubicin dependent depletion of glutathione, particularly
in the H69 small cell lung cancer cell line, decreasing the extent of lipid peroxidation [78]. GSTM1
isoenzyme also detoxifies certain anti-cancer drugs, mostly including alkylating agents [62]. However,
some other mechanism apart from GSH-conjugation might contribute to chemoresistance development.
Namely, it has been shown that GSTP may influence doxorubicin resistance in tumor cells by the
suppression of doxorubicin conversion to semiquinone free radical and subsequent production of
superoxide anion radicals and peroxides [72,79]. Similarly, chemoresistance to anthracyclines was
observed in cancer cells due to reduction of cellular ROS accomplished by antioxidant activity of both
GSTP and GSTA [24,63].

4. Glutathione Transferases in Regulation of Signaling Pathways Involved in Cell Proliferation
and Cell Death

In addition to their catalytic role, there is some evidence which clearly indicate the involvement
of several GSTs in the regulation of signaling pathways, by means of interactions with members
of the mitogen-activated protein kinase (MAPK) signaling pathway (JNK-c- Jun N-terminal kinase,
ASK- apoptosis signal-regulating kinase, Akt-protein kinase B) and certain receptors [6,15,16,24,80]
(Figure 2).

The GSTP1:JNK1 protein-protein interaction was the first example of GST-mediated MAPK
regulation discovered by Adler et al [81]. By forming this interaction, GSTP1 sequesters the JNK in a
complex, inhibiting its activity and affecting the regulatory pathways that control cell proliferation
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and death [24,82]. Under physiological conditions, basal activity of JNK is essentially maintained at a
low level. However, in response to different stimuli, the GSTP1:JNK1 complex dissociates, which in
turn leads to the association of GSTP1 into oligomers. Now activated, JNK1 induces a chain of events,
starting from the phosphorylation of c-Jun and results in the induction of AP-1-dependent target genes
involved in cell proliferation, DNA repair and cell death [14,81]. Nevertheless, many studies implicate
that the extent of JNK-activation inversely correlates with the expression level of GSTP1 [6]. In the case
of an adaptor signaling protein, tumor necrosis factor receptor-associated factor 2 (TRAF2), a similar
interaction with GSTP1 was observed. Specifically, TRAF2 mediates the signal transduction of different
receptors and is required for the activation of the apoptosis signal- regulating kinase (ASK1) [83,84],
which in turn activates both JNK and p38 signaling pathways. In that way, GSTP1 interaction with
different signaling molecules is regulating the MAPK/JNK signaling cascade at multiple levels. It is
noteworthy to mention that the catalytic activity of GSTP1 is not affected by the involvement in
protein-protein interactions, suggesting that the active site of GTSP1 is not engaged in this process [6].
Overall, these findings can explain why overexpression of GSTP1-1 has extensively been linked with
the resistance to apoptosis and chemoresistant phenotype of different solid cancers, even when certain
anti-cancer drugs are not GSTP1 substrates [85]. Moreover, comparative protein-protein interaction
studies revealed that in the case of common GSTP1 polymorphism, haplotype GSTP1*C (Val105/Val114)
is a better JNK inhibitor, hence with the greater anti-apoptotic effect than the haplotype GSTP1*A
(Ile105/Ala114) [86].

Int. J. Mol. Sci. 2018, 19, x 6 of 21 

 

regulating kinase (ASK1) [83,84], which in turn activates both JNK and p38 signaling pathways. In 
that way, GSTP1 interaction with different signaling molecules is regulating the MAPK/JNK 
signaling cascade at multiple levels. It is noteworthy to mention that the catalytic activity of GSTP1 is 
not affected by the involvement in protein-protein interactions, suggesting that the active site of 
GTSP1 is not engaged in this process [6]. Overall, these findings can explain why overexpression of 
GSTP1-1 has extensively been linked with the resistance to apoptosis and chemoresistant phenotype 
of different solid cancers, even when certain anti-cancer drugs are not GSTP1 substrates [85]. 
Moreover, comparative protein-protein interaction studies revealed that in the case of common 
GSTP1 polymorphism, haplotype GSTP1*C (Val105/Val114) is a better JNK inhibitor, hence with the 
greater anti-apoptotic effect than the haplotype GSTP1*A (Ile105/Ala114) [86]. 

Downstream target proteins

Apoptosis                Proliferation

ASK1

P P

ASK1 ASK1

GSTM1

GSTM1

GSTM1Xenobiotic + GSH

GSH conjugate

Xenobiotic + GSH

GSH conjugate

GSTP1

GSTP1

GSTP1

GSTP1

JNK1

TRAF2

ASK1

TRAF2

TRAF2

P

JNK1
C-jun

JNK1

GSTA1

GSTA1

GSTA1

Downstream 
target proteins

ASK1
TrxT

Xenobiotic + GSH

GSH conjugate

p38

T

Inhibition
Promotion 

C-jun

P P

 

GSTO1

GSTO1

RyR1
Downstream 

target proteins
PYK2

P

SSG

P

SH

Cell proliferation

Cell death and survival signaling molecules
Cytoskeleton proteins
Heat shock proteins

GSTO1

GSTO1

GSTO1

GSTO1

Akt Cell survival

 
Figure 2. Dual functionality of GSTs in cancer: coexistence of catalytic and regulatory roles. 

A. In addition to their catalytic role in detoxification of xenobiotics, GSTs are also involved in the 
regulation of cellular proliferation and apoptosis by the means of protein-protein interactions 
with signaling molecules. Regarding GSTM1, the same region of ASK1 seems to be engaged in 
protein-protein interactions with either GSTM1 or thioredoxin (Trx), suggesting the presence of 
both GSTM1:ASK1 and ASK1:Trx complexes under unstressed conditions. GSTP1 acts as 
negative regulator of JNK1, as well as TRAF2. Moreover, GSTP1:TRAF2 interaction prevents 
ASK1:TRAF2 interaction and, consequently, ASK1 activation. The structural homology between 
GSTA1 and GSTP1 may explain why GSTA1 can also suppress JNK1 signaling by a similar 
mechanism. Various types of cell stress can result in the disassociation of GSTs from the 
signaling molecules. Importantly, redox-sensitive dynamic equilibrium comprises catalytic 
homodimeric forms of GSTs, as well as its monomeric regulatory forms. ASK1—apoptosis 
signal—regulating kinase; JNK1-c-Jun N-terminal kinases; TRAF2—tumor necrosis factor 
receptor-associated factor 2; Trx—thioredoxin; 
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A. In addition to their catalytic role in detoxification of xenobiotics, GSTs are also involved in the
regulation of cellular proliferation and apoptosis by the means of protein-protein interactions
with signaling molecules. Regarding GSTM1, the same region of ASK1 seems to be engaged in



Int. J. Mol. Sci. 2018, 19, 3785 7 of 21

protein-protein interactions with either GSTM1 or thioredoxin (Trx), suggesting the presence
of both GSTM1:ASK1 and ASK1:Trx complexes under unstressed conditions. GSTP1 acts as
negative regulator of JNK1, as well as TRAF2. Moreover, GSTP1:TRAF2 interaction prevents
ASK1:TRAF2 interaction and, consequently, ASK1 activation. The structural homology between
GSTA1 and GSTP1 may explain why GSTA1 can also suppress JNK1 signaling by a similar
mechanism. Various types of cell stress can result in the disassociation of GSTs from the signaling
molecules. Importantly, redox-sensitive dynamic equilibrium comprises catalytic homodimeric
forms of GSTs, as well as its monomeric regulatory forms. ASK1—apoptosis signal—regulating
kinase; JNK1-c-Jun N-terminal kinases; TRAF2—tumor necrosis factor receptor-associated factor
2; Trx—thioredoxin;

B. GSTO1-1 deglutathionylates some cell death and survival signaling molecules, cytoskeleton
and heat shock proteins by forming mixed disulfides with GSH. Specific deglutathionylation
by GSTO1-1 leads to the potential protein-specific regulation of protein function. GSTO1-1 also
interacts with the ryanodine receptor, RyR1 and promotes calcium release from the endoplasmic
reticulum. Increased cytosolic calcium levels activate PYK2 leading to cell proliferation. GSTO1-1
interaction with Akt influences cell survival signaling pathways. RyR1—ryanodine receptor
type 1; PYK2—proline-rich tyrosine kinase 2; Akt—protein kinase B.

GSTA1 also possesses the capacity of forming protein-protein complexes with JNK1, but it showed
weaker JNK inhibitory activity. Namely, the homology between GSTA and GSTP family members
may explain why GSTA1 can also suppress JNK1 signaling by a similar mechanism, caused by
inflammatory cytokines or oxidative stress. Furthermore, it seems that enhanced GSTA1-1 expression
significantly decreases the number of cells subjected to apoptosis due to inhibition of JNK1-dependent
phosphorylation of c-jun and the activation of caspase 3 [87].

Complex between MAPK member, ASK1 and GSTM1, is found to be important for the
maintenance of the normal level of p38 phosphorylation [88]. Namely, ASK1 belongs to upstream
activator of JNK1 and p38 pathways, leading to cytokine and stress-induced apoptosis [89].
Environmental stress causes the disruption of GSTM1:ASK1 protein-protein interaction, leading
to ASK1 activation, while GSTM1 accumulates into oligomers [90]. This dissociation results in
a subsequent activation of JNK1 and p38-dependent signaling pathways, ultimately leading to
stress-induced apoptosis. Indeed, in tumor tissue of clear cell renal cell carcinoma, ASK1 was
co-immunoprecipitated with GSTM1 [91]. Similarly to GSTP1, this role of GSTM1 is shown to be
independent of the GST enzyme activity [88].

It seems that several GSTs, such as GSTO1-1, GSTA1-1 and GSTM2-2 can modulate activity of
ryanodine receptors (RyRs) (Figure 1B). The role of RyRs, a class of ligand-gated Ca2+ channels,
is to release Ca2+ from intracellular stores in response to a range of intracellular and external
stimuli [14]. Recently, signaling events involving interaction of GSTO1 with type 1 ryanodine
receptor, RyR1 has been implicated in a signaling pathway that stimulates cancer stem cell enrichment
during chemotherapy. Lu et al. reported increased GSTO1 expression in a HIF-dependent manner
after exposure of breast cancer cells to chemotherapy. Consequently, GSTO1 activates RYR1,
leading to activation of PYK2/SRC/STAT3 signaling [43]. In transitional cell carcinoma, GSTO1
co-immunoprecipitated with GSTP1, Akt and ASK1 [40]. Moreover, GSTO1-1 has been identified as a
crucial protein in the Toll-like receptor 4 (TLR4)-mediated pro-inflammatory pathway, such that its
inhibition results in the relief of lipopolysaccharide (LPS)-stimulated inflammatory response.

In conclusion, certain GSTs act as ligands or modulators of signaling kinases like JNK, ASK1, Akt,
or receptors, RyRs and epidermal growth factor receptor (EGFR) [43,49,64,82,88]. Having in mind that
a malignant phenotype is frequently followed by deregulated cell proliferation, through interaction
with various signaling molecules, GSTs might also affect drug-resistance. Therefore, overexpressed
GSTs act as caretakers, enabling cancer cells to develop resistance to anti-cancer drugs.
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5. The Role of Glutathione Transferases in Chemoresistance: Potential Targets for Anti-Cancer
Agents

Apart from pure contribution in the development of chemoresistance due to their conjugating
activity, GSTs seem to interact with efflux transporters, in that way increasing anti-cancer drug efflux
from the cell, another mechanism associated with the development of chemoresistance (reviewed
in [1]). Indeed, synergistic interaction between GSTP1 and MRP-1 is shown to contribute to the
development of resistance to ethacrynic acid, chlorambucil, vincristine and etoposide [1,92]. Similarly,
GSTA1 contributes to chlorambucil chemoresistance [93], while through synergism of GSTM1 and
MRP-1 cancer cells are protected from vincristine [94]. Therefore, catalytic, regulatory and synergistic
roles of overexpressed GSTs might be considered as important contributing factors in at least three
major chemoresistance mechanisms.

Since reversal of drug resistance may be, at least partially, achieved by molecules capable
of inhibiting GSTs, a significant number of GST inhibitors have been synthesized, while certain
natural inhibitors were also identified and investigated [1,80,95–98]. The majority of these molecules
are either GST substrate or GSH analogues or mechanism-based inhibitors, therefore leading to
enzyme inhibition in different ways. Taking advantage of the overexpression of specific GSTs in
different cancers enables an efficient accumulation and/or activation of anti-cancer drug within the
cancer cell. Indeed, for this reason GSTs are suitable as biomarkers for combination therapies with
distinct GST inhibitors and for the development of novel anti-cancer drugs with targeted selectivity.
Previously recognized as GST substrate, ethacrynic acid (EA) and its analogues were among the
first investigated GST inhibitors [99,100]. They are shown to sensitize tumor cells to cytotoxic
effects of alkylating agents; however, they also seem to exhibit significant side effects [6,101–103].
More promising results were obtained with ethacraplatin, a molecule of cisplatin coordinated with two
EA ligands, and ethacraplatin-containing micelles (M-EA-Pt), shown to revert resistance to platinum
based drugs in both GSTP1 and GSTT1 overexpression cells [104,105] Another compound enabling cells
to overcome resistance to platinum based drugs, shown to inhibit GSTP1 enzyme activity, is auranofin,
a gold-phosphine compound [106].

Glutathione analogs are also among GST targeting anti-cancer agents (Table 2). Indeed,
different peptidase-stable GSH analogues were synthesized and tested as GSTA1, GSTM1 and
GSTP1 competitive inhibitors [107–109]. The GSH-peptidomimetic that draws most attention is
γ-glutamyl cysteinyl phenyl glycyl diethyl ester or TER199, also known as TLK199, a selective
inhibitor of glutathione transferase P1-1. It acts on MAPK signaling pathway by disrupting JNK:GSTP1
protein-protein interaction, hence activating the kinase cascade [110]. Furthermore, TLK199 has been
shown to potentiate the effect of various anti-cancer drugs since it also acts as an inhibitor of MDR-1,
in that way more specifically affecting resistance to a range of anti-cancer drugs transported by this
efflux transporter [29,111].

Another molecule able to disrupt GSTP1 protein-protein interaction with both JNK and TRAF2, is
6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol or NBDHEX [112]. This molecule is also considered
a highly efficient GST suicide inhibitor, due to its ability to bind in the substrate binding site
(H-site) of GSTP1 and form a complex with GSH (bound in G-site), in that way inhibiting GSTP1
enzyme activity. However, lack of specificity for GSTP1 due to higher affinity for GSTM2-2, limited
its clinical application, leading to synthesis of NBDHEX analogues with improved selectivity for
GSTP1 [45,46,113–115].

In the past few years, a diverse array of small molecules has been reported as GSTO1-1 inhibitors,
many of them that had been developed without apparent knowledge of GSTO1-1 activity. Specifically,
this class of GSTs possesses a functional cysteine residue in the catalytic center and for that reason
renders more sensitive to generic thiol-alkylating agents [60,116]. Using novel screening techniques,
Cravatt and associates identified a class of highly specific α-chloroacetamide inhibitors of GSTO1-1
that react irreversibly with cysteine in the active-site (e.g., ML175 and KT53) [117,118] Moreover,
the observation that ML175, a specific GSTO1-1 inhibitor can inhibit LPS-stimulated inflammatory
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signaling, enables a novel approach in the development of anti-inflammatory drugs [119]. Another class
of α-chloroacetamide compounds has been synthesized by Ramkumar and colleagues, among which
C1-27 is recognized as the most potent GSTO1-1 inhibitor showing promising antitumor activity in
both in vitro and in vivo models of colorectal cancer, without gross systemic toxicities [120]. Apoptotic
cell selectivity, attributed to increased cell permeability during apoptosis, is observed for a small
peptide sulfonate ester (NJP2) that irreversibly inhibits GSTO1-1 [121].

Table 2. GST inhibitors and pro-drugs with clinical perspective.

GST Inhibitors
and Pro-Drugs Mechanism Clinical Perspective Structure

Ethacraplatin—
containing

micelles

enhances the
accumulation of active
cisplatin in GSTP1 and
GSTT1 overexpressing

cancer cells by inhibiting
the activity of GSTs and

circumventing
deactivation of cisplatin

with FDA-approved
adjuvant, 1,2-distearoylsn-

glycero-3-
phosphoethanolamine-N-
[methoxy(polyethylene

glycol)-2000]
(DSPE-PEG2000)
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Interestingly, α-tocopherol (vitamin E), including several esterified tocopherols, such as
(+)-α-tocopherol phosphate and (+)-α-tocopherol succinate are also potent inhibitors of both
GSTP1-1 [126] and GSTO1-1 [127]. Among them, alpha tocopheryl succinate (α-TOS) is the most
effective form of vitamin E analogues, affecting cancer cell death. Indeed, treatment with α-TOS
shows promising results due to selective induction of apoptosis by mitochondrial destabilization [128].
It seems that the proton pump inhibitor omeprazole, used in treatment of gastroesophageal reflux and
peptic ulcers, as well as, rifampicin, antibiotic that acts through inhibition of bacterial DNA-dependent
RNA polymerase, also act as GSTO1-1 inhibitors [129–131]. What is more, in vivo experiments showed
that oral pretreatment with omeprazole induces solid tumors sensitivity to chemotherapeutics [132].
It is important to note that these drugs are much less potent as inhibitors towards GSTO1-1, than the
therapeutically relevant target. To date, most of the aforementioned compounds are still in need of
substantial optimization before acquiring the qualities required for clinical trials.

Several natural products, such as aloe-emodin (anthraquinone from aloe vera leaves), benastatins
(Aromatic polyketides from culture broths of Streptomyces species), certain flavonoids, plant
polyphenols and alkaloids (e.g., piperlongumine from Piper species) have also been recognized as GST
competitive inhibitors, some of them even being able to disrupt GSTP1:JNK complex [29,133–135].
Indeed, it seems that certain dietary agents are able to affect GSTP1 expression and epigenetic
regulation. Namely, it has been shown that epigallocatechin-3-gallate, a polyphenol from green
tea, can reverse epigenetically silenced GSTP1 gene in prostate cancer, while organosulfur compounds
(e.g., garlic allyl sulfides) and sulforaphane rich cruciferous vegetables are able to increase expression
and modulate activity of GSTP1 [136–139]. In this line, even compounds that act as histone deacetylase
inhibitors are important for epigenetic regulation of GSTP1, since they are able to affect DNA
hypermethylation in the promoter region of GSTP1 gene and in that way induce transcription of
GSTP1 gene [140]. Regarding GSTO1-1, carnosic acid, a bio-active compound isolated from the herb
Rosemary [80] and protoapigenone, a novel floavonoide isolated from Thelypteris torresiana [98] act
as inhibitors.

The catalytic properties of GSTs might be exploited in a different manner when it comes to
chemotherapeutics. Namely, there is a whole class of inactive cytotoxic agents named pro-drugs, which
are converted into active drugs, or bio-activated, due to chemical modifications in enzyme catalyzed
reactions [141]. The main role of these pro-drugs is to increase availability of anti-cancer drugs in
target cells, while avoiding side effects in off-target ones. In other words, being highly selective in
terms of izoenzymes that activate them, pro-drugs may accumulate in cancers cells with upregulated
expression of that specific GST isoenzyme [1,97,142]. For that reason, pro-drugs with either GSH or
GSH analogues and those whose activation demands GSH-conjugate intermediary compound are
synthesized [143].

Among the first synthesized pro-drugs is a nitric oxide (NO) pro-drug
[O2-{2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl}1-(N,N-dimethylamino)diazen-1-ium-1,2-
diolate) or PABA/NO, designed to release NO more readily when catabolyzed by GSTP1-1 in
comparison to other GST isoenzymes [144,145]. Since NO present in high concentrations induces
differentiation and apoptosis in cancer cells, a significant number of novel NO pro-drugs is being
synthesized and investigated in vitro and in vivo [146,147]. One of NO pro-drugs shown to be efficient
in solid tumors is another O2-(2,4-dinitrophenyl)diazeniumdiolates derivative named JS-K, which acts
either by binding to GSTP1 with consequential release of high concentrations of NO or it binds to GST
with previously bound GSH, decreasing its intracellular availability for detoxification reactions [148].

A pro-drug which has already reached phase III clinical trials is a modified glutathione analogue
and nitrogen mustard pro-drug, TLK286 or canfosfamide. It is bio-activated by GSTP1-1 into alkylating
metabolite capable of covalently binding DNA [143,149–151]. A great advantage of this promising
GSTP-pro-drug is the fact that, either applied alone or in combination with conventional anti-cancer
drugs, it shows no overlapping toxicity, no cross-drug resistance, and even has synergistic effect and
last, but not least, it is well tolerated [1,142,152,153]. Another DNA binding drug that is also tested in
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clinical setting (phase II) is brostallicin [154–156]. Interestingly, this pro-drug is activated in reactions
catalyzed by GSTP, but also GSTM, potentially enabling its application in tumors overexpressing either
of the mentioned GST classes.

A specific pro-drug has been identified even for cancer cells with upregulated GSTA1-1 expression.
Namely, synthetic bombesin-sulphonamide derivatives are able to recognize bombesin receptor
on cancer cell thus increasing drug uptake, which, once in the cell, undergoes GSTA1-1 catalyzed
modification into GST competitive inhibitor [157].

Surprisingly, even metformin analogues are considered as GST pro-drugs. This drug, which is
originally used in diabetes mellitus treatment, also exhibits certain anti-cancer effects [158] and is
therefore considered a potential candidate in cancer treatment. Due to GST overrepression in cancer
cells, few sulfonamide pro-drugs were synthesized, aiming GST catalyzed GSH-mediated amine
formation form sulphonamide bonds [141,159,160].

The latest approach to treatment of solid tumors is development of pro-drugs that are derivatives
of conventional anti-cancer drugs, such as doxorubicin (DOX). By incorporating sulfonamide moiety
into existing anti-cancer drugs it becomes a pro-drug which, after being catalyzed by GSTs, releases
the cytotoxic compound. In that way, a cytotoxic drug is released in high concentrations in cancer
cells with upregulated GST expression, while cells with normal GST expression remain protected
from afore mentioned cytotoxic effect [161]. Among these, 4-acetyl-2-nitro-benzenesulfonyl etoposide
(ANS–etoposide) and 4-acetyl-2-nitro-benzenesulfonyl doxorubicin (ANS–DOX), function as pro-drugs
for GSTA1. The more reactive 2,4-dinitrobenzenesulfonyl doxorubicin (DNS–DOX) showed preference
for GSTP1 overexpressing cells. Additionally, these pro-drugs are even considered a shuttle system for
DOX, and able to overcome resistance [161].

6. Conclusions

One of the major problems in conventional cancer therapy is the inability to selectively target
cancer cells and to avoid side effects and chemoresistance to applied anti-cancer drug. Another
important principle that needs to be respected is compliance with the novel approach in precision
medicine, that the specific drug should be given in the specific dose to the specific patient. Glutathione
transferases are responsible for both detoxification of numerous conventional chemotherapeutics,
but also involved in regulation of cell proliferation and apoptosis. Due to their dual functionality and
upregulated expression in various solid tumors they seem suitable for the development of novel drugs.
Even more, different cancer cell types have a unique GST signature, enabling targeted selectivity for
isoenzyme specific inhibitors and pro-drugs. The importance of GSTs substrate promiscuity was even
contemplated based on the classical Greek aphorism “The fox knows many things, but the hedgehog
knows one great thing” [162]. Namely, instead of being “hedgehogs” and able to catalyze only one
reaction, GST are undoubtedly “foxes”, able to catalyze biotransformation of numerous substrates,
including novel compounds with potential therapeutic efficacy.
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Abbreviations

Akt protein kinase B
ANS–etoposide 4-acetyl-2-nitro-benzenesulfonyl etoposide
ANS–DOX 4-acetyl-2-nitro-benzenesulfonyl doxorubicin
ASK1 apoptosis signal- regulating kinase
DHAR dehydroascorbate reductase
DNS–DOX 2,4-dinitrobenzenesulfonyl doxorubicin
DOX doxorubicin
EA ethacrynic acid
EGFR Epidermal growth factor receptor
GSH glutathione
GST glutathione transferases
GSTA GST Alpha class
GSTM GST Mu class
GSTO GST Omega class
GSTP GST Pi class
GSTS GST Sigma class
GSTT GST Theta class
GSTZ GST Zeta class
JNK c-Jun N-terminal kinases
JS-K O2-(2,4-dinitrophenyl)diazeniumdiolates derivative
LPS lipopolysaccharide
MAPK mitogen-activated protein kinases
M-EA-Pt ethacraplatin-containing micelles
MRP multi-drug resistant protein
NBDHEX 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio) hexanol
NO Nitric oxide
PABA/NO [O2-{2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl}1-(N,N-dimethylamino)diazen-1-ium-

1,2-diolate)
PG prostaglandins
RyRs ryanodine receptors
SNPs single nucleotide polymorphisms
TER199 γ-glutamyl cysteinyl phenyl glycyl diethyl ester or TLK199
TLK286 canfosfamide
TLR4 Toll-like receptor 4
TRAF2 tumor necrosis factor receptor-associated factor 2
Trx thioredoxin
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