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ABSTRACT

Cardiovascular disease is a serious threat to human health, and early risk prediction of major 
adverse cardiovascular event in people suspected of coronary heart disease can help guide 
prevention and clinical decisions. Coronary computed tomography (CT) is a useful imaging 
tool for evaluation of coronary heart disease, and its ability to reflect coronary atherosclerosis 
shows potential value for risk prediction. In recent years, various new techniques and studies 
of coronary CT have emerged for risk prediction of major adverse cardiovascular event in 
people suspected of coronary heart disease. We will review the background and current study 
advances of using coronary artery calcium score, coronary CT angiography, and artificial 
intelligence in this field.
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INTRODUCTION

Cardiovascular disease, which mainly includes coronary heart disease (CHD) and stroke, 
is the leading cause of death worldwide.1) Several clinical guidelines and expert consensus 
recommend risk assessment of major adverse cardiovascular event (MACE) in people 
suspected of CHD to guide primary prevention and clinical decisions through risk 
stratification. Coronary computed tomography (CT) is a widely used noninvasive imaging 
tool for evaluation and management of CHD in clinical practice, serving as a “gatekeeper” 
before invasive coronary angiography (ICA). In recent years, in addition to traditional 
risk factors, advances in the studies of coronary artery calcification score (CACS) and the 
anatomical and functional parameters of coronary CT angiography (CCTA) have provided 
new potential value for risk prediction of MACE. We will review the research background 
and current advances of CACS and CCTA anatomical and functional studies, as well as the 
application of artificial intelligence (AI) in this field (Table 1).
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CACS

CACS is a widely used and studied imaging marker that correlates with overall coronary 
atherosclerosis burden and is an independent predictor of risk of MACE.2) The CT 
quantification methods of coronary artery calcification are the Agatston score, volume score, 
and mass score. The most commonly used method is the Agatston score, which calculates the 
overall score of all calcified lesions on the coronary arteries. The Agatston score is derived by 
multiplying the calcified area by an assigned value based on the density of the calcified lesion (> 
130 hounsfield unit [HU]), which is obtained commonly from CT plain scan images (Figure 1).

CACS has been validated to have predictive value for MACE. In the Multi-Ethnic Study of 
Atherosclerosis, Budoff et al.2) found that CACS had a strong gradient association with 10-year 
risk of incident atherosclerotic cardiovascular disease (ASCVD) events independent of standard 
risk factors. Furthermore, the rates of events were less than 5% in those with CACS = 0, over 
7.5% in those with CACS ≥ 100, and increased with CACS category regardless of age, gender, 
and ethnicity. The investigators also estimated a 14% relative increase in risk of events for each 
doubling of CACS. A meta-analysis3) including 34,041 patients from 19 observational studies 
demonstrated that increased levels of CACS were significantly and independently associated 
with increased risk of MACE among stable and symptomatic patients suspected of CHD. In 
addition to the traditional risk factors, adding CACS to the risk prediction model can improve 
the predictive power and optimize risk stratification of the target population.4)5) In particular, 
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Table 1. Individual study breakdown of MACE prediction
Study 
type

Author Year Follow-
up time 

(median, 
yrs)

Population No. of 
participants

MACE
Total 
(%)

Cardiovascular 
death

Non-
fatal MI

Stroke Unstable 
angina

Hospitalization 
for heart 

failure

Revascularization 
(> 90 days)

CAC Budoff et al.2) 2018 11.1 Free of clinical 
cardiovascular disease

6,814 500 
(7.3)

95 217 188 NR NR NR

Kavousi et 
al.7),*

2016 7.0–11.6 Women with 10-year 
ASCVD risk lower than 
7.5%

6,739 165 
(2.4)

29 64 72 NR NR NR

Stenosis Bittner et al.23) 2019 2.1 Stable outpatients with 
chest pain

3,840 91  
(2.4)

29 16 NR 46 NR NR

Plaque Yoon et al.27) 2020 4.0 Stroke patients without 
previous cardiac 
disease or chest pain

1,418 108 
(7.6)

34 17 NR 12 11 34

Feuchtner et 
al.29)

2017 7.8 Unknown CAD and low-
to-intermediate PTP

1,469 41  
(2.8)

7 32 NR 2 NR NR

Nadjiri et al.30) 2016 5.7 Suspected CAD 1,168 46 
(3.9)†

6 9 NR 3 NR 36

Ferencik et 
al.31)

2018 2.1 Stable symptomatic 
outpatients without 
known CAD

4,415 102 
(2.3)

31 24 NR 47 NR NR

Senoner et 
al.32)

2020 10.6 Unknown CAD and 
low-to-intermediate 
ASCVD risk

1,430 57  
(3.9)

25 32 NR NR NR NR

CT-score Suh et al.42) 2015 3.8 Suspected CAD 339 30 
(8.8)†

9 1 NR 6 NR 19

CTP Nakamura et 
al.49)

2018 2.5 Suspected CAD 332 19  
(5.7)

2 3 NR 7 7 NR

CT-FFR Ihdayhid et 
al.51)

2019 4.7 Suspected CAD 206 20 
(9.7)†

NR 3 NR NR NR 19‡

ASCVD: atherosclerotic cardiovascular disease, CAC: coronary artery calcium, CAD: coronary artery disease, CT: computed tomography, CT-FFR: computed 
tomography-derived fractional flow reserve, CTP: computed tomography perfusion, MACE: major adverse cardiovascular event, MI: myocardial infarction, NR: 
not reported, PTP: pre-test probability.
*Represents a meta-analysis study; †Some patients had both late revascularization and another endpoint; ‡The definition of unplanned revascularization in this 
study is any subsequent revascularization occurring at a minimum of 6 weeks after index invasive coronary angiography.



CACS = 0 had a strong negative predictive value and significantly downward-shifted the risk 
stratification of cardiovascular disease events.6) A meta-analysis7) showed that CACS = 0 was 
associated with a decreased risk of incident ASCVD among women at low ASCVD risk and 
modestly improved prognostic accuracy compared with traditional risk factors. In the Heinz 
Nixdorf Recall study, Lehmann et al.8) demonstrated that progression of CACS was associated 
with coronary and cardiovascular events. In the study, after re-scanning for CACS at an average 
of 5.1 years after baseline scan, participants with double-zero CACS had a lower risk of events 
compared with those with incident coronary artery calcification. When CACS progressed from 
1–399 to ≥ 400, risk of coronary and total cardiovascular events was nearly two-fold higher 
compared with those whose CACS values remained < 400. Based on extensive studies on the 
prediction value of CACS for MACE, 2019 American College of Cardiology/American Heart 
Association Guidelines on the Primary Prevention of Cardiovascular Disease referred to CACS 
as a Class IIa recommendation in adults at intermediate risk (≥ 7.5% to < 20% 10-year ASCVD 
risk) or select adults at borderline risk (5% to < 7.5% 10-year ASCVD risk) to guide the clinician-
patient risk discussion.9)

In addition, as a proven independent predictor of MACE, CACS can guide primary 
prevention. A systematic review and meta-analysis by Gupta et al.10) showed that initiation 
or continuation of pharmacological and lifestyle therapies was higher in individuals with 
nonzero CACS than in those with CACS = 0 for prevention of cardiovascular disease. Also, 
some studies demonstrated that CACS had value for allocation of aspirin and guidance of 
therapeutic decisions of antihypertension treatment in certain populations.11)12) It is beneficial 
to develop tools including CACS and clinical risk factors to guide primary prevention for 
reducing CHD and MACE.

Approximately 30 years have passed since Agatston first proposed the concept of CACS. 
Although CACS, mainly represented by the Agatston score, has been validated widely and 
used in practice, the discussion of CACS continues. Increase of coronary artery calcification 
density is considered the manifestation of the late stage of coronary artery atherosclerotic 
plaque development toward stabilization, which is reflected in the increased value on 
coronary CT. However, the Agatston score increases with increase in calcification density, 
which seems inconsistent with the pathophysiological progression of coronary artery 
atherosclerosis plaques from an unstable stage to a stable stage. It has been shown that 
coronary artery calcification density was associated negatively with risk of MACE at all levels 
of coronary artery calcification volume.13) In particular, the 1K plaque (CT attenuation > 1,000 
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Figure 1. CACS calculation. The patient had 2 calcified lesions in the RCA, and the Agatston score was 342.1. Also 
visible are the results of volume score and mass score. 
CACS: coronary artery calcification score, CX: circumflex, LAD: left anterior descending; LM: left main, RCA: right 
coronary artery.



HU) was associated with lower risk of future acute coronary syndrome,14) which suggests 
that the effect of density in evaluating coronary artery calcification should be considered. In 
addition, the regional distribution of coronary artery calcification, such as being “diffuse” 
and located in the left main coronary artery, was associated with risk of MACE.15)16) Therefore, 
the Agatston score can be used to construct a new CACS system integrated with calcification 
density, volume, distribution, and vulnerable plaque characteristics to better reflect the 
overall coronary artery plaque burden and to further improve the predictive ability.

CCTA ANATOMICAL ANALYSIS

Luminal stenosis
Coronary artery luminal stenosis is a strong predictor of risk of MACE, and it is the primary 
basis for defining obstructive CHD on CCTA and for clinical decisions on primary prevention 
and further treatment strategies. The evaluation of coronary artery luminal stenosis includes 
severity, extent, and location of stenosis. Early studies showed that number of vessels with ≥ 50% 
and ≥ 70% stenosis as well as left main and proximal left anterior descending artery stenosis 
were predictors of all-cause mortality in patients with chest pain (all p < 0.0001).17) However, risk 
stratification of the target population based simply on location or severity of a single stenosis 
cannot satisfy subsequent clinical needs, so many researchers have proposed more refined 
categories considering the severity and distribution of coronary artery luminal stenosis.

In the Prospective Multicenter Imaging Study for Evaluation of Chest Pain, Hoffmann et 
al.18) categorized patients with stable chest pain according to CCTA as severely abnormal (≥ 
70% stenosis in 2 major vessels or ≥ 50% left main stenosis or ≥ 70% proximal left anterior 
descending stenosis), moderately abnormal (≥ 70% stenosis in 1 major vessel), mildly 
abnormal (1%–69% stenosis in any major vessel or < 50% left main stenosis), or normal 
(absence of coronary atherosclerosis). The MACE rates (including cardiovascular death, 
myocardial infarction, and unstable angina) for severely abnormal, moderately abnormal, 
mildly abnormal, and normal were 9.77%, 6.72%, 2.32%, and 0.53%, respectively, and the 
respective hazard ratios (HRs) were 17.26, 12.03, and 4.08. Notably, about 52% of the patients 
in the study who suffered a MACE were mildly abnormal on baseline CCTA. One of the 
advantages of CCTA over functional tests is early detection of coronary artery atherosclerotic 
lesions in the nonobstructive CHD stage, providing the possibility of early risk stratification 
for the target population by CCTA. In addition, segment involvement score (SIS) and 
segment stenosis score (SSS), which are based on the severity and distribution of coronary 
artery luminal stenosis, can reflect the overall burden of coronary artery plaque burden on 
individuals and provide predictive value for all-cause mortality or MACE in people suspected 
of CHD.17)19-21) SIS is the number of segments with plaque (0–16 points). SSS is based on the 
severity of stenosis in each of the 16 coronary artery segments, with normal, mild, moderate, 
and severe stenosis assigned a score of 0–3, and the scores across the 16 segments being 
summed (0–48 points).17) To facilitate and standardize reporting of CHD on CCTA, the 
Society of Cardiovascular Computed Tomography, the American College of Radiology, and 
the North American Society for Cardiovascular Imaging established the Coronary Artery 
Disease Reporting and Data System (CAD-RADS) in 201622) (Figure 2). CAD-RADS provided 
higher discrimination than traditional stenosis-based assessments and added incremental 
prognostic value beyond ASCVD risk score and CACS.23) In addition to prediction of MACE by 
CCTA baseline scan, dynamic observation of progression of coronary artery luminal stenosis 
by repeat CCTA also provided prognostic value. A retrospective study by Gu et al.24) showed 
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that patients with progressive coronary artery stenosis had a significantly higher incidence 
of MACE than those without (all p < 0.05), and coronary artery luminal stenosis was an 
independent predictor of MACE (HR, 4.327; p < 0.001).

Whether coronary artery luminal stenosis is an independent predictor of MACE was 
investigated by Mortensen et al.25) in Denmark. Analyzing the results after a median of 4.3 
years of follow-up for 23,759 symptomatic patients, they found that the events rate positively 
correlated with CACS and number of vessels with obstructive disease. However, when they 
further stratified CACS into 5 groups, patients with obstructive CHD did not show a higher 
risk of events compared to those with nonobstructive CHD in most subgroups. The results of 
this study suggested that coronary artery plaque burden, as represented by CACS in this study, 
is a better predictor of adverse events than is luminal stenosis; in other words, nonobstructive 
CHD patients with comparable plaque burden have a similar risk of adverse events to those 
with obstructive CHD. Thus, the mechanisms behind coronary artery luminal stenosis and its 
predictive value for risk of MACE deserve further research, and the existing paradigm of CHD 
risk might be challenged. Furthermore, additional sub-population studies are needed.

Plaque characteristics
With the development of CT software and hardware technology, the imaging quality of CCTA 
has improved, and CCTA can now not only assess coronary artery luminal stenosis, but also 
observe and quantitatively analyze characteristics of coronary artery atherosclerotic plaque 
(Figure 3). Tesche et al.26) retrospectively evaluated some quantitative markers derived from 
CCTA and found that MACE-related lesions had higher median total plaque volume, non-
calcified plaque volume, and plaque burden; greater lesion length; and a higher prevalence 
of napkin-ring sign (all p < 0.05). In addition, plaque burden (plaque burden = [plaque area/
vessel area] × 100%) had predictive value for MACE both on a per-patient level (p = 0.0002) 
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A B

C D

LAD LAD

Figure 2. CAD-RADS 4A. The patient was a 38-year-old male with precordial distress for 2 weeks. CCTA showed 
a focal non-calcified plaque in the proximal LAD (arrow) with 70%–99% diameter stenosis; (A) Curved planar 
reformation, (B) maximum intensity projection, (C) volume rendering. The left main, LCX, and RCA were 
unremarkable. Invasive coronary angiography confirmed 70%–99% stenosis in the proximal LAD (arrow) (D). 
CAD-RADS: Coronary Artery Disease Reporting and Data System, CCTA: coronary computed tomography 
angiography, LAD: left anterior descending artery, LCX: left circumflex artery, RCA: right coronary artery.



and on a per-lesion level (p = 0.018). Yoon et al.27) further demonstrated that combining 
plaque type (high-risk, non-calcified, mixed, or calcified plaques) with the existing prediction 
model significantly improved reclassification and discrimination of the model.

At the same time, the concept of “vulnerable plaque” or “high-risk plaque” has come to the 
forefront with advances in CHD pathology and medical imaging (especially intracoronary 
imaging). Vulnerable plaques are prone to rupture or erosion leading to vascular thrombosis 
and can trigger acute coronary artery events, which are pathologically characterized by a large 
necrotic or lipid core, thin fibrous cap, macrophage infiltration, etc. On CCTA, vulnerable 
plaque characteristics include low-attenuation plaque, positive remodeling, napkin-ring 
sign, and spotty calcium pattern of calcification (Figure 4). Previous studies respectively 
showed that low-attenuation plaque, napkin-ring sign, and positive remodeling were 
predictors of MACE28-32) and can have potential value for further risk stratification in people 
with nonobstructive CHD.31)33) However, attempts to predict MACE by identifying a single 
vulnerable plaque through intracoronary imaging have been controversial.34)35) In addition to 
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Figure 3. Plaque composition analysis. Yellow represents the calcified component of the plaque. Green represents 
the fibrotic component of the plaque. Blue represents the lipid-rich component of the plaque (not shown).

A B

LAD

< 30 HU

Figure 4. Vulnerable plaque. The patient was a 55-year-old female with chest distress and dyspnea for one month. 
CCTA showed a vulnerable plaque in the proximal LAD with positive remodeling (A) and low-attenuation plaque (B). 
CCTA: coronary computed tomography angiography, LAD: left anterior descending artery.



plaque rupture and erosion, the occurrence of acute coronary artery events is accompanied 
by a series of complex processes such as thrombosis and activation of the fibrinolytic system, 
plaque healing, etc. The rupture or erosion of a single vulnerable plaque does not necessarily 
lead to an acute coronary artery event, and plaque rupture and healing were common in 
the coronary arteries of both patients with stable angina and patients with acute coronary 
syndrome.36) A study by Motoyama et al.37) showed that, although CCTA-verified high-risk 
plaque (positive remodeling with remodeling index ≥ 1.1), low-attenuation plaque (≤ 30 HU), 
and plaque progression were predictors of acute coronary syndrome, the cumulative number 
of patients who developed acute coronary syndromes among those with high-risk plaques 
was similar to that of those without high-risk plaques. In this study, the transformation 
between high-risk plaque and non-high-risk plaque was detected by short-interval serial 
CCTA. Therefore, one of the advantages of CCTA over intracoronary imaging techniques 
such as optical coherence tomography and intravascular ultrasound is the ability to evaluate 
atherosclerosis of the coronary artery tree on an overall level, and CCTA also provides semi-
quantitative or quantitative measures of plaque characteristics and overall plaque burden, 
allowing for systematic evaluation of obstructive or nonobstructive CHD to predict the risk 
of MACE. For example, a study from the multicenter Scottish Computed Tomography of the 
HEART trial38) showed that low-attenuation plaque burden detected by CCTA was the strongest 
predictor of fatal or nonfatal myocardial infarction, independent of clinical cardiovascular risk 
score, CACS, and coronary artery area stenosis. In addition, patients with low-attenuation 
plaque burden > 4% were nearly 5 times more likely to have myocardial infarction (HR, 4.65; 
95% confidence interval [CI], 2.06–10.5; p < 0.001). It further demonstrated the predictive 
value of CCTA for combined evaluation of plaque characteristics and plaque burden.

Comprehensive score of coronary CT parameters
According to the large number of studies on the predictive value of coronary CT in evaluating 
luminal stenosis and plaque for risk prediction of MACE, various scoring systems combining 
coronary CT parameters have emerged. For example, the computed tomography-adapted 
Leaman score (CT_LeSc) is a CT scoring system that integrates the location and severity 
of coronary artery luminal stenosis with plaque composition to better reflect individual 
atherosclerotic plaque burden, which was shown to be a long-term independent predictor of 
hard cardiac events (cardiac death and nonfatal myocardial infarction). Event-free survival in 
nonobstructive CHD patients with high CT_LeSc (78.6%) was similar to that in obstructive 
CHD patients with high CT_LeSc (76.5%).39) In addition, the COronary CT Angiography 
EvaluatioN For Clinical Outcomes: An InteRnational Multicenter (CONFIRM) study 
combined the existing clinical cardiovascular risk National Cholesterol Education Program 
Adult Treatment Panel III score with coronary CT parameters (number of proximal segments 
containing calcified or mixed plaques and number of proximal segments containing a 
stenosis with > 50% luminal obstruction) to establish the CONFIRM score. When validated in 
the cohort with a 5-year follow-up, the CONFIRM score significantly improved the long-term 
prediction of all-cause mortality over clinical risk scores.40) The Synergy between PCI with 
TAXUS and Cardiac Surgery (SYNTAX) score was originally an angiographic score to quantify 
the complexity of CHD; it has value in predicting MACE in patients with varying extents of 
CHD41) and can be estimated by CCTA. Suh et al.42) demonstrated that the CT-based SYNTAX 
score had no significant difference in integrated area under the curve compared with the 
ICA-based SYNTAX score and can be a useful method for predicting MACE, especially in 
patients with complex CHD. With further study on coronary CT parameters, selection 
and integration of coronary CT-related predictors including CACS, luminal stenosis, and 
plaque characteristics might better reflect coronary artery atherosclerotic plaque burden. 
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Furthermore, establishment and optimization of the scoring system by integrating clinical 
risk factors could yield a greater value of coronary CT for risk prediction of MACE.

Other anatomical indicators
In addition to evaluation of coronary artery luminal stenosis and atherosclerotic plaque, 
several other anatomical indicators on coronary CT have been found to provide value in 
risk prediction of MACE. In a study published in the Lancet in 2018, Oikonomou's team 
proposed a new imaging marker, the fat attenuation index (FAI).43) It was developed based 
on the change of perivascular fat attenuation on CCTA due to coronary inflammation, 
which is closely related to progression of coronary artery atherosclerosis. Therefore, FAI is 
an imaging marker reflecting vascular inflammation during progression of coronary artery 
atherosclerosis. The study also demonstrated that perivascular FAI improved cardiac risk 
prediction and re-stratification over the current state-of-the-art assessment on CCTA, and 
the high perivascular FAI value (cutoff ≥ −70.1HU) was an indicator of increased cardiac 
mortality and could guide primary and secondary prevention in the target population. 
Also, several studies reported that other anatomical indicators on coronary CT, such as left 
ventricular mass, left ventricular index, epicardial adipose tissue volume, and thoracic aortic 
calcification, could provide value in risk prediction of MACE.44)45)

CCTA FUNCTIONAL IMAGING

In addition to the advances in CCTA anatomical evaluation of the coronary artery, CCTA has 
been developing for functional evaluation of CHD and mainly includes myocardial CT perfusion 
(CTP) imaging and CT-derived fractional flow reserve (CT-FFR). These two techniques, 
combined with coronary CT anatomical evaluation, are expected to provide a one-stop 
comprehensive evaluation of patients for both cardiac anatomy and function, motivating a new 
era of coronary CT based on anatomical plus functional diagnosis and management.

CTP

CTP is a technique used to evaluate myocardial perfusion to obtain functional information of 
the myocardium to determine the presence of myocardial ischemia or myocardial infarction 
(Figure 5). The techniques of CTP include static CTP and dynamic CTP. Static CTP is mainly 
used for qualitative or semi-quantitative diagnosis, which is simpler technically and has a 
lower radiation dose. The CORE320 multicenter study evaluating stress static CTP showed 
that combined CCTA and CTP predicted 2-year MACE, late MACE, and event-free survival 
similarly to ICA and single-photon emission CT.46) Dynamic CTP involves several scans under 
contrast flow from the coronary artery into the myocardium, so it obtains multiple data sets 
to create time attenuation curves and quantitative parameters, such as myocardial blood 
flow, to evaluate myocardial perfusion. Several studies showed that myocardial blood flow 
or related quantitative parameters obtained by stress dynamic CTP provided incremental 
prognostic value beyond that of anatomical stenosis on coronary CT and clinical risk 
factors.47)48) Abnormal perfusion demonstrated by dynamic CTP was significantly associated 
with hazards for MACE (HR, 5.7; 95% CI, 1.9–16.9; p = 0.002) in obstructive CHD patients, 
and the addition of stress dynamic CTP to CCTA optimized risk stratification in people with 
suspected CHD and improved the risk prediction of MACE.47) In addition, stress dynamic 
CTP combined with CT delayed enhancement could better identify myocardial scarring and 
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provide prognostic value over CCTA in people with suspected CHD or known CHD and was 
useful prognostically in subgroups of patients with stent, heavy calcification, or obstructive 
CHD, compensating for the anatomical evaluation deficiency of CCTA for these patients.49) 
Compared with magnetic resonance myocardial perfusion imaging and radionuclide 
myocardial perfusion imaging, CCTA-based CTP can take into account both anatomical 
and functional cardiac evaluation, while being faster and less expensive. In the future, after 
further improving the control of radiation dose and standardization, clinical application of 
the technique of CTP will expand.

CT-FFR

Anatomical stenosis identified by ICA is the gold standard of diagnosis for CHD at present, 
but anatomical stenosis alone cannot fully reflect the hemodynamic significance of lesions. 
FFR is an indicator to evaluate the hemodynamic significance of a coronary stenotic lesion 
and assesses the ratio of flow across the stenotic lesion to putative flow in the absence of the 
stenosis. Traditionally, CT-FFR is based on the CCTA computational fluid dynamics model to 
noninvasively obtain the FFR value of a stenotic lesion (Figure 6). A prospective multicenter 
trial lead by Nørgaard et al.50) showed that CT-FFR provided high diagnostic accuracy and 
discrimination for hemodynamically significant CHD, with invasive FFR as the reference 
standard, and the per-patient sensitivity and specificity to identify myocardial ischemia 
were 86% (95% CI, 77–92) and 79% (95% CI, 72–84), respectively, for CT-FFR. As for the 
prognostic value of CT-FFR, a prospective study by Ihdayhid et al.51) showed that the incidence 
of the primary end point (death, myocardial infarction, any revascularization) was higher in 
participants with positive CT-FFR (≤ 0.8) than in participants with significant stenosis (≥ 50%) 
on CCTA (73.4% [80 of 109] vs. 48.7% [91 of 187], respectively; p < 0.001), and corresponding 
HRs were 9.2 (95% CI, 5.1–17; p < 0.001) for CT-FFR and 5.9 (95% CI, 1.5–24; p = 0.01) for 
CCTA. The researchers in the study concluded that CT-FFR ≤ 0.8 was a predictor of long-term 
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A B

C

D

LAD RCA

Figure 5. CTP. The patient was a 58-year-old male with chest pain for 2 months and syncope twice. CCTA showed 
mixed plaques with predominant calcification in the proximal LAD (A) and multiple calcified plaques (B) in the 
RCA. The evaluation of luminal stenosis was limited for LAD and RCA. The short-axis view (C) and two-chamber 
view (D) of CTP showed lower MBF value in the inferior wall of the left ventricle, confirming the presence of 
hemodynamically significant stenosis in the RCA but not in the LAD. 
CTP: computed tomography perfusion, CCTA: coronary computed tomography angiography, LAD: left anterior 
descending artery, RCA: right coronary artery, MBF: myocardial blood flow.



outcomes superior to that of clinically significant stenosis on CCTA, and the numeric value of 
CT-FFR was an independent predictor of outcome. A real-world study further demonstrated 
that treatment recommendations modified by CT-FFR in two-thirds of the participants were 
associated with less negative ICA, predicted revascularization compared with CCTA alone, and 
had a lower risk of adverse events through 90 days.52) CT-FFR can provide hemodynamically 
significant assessment results based on CCTA without adding additional scans, improving 
the risk predictive value of MACE based on anatomical evaluation of CCTA, helping to 
guide clinical decisions to achieve optimal treatment benefits for patients. The diagnostic 
performance of CT-FFR was proven to be good at different extents of coronary calcification 
severity compared with CCTA interpretation alone.53) However, in practice, lesions with large 
or diffuse calcification affect extraction of the coronary tree and the resultant calculation 
of CT-FFR. The diagnostic accuracy of CT-FFR can be affected by image quality and a “grey 
zone.” A systematic review by Cook et al.54) showed that the diagnostic accuracy was only 
46.1% for CT-FFR values between 0.70 and 0.80, which was determined as a grey zone of 
CT-FFR and invasive FFR. A poor diagnostic accuracy of CT-FFR in this spectrum of disease 
affects MACE prediction using CT-FFR. Therefore, for this group of patients, it is necessary 
to combine clinical and other imaging risk predictors to assess the risk of MACE and guide 
clinical decisions, rather than relying solely on a single parameter.

AI

In recent years, application of AI in the medical field, especially in medical imaging, has 
received much attention and has been explored by a large number of studies. Among the 
algorithms of AI, machine learning (ML) provides the ability to identify patterns and learn 
rules from large data sets and then process a multitude of complex variables and finally 
output results. It was shown that ML-based CT-FFR performed equally but faster in detecting 
lesion-specific ischemia compared with the conventional computational fluid dynamics-
based CT-FFR, and both methods outperformed the accuracy of CCTA and quantitative 
coronary angiography in detecting flow-limiting stenosis.55) The incorporation of CT 
parameters into datasets for analysis and learning also provides value for AI in risk prediction 
of MACE. Eslami et al.56) defined a radiomic-based score by extracting radiomic features 
from coronary artery calcium on coronary CT images and using ML techniques to select and 
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A B C D

LAD

Figure 6. CT-FFR. The patient was a 41-year-old male with chest distress for 6 months. CCTA showed a non-calcified plaque in the mid-LAD (arrow) with 50%–
70% diameter stenosis (A, volume rendering; B, multi-planar reformation). The CT-FFR value of the lesion was 0.91 (C), demonstrating no hemodynamically 
significant stenosis, and the invasive FFR value was 0.88 on invasive coronary angiography (D), confirming the validity of CT-FFR. 
CT-FFR: computed tomography-derived fractional flow reserve, CCTA: coronary computed tomography angiography, LAD: left anterior descending artery, FFR: 
fractional flow reserve.



classify radiomic features predicting events. The radiomic-based score was proven to improve 
the ability to identify individuals at highest risk of MACE and increase the discriminatory 
capacity of the Agatston score. Ambale-Venkatesh et al.57) tested the ability of random survival 
forests, an ML technique, to predict 6 cardiovascular outcomes compared with standard 
cardiovascular risk scores. The results showed that imaging, electrocardiography, and 
serum biomarkers featured heavily in the prediction of cardiovascular outcomes. Among 
these, CACS was the most important predictor of CHD and all ASCVD-combined outcomes; 
meanwhile, left ventricular structure and function were the important predictors for incident 
heart failure. ML in conjunction with imaging, electrocardiography, serology, and clinical 
risk factors improved the risk prediction accuracy of cardiovascular events in an initially 
asymptomatic population. In addition, an ML model built by Motwani et al.58) based on 25 
clinical and 44 CCTA parameters improved the prediction of 5-year all-cause mortality in 
people suspected of CHD, significantly outperforming existing clinical or CCTA parameters 
alone. After the perivascular FAI identified by CCTA was found to be associated with MACE 
by Oikonomou's team, they developed a new AI-powered imaging biomarker, the fat 
radiomic profile, which was derived by ML-powered radiomic analysis of perivascular adipose 
tissue remodeling. This expanded the imaging characterization of perivascular fibrosis and 
vascularity remodeling beyond that of inflammation and significantly improved cardiac risk 
prediction over that of the current gold standard.59) In practice, since AI is based on large 
datasets for learning and training to build prediction models, the quality and standardization 
of data determine the practicality and generalizability of the final models. Whether AI-based 
predictive models can be legally and socially accepted for clinical applications to guide 
prevention or treatment strategies is yet to be determined.

CONCLUSION

From CACS to CCTA anatomical and functional parameters and to coronary CT imaging 
combined with AI, coronary CT has provided substantial value for risk prediction of MACE 
and is being studied and developed. From the early nonobstructive CHD stage to the later 
obstructive CHD stage, one of the major advantages of coronary CT is its ability to provide 
a full-stage and overall evaluation of a patient's coronary atherosclerotic lesions from both 
anatomical and functional perspectives. This provides a multi-parametric risk prediction 
of MACE for risk stratification, which enables early preventive intervention or treatment to 
improve prognosis for the target population. With development and application of AI in the 
medical imaging field, comprehensive predictive models that integrate imaging parameters, 
serum biomarkers, clinical risk factors, and even relevant genes are expected to be further 
developed and optimized, and the potential predictive value of the risk of MACE in the large 
amounts of medical data available should yield good potential upon further exploration.
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