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Abstract 

Background:  Malaria and anaemia contribute substantially to child morbidity and mortality. In this study, we sought 
to jointly model the residual spatial variation in the likelihood of these two correlated diseases, while controlling for 
individual-level, household-level and environmental characteristics.

Methods:  A child-level shared component model was utilised to partition shared and disease-specific district-level 
spatial effects.

Results:  The results indicated that the spatial variation in the likelihood of malaria was more prominent compared to 
that of anaemia, for both the shared and specific spatial components. In addition, approximately 30% of the districts 
were associated with an increased likelihood of anaemia but a decreased likelihood of malaria. This suggests that 
there are other drivers of anaemia in children in these districts, which warrants further investigation.

Conclusions:  The maps of the shared and disease-specific spatial patterns provide a tool to allow for more targeted 
action in malaria and anaemia control and prevention, as well as for the targeted allocation of limited district health 
system resources.

Keywords:  Adjusted posterior odds ratios, Bayesian inference, Conditional autoregressive, Joint modelling, Spatial 
modelling
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Background
Anaemia and malaria are major health concerns that 
cause considerable morbidity and mortality, especially 
among young sub-Saharan African children [1, 2]. Anae-
mia in children is a manifestation of many conditions, 
such as iron deficiency, malaria and chronic diseases, 
most of which are preventable and curable. This com-
plex nature of anaemia makes it difficult to combat, as the 
cause needs to be treated, not just the symptom. How-
ever, in resource-limited settings, it is not always possible 
to identify the main cause of anaemia in the child as there 

are constraints to diagnosis, as well as treatment and pre-
vention [3]. This highlights the significance of studies that 
investigate the relationship between anaemia and its vari-
ous causes.

In malaria endemic regions, malaria is the main driver 
of childhood anaemia [4]. On the other hand, severe 
anaemia can increase a child’s susceptibility to malaria 
in these regions [5]. Malaria and anaemia share common 
risk factors, however, investigating the joint effect of such 
factors on each outcome has not been widely considered 
[5–7]. Both from an epidemiological and statistical view 
point, the advantages of applying models that combine 
information from related diseases has been well-docu-
mented [8]. Joint modelling also has several advantages 
over univariate analyses, which include improved control 
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over Type I error rates during multiple testing and effi-
ciency in estimating parameters [9]. Further, through 
joint modelling, the correlation between the outcomes 
can be quantified and controlled for. Several approaches 
to joint modelling exist. The most common approach 
is the use of a multivariate model, where the univari-
ate models for each response are combined through the 
specification of a joint distribution for the random effects 
[9, 10]. Copula regression is another approach to simul-
taneously modelling multiple outcomes, where a copula 
function is used to separate the marginal distributions 
from the dependence structure of a given multivariate 
distribution [11].

Joint modelling can also be extended into disease map-
ping through spatial modelling. This aids in gaining more 
insight into the spatial variation of each of the multiple dis-
eases, while accounting for the association between them. 
The contribution that a geographical location has on the 
risk of a disease serves as a surrogate for unmeasured risk 
factors. Spatial variation in these risk factors influences 
the patterns of disease risk and transmission [12]. Spatial 
mapping of single diseases is a well established method 
for identifying the geographical locations that are most at 
risk, thus creating a more effective delivery system of lim-
ited resources [12–16]. Such an approach for joint spatial 
modelling includes the multivariate conditional autore-
gressive (MCAR) model [17, 18]. This approach allows 
one to assess and visualise the residual spatial effect of the 
geographical location on each response, while controlling 
for the correlation between the responses. However, this 
MCAR approach does not allow one to assess how the cor-
relation between the responses changes based on the geo-
graphical location.

The spatial extension of the copula approach to joint 
modelling of multiple responses can aid in answer-
ing questions about how the association between the 
responses varies according to the geographical loca-
tion. However, a short-coming of the copula geoadditive 
model is that it is not able to inform us which geographi-
cal locations contribute to a higher or lower likelihood 
of both diseases simultaneously. This leads to a shared 
component model (SCM), in which the spatial effect is 
decomposed into a shared and disease-specific spatial 
effect. Therefore, this study considers a shared compo-
nent model for the joint spatial analysis of anaemia and 
malaria in children in Kenya, Malawi, Tanzania and 
Uganda, where both the shared and disease-specific dis-
trict-level spatial effects are estimated while controlling 
for known risk factors. This will allow the districts of high 
risk of one or the other, or both diseases to be identified 
for a more targeted approach to anaemia and malaria 
control and prevention as well as for a targeted allocation 
of limited district health system resources.

Methods
Data Source
Data from the Demographic and Health Surveys (DHS) 
and/or the Malaria Indicator Surveys (MIS) carried out 
in each of the four countries was used in this study. These 
surveys included the 2015 Kenya Malaria Indicator Sur-
vey, the 2017 Malawi Malaria Indicator Survey, the 2015-
2016 Tanzania Demographic and Health Survey and 
Malaria Indicator Survey and the 2016 Uganda Demo-
graphic and Health Survey. While DHS data from differ-
ent years is available for these countries, the data used 
here for each country was selected based on what was 
most recent at the time of conceptualising this study. The 
surveys were nationally represented and aimed at collect-
ing data to monitor and evaluate population, health, and 
nutrition programs through numerous questionnaires. 
These surveys utilised a stratified two-stage cluster design 
where the first stage involved selecting clusters from 
a list of enumeration areas which made up the primary 
sampling units. Clusters were selected with a probabil-
ity proportional to their size. The second stage involved 
systematic sampling of households from the list of house-
holds in each cluster, with an equal number of house-
holds selected from the clusters. The selected households 
were visited and interviewed by trained staff. In addition, 
biomarkers were collected from participants in selected 
households. A thorough review of the sampling method-
ology is presented in the DHS Sampling Manual [19]. In 
this study, we use the anaemia and malaria results of the 
blood specimens collected from a finger- or heel-prick of 
all children aged 6 to 59 months in the sampled house-
holds, with the consent of a parent or guardian.

Study Variables
The dichotomised anaemia status and malaria status of 
the child were the two outcomes of interest. The child’s 
haemoglobin (Hb) concentration was measured using a 
portable HemoCue analyser, from which they were con-
sidered anaemic if their Hb level was under 11 g/dl after 
adjusting for altitude [20]. Using the SD Bioline Pf/Pv 
rapid diagnostic test (RDT), the presence of the Plasmo-
dium falciparum parasite in the child’s blood was tested 
for. This Plasmodium species is the predominant cause 
of severe and fatal malaria in humans [21]. The child’s 
malaria status was based on this RDT result.

The covariates considered in this study included a 
range of demographic, socio-economic and environmen-
tal factors as presented in Fig. 1. These factors included 
the gender and age of the child, the mother’s highest edu-
cation level, the number of members in the household 
(size of the household), the type of place of residence 
(rural or urban), the household wealth index Z-score, the 
type of toilet facility, the age and gender of the head of 
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the household, and three environmental factors, namely 
the cluster altitude, day land surface temperature (LST) 
and the enhanced vegetation index (EVI). Anaemia and 
malaria transmission are both affected by various envi-
ronmental factors, either directly or indirectly. EVI and 
LST serve as proxies for water-born intestinal parasites, 
which are contributors of childhood anaemia [22]. In 
addition, these environmental factors affect the Plasmo-
dium parasite which causes malaria as well as the Anoph-
eles mosquito which is the host for the parasite [23].

Statistical Method
The shared component model (SCM) was originally pro-
posed by Knorr-Held and Best [24] to jointly model the 
spatial variation of rates of several diseases with common 
risk factors. The SCM allows for the underlying risk sur-
face of the diseases to be decomposed into two: shared 
and disease-specific variation. The SCM has been used in 
a wide variety of applications, such as to identify shared 
patterns among chronic related preventable hospitaliza-
tions [25], for joint spatial modelling of common mor-
bidities of childhood fever and diarrhoea in Malawi [12], 
and for joint modelling of brain cancer incidence and 
mortality rates in two regions in the north of Spain [26]. 
Recently, the SCM was used to identify crime-general 
and crime-specific hotspots in a region in Canada [27].

The SCM is typically used when interest is on the rel-
ative risk of two or more diseases in a particular region, 
where regional level covariates can be incorporated in 

the model. In this case, the response represents the dis-
ease counts for the region. In this study, however, we 
consider the SCM to model the probability, πijk , of child 
j residing in district i having anaemia ( k = 1 ) or malaria 
( k = 2 ). Thus, we make use of logistic regression mod-
els given by

where αk , k = 1, 2 , are the disease specific intercepts; βk 
is the vector of regression parameters corresponding to 
the covariates x′ijk for the kth disease, where such covari-
ates comprise of child-level, household-level and envi-
ronmental factors; ui is the disease-general shared spatial 
component common to both diseases; and vik is the dis-
ease-specific spatial component which captures the spa-
tial patterns that deviate from the shared spatial 
component. Both the shared and specific spatial compo-
nents were based on a total of 369 districts across the 
four countries. The parameter δ is referred to as the parti-
tioning weight and allows for a different odds gradient of 
the shared component. Note that the weighted shared 
component and the disease-specific component add up 
to 100% of the spatial variation for each disease. The 
advantage of our approach to the SCM is that it enables 
one to explore the individual-, household-, and 

(1)logit(πij1) = α1 + x
′

ij1β1 + δui + vi1,

(2)logit(πij2) = α2 + x
′

ij2β2 +
ui

δ
+ vi2,

Fig. 1  Potential risk factors of anaemia and malaria among young children
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community-level risk factors for each disease. Thus, such 
risk factors are well accounted for in the model.

Figure  2 presents a schematic representation of the 
shared component model for this study. The shared com-
ponent captures the spatial pattern common to both 
diseases, where δ allows each disease to have a unique 
association with this spatial pattern. A value of δ close 
to one indicates that anaemia and malaria have a simi-
lar magnitude of association with the shared spatial pat-
tern, whereas a smaller positive value of δ indicates that 
anaemia has a weaker association with the shared spa-
tial pattern compared to malaria [27]. It should be noted 
that estimating a partitioning weight ( δ ) for one disease 
and assigning the inverse to the second disease improves 
model identifiability compared to estimating separate 
partitioning weights for each disease [24, 27]. In addition, 
only one parameter needs to be estimated, rather than 
two.

Each of the shared and disease-specific spatial compo-
nents, ui and vij , can be decomposed as follows

where ustri and vstrij are spatially structured effects and 
uunstri and vunstrij are the random heterogeneity (spatially 
unstructured) effects. These spatial effects are due to 
unmeasured factors that have not been controlled for in 
the model, where such factors may be common among 
neighbouring districts (and thus contribute to the struc-
tured spatial effect) or specific to a district (and thus con-
tribute to the unstructured spatial effect).

A Bayesian approach was used to fit the model, where 
each of the parameters were assigned a prior distribution. 
Weakly informative N(0, 10000) priors for the regression 
coefficients βk were assumed. The spatial components 
followed a Besag framework [13], where the structured 
spatial effects were assigned intrinsic Gaussian Markov 
random field (IGMRF) priors, also known as conditional 
autoregressive (CAR) priors. This prior assumes that the 
structured spatial effect of the districts follow a normal 

ui = ustri + uunstri ,

vij = vstrij + vunstrij ,

distribution with a conditional mean equal to the aver-
age of the neighbouring districts’ effects and a condi-
tional variance inversely proportional to the number of 
neighbours. Two districts are considered neighbours if 
they share a border. The unstructured spatial effects were 
assigned i.i.d. Gaussian priors with a mean of zero. The 
variance components of these spatial effects comprised 
of unknown precision (inverse variance) parameters that 
were assigned a Gamma (1, 0.001) hyperprior distribu-
tion. The intercepts αk were assigned flat priors as recom-
mended for a model that includes a CAR random effect 
[28]. In addition, a sum-to-zero constraint was imposed 
on the spatial effects to allow for model identifiability. 
The partitioning weight δ was assigned a log-normal dis-
tribution with a mean of 0 and variance of 0.169 [24]. This 
prior then assumes that both δ and 1/δ are both positive, 
which is a reasonable assumption as there is a positive 
correlation between anaemia and malaria (see [7]). This 
prior also assumes that the ratio of δ and 1/δ (i.e. δ/(1/δ) ) 
is between 0.2 and 5 with a 95% probability, regardless of 
which disease is labelled 1 or 2 [24].

The models were fitted using Markov Chain Monte 
Carlo (MCMC) simulations in WinBUGS version 1.4.3 
[29]. The WinBUGS program for the area-level SCM was 
adapted for our child-level SCM. A copy of this adapted 
WinBUGS code is provided in Additional file  1. Three 
parallel MCMC chains with varying starting values were 
run for a total of 50 000 iterations each. After a burn-
in period of 50 000, every 10th sample was retained for 
posterior inference. Convergence was assessed using the 
Brooks and Gelman statistic and autocorrelation plots. 
A sensitivity analysis with various prior and hyperprior 
specifications was performed. The estimates and their 
significance remained largely the same. The models 
were compared using the deviance information crite-
rion (DIC), where the results presented in this study are 
based on the model with the lowest DIC. The estimated 
spatial effects were extracted and mapped in QGIS 3.20 
(https://​qgis.​org/​en/​site/​index.​html). All of the maps cre-
ated were based on the results of this study and made 

Fig. 2  Schematic representation of the shared component model for this study

https://qgis.org/en/site/index.html
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use of shapefiles freely available from the DHS Program’s 
Spatial Data Repository (https://​spati​aldata.​dhspr​ogram.​
com/​bound​aries).

Ethics
Ethics approval for the primary study in each of the four 
countries were granted by the relevant Ethics Review 
Committee and ICF International’s Institutional Review 
Board within each country. All methods were carried out 
in accordance with relevant guidelines and regulations.

Results
Sample Characteristics
The final data set in this study comprised of 18196 chil-
dren from across the four countries, with 12.5% from 
Malawi, 18.8% from Kenya, 25.7% from Uganda and 43% 
from Tanzania. These countries form one contiguous 
region (Fig.  3), which was partitioned according to the 
districts of each country. The 369 districts considered in 
this study comprised of all 47 counties or districts from 
Kenya; 26 out of 28 districts for which data was available 
from Malawi; 175 out of 184 districts for which data was 
available from mainland Tanzania; and 121 out of 122 
districts for which data was available for Uganda.

The observed prevalence of malaria was 19.7%, while 
anaemia was more prevalent at 52.5%. A total of 15.1% 

of the sampled children had both anaemia and malaria. 
More detailed sample descriptives are presented in our 
previous studies [7, 14, 30].

Fixed effects results of the shared component model
Table  1 presents the adjusted posterior odds ratios 
(AOR) and corresponding 95% credible intervals for the 
fixed effects. It should be noted that our previous study 
revealed a non-linear effect of the child’s age in months 
on the likelihood of anaemia [7], where there was an 
increase in the likelihood for children younger than 12 
months followed by a decrease in the likelihood for chil-
dren aged 12 months and older. However, due to the limi-
tations of WinBUGS, in this study the effect of age was 
incorporated as a linear fixed effect where it was catego-
rised accordingly (under 12 months versus 12 months 
and older). The child’s age had a significant effect on 
the likelihood of anaemia as well as malaria. However, 
while the odds of anaemia were substantially lower for 
those aged 12 months and older (AOR = 0.316; 95% CrI: 
0.285-0.351), the odds of malaria were higher for chil-
dren in this age group compared to those younger than 
12 months (AOR = 2.166; 95% CrI: 1.850-2.531). The 
odds of anaemia were significantly lower for female chil-
dren compared to male children (AOR = 0.879; 95% CrI: 
0.826-0.936). However, there was no significant difference 

Fig. 3  Study area

https://spatialdata.dhsprogram.com/boundaries
https://spatialdata.dhsprogram.com/boundaries
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in the odds of malaria between male and female children 
(AOR = 0.977; 95% CrI: 0.892-1.068). The type of place 
of residence only had a significant effect on the likeli-
hood of malaria in children, not anaemia, where those 
residing in rural areas were 1.797 times more likely to 
have malaria compared to those residing in urban areas 
(95% CrI: 1.514-2.136). The mother’s highest educational 
level had a significant impact on the odds of anaemia as 
well as malaria, where the odds of each decreased with 
an increase in education level. Likewise, there was a sig-
nificant decrease in the odds of either disease with an 
increase in the household’s wealth index Z-score (AOR = 
0.769; 95% CrI: 0.725-0.816 for anaemia, AOR = 0.400; 
95% CrI: 0.360-0.443 for malaria). In addition, there was 
a significant decrease in the odds of anaemia with an 
improvement in toilet facilities. However, the type of toi-
let facility had no significant effect on the odds of malaria 
in children. The cluster altitude had a decreased effect 
on both the odds of anaemia and malaria (AOR = 0.969; 
95% CrI: 0.953-0.985 for anaemia, AOR = 0.847; 95% 
CrI: 0.819-0.874 for malaria). The odds of malaria signifi-
cantly increased with an increase in the environmental 
factor EVI (AOR = 2.074; 95% CrI: 1.380-3.304), however 
it had no significant effect on the odds of anaemia (AOR 
= 1.050; 95% CrI: 0.889-1.268). The gender of the head of 
household, household size and the environmental factor 

LST did not have any significant effects on the odds of 
anaemia or malaria.

The estimates for the shared and disease-specific 
spatial components for each district are provided in 
Additional file  2. However, for convenience, these 
estimates have been illustrated in maps which are dis-
cussed below.

Spatial effects results of the shared component model
Figure 4a presents the estimated effect of the shared spa-
tial component on the log-odds of anaemia and malaria. 
The districts in blue shadings correspond to a negative 
estimated log-odds and were therefore associated with 
a lower likelihood of the disease. Whereas, those in red 
shadings correspond to a positive estimated log-odds 
and were therefore associated with a higher likelihood. 
Notably, there were distinct patterns of clustering among 
neighbouring districts. In particular, there were clusters 
associated with increased likelihoods of both diseases in 
the west of Tanzania and throughout Uganda and Malawi. 
Kenya primarily consisted of districts/counties associ-
ated with decreased likelihoods of both diseases. This 
shared spatial effect presented a non-random pattern, as 
suggested by Moran’s I statistic of 0.758 (p = 0.001). The 
partitioning weight ( δ ) was estimated at 0.626 (95% CrI: 

Table 1  Adjusted posterior odds ratio estimates (AOR) and 95% credible intervals

a significant at 5% level of significance

Variable Anaemia Malaria
AOR (95% CrI) AOR (95% CrI)

Gender (ref = Male)

   Female 0.879 (0.826, 0.936)a 0.977 (0.892, 1.068)

Age in Months (ref = Under 12 months)

   12 months and older 0.316 (0.285, 0.351)a 2.166 (1.850, 2.531)a

Type of Place of Residence (ref = Urban)

   Rural 0.948 (0.859, 1.047) 1.797 (1.514, 2.136)a

Mother’s Education Level (ref = No Education)

   Primary 0.874 (0.793, 0.964)a 0.803 (0.703, 0.915)a

   Secondary and Higher 0.852 (0.748, 0.972)a 0.609 (0.498, 0.749)a

   Unknown 0.742 (0.654, 0.838)a 1.119 (0.946, 1.329)

Gender of Household Head (ref = Male)

   Female 1.005 (0.931, 1.082) 0.927 (0.828, 1.038)

Type of Toilet Facility (ref = No Facilities)

   PIT Latrine 0.779 (0.697, 0.869)a 0.878 (0.757, 1.017)

   Flush Toilet 0.763 (0.624, 0.929)a 1.051 (0.667, 1.620)

Household Size 1.008 (0.998, 1.019) 1.003 (0.990, 1.016)

Wealth Index 0.769 (0.725, 0.816)a 0.400 (0.360, 0.443)a

Cluster Altitude (in 100 metres) 0.969 (0.953, 0.985)a 0.847 (0.819, 0.874)a

EVI 1.050 (0.889, 1.268) 2.074 (1.380, 3.304)a

LST 1.011 (0.969, 1.055) 1.037 (0.922, 1.180)
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0.429-0.952) (Table 2). Thus, malaria had a stronger asso-
ciation with this shared spatial pattern compared to anae-
mia, as is evident from the shared spatial effects in Fig. 4b 
and 4c for anaemia and malaria, respectively. Table  2 
indicates that 82.70% of the spatial variation in the likeli-
hood of anaemia was captured by the shared spatial com-
ponent, while only 62.44% of the spatial variation in the 
likelihood of malaria was captured by this component.

The disease-specific spatial effects for anaemia 
and malaria are displayed in Fig.  5a and 5b, respec-
tively. Similar to the shared spatial component, this 
disease-specific spatial effect was more prominent for 
malaria than for anaemia. In addition, this component 
explained a higher proportion of the spatial variation 

in the likelihood of malaria (37.56%) compared to that 
for anaemia (17.30%). Once again, both spatial patterns 
consisted of clusters of increased likelihoods (positive 
values) and decreased likelihoods (negative values). 
These patterns were non-random, as confirmed by 
Moran’s I statistic of 0.258 for anaemia and 0.866 for 
malaria, both of which were significant at a 5% level of 
significance. Unlike the shared component, there were 
fewer clusters in the west of Tanzania and in Uganda 
for the anaemia-specific spatial effect. Multiple districts 
(229 out of 369 districts) across the four countries had 
contrasting effects on the likelihood of anaemia and 
malaria. More specifically, many of the districts that 

Fig. 4  Estimated effect of the shared spatial component (a); shared spatial component for anaemia (b); and shared spatial component for malaria 
(c)

Table 2  Partitioning weight posterior estimate (95% CrI) and empirical variances

Anaemia Malaria

Partitioning weight ( δ) 0.626 (0.429, 0.952) 1.597 (1.050, 2.331)

Empirical variance of shared component 0.182 1.183

Empirical variance of disease-specific component 0.083 0.712

% of total variation explained by shared component 82.70 62.44
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had a decreased likelihood of malaria, had an increased 
likelihood of anaemia.

Discussion
This study aimed at jointly modelling the spatial vari-
ation in the likelihood of anaemia and malaria in young 
children across the districts of Kenya, Malawi, Tanzania 
and Uganda, while controlling for child-level, house-
hold-level and environmental characteristics. The spatial 
variation was considered at district level as the districts 
represent the administrative level for which public health 
decisions are implemented within the four countries. 
The district-level spatial effect for each disease was par-
titioned into a shared spatial component and a disease-
specific spatial component. These spatial components 
can be considered as proxies for variations in unmeas-
ured factors that contribute to both (shared) or only one 
(specific) of the diseases [27]. In this study, each of the 
shared and disease-specific spatial components were fur-
ther partitioned into structured and unstructured spatial 
effects to account for unmeasured factors that are shared 
among neighbouring districts or that are district-specific, 
respectively.

The shared spatial component is due to the common 
effects of unmeasured shared risk factors. Malaria had a 
stronger association with the shared spatial component 
compared to anaemia, as evident by the higher partition-
ing weight. This suggests that the unmeasured risk fac-
tors common to both diseases had a higher impact on the 
likelihood of malaria. The shared spatial pattern revealed 
significant hotspots of increased likelihoods of each dis-
ease in the west of Tanzania and throughout the majority 
of the districts in Uganda and Malawi. This shared spa-
tial component had a higher contribution to the spatial 
variation in the likelihood of both diseases compared to 
the disease-specific spatial component. This suggests that 
if programs for control and prevention of one of the dis-
eases are targeted in the high risk districts, they should 
also make an impact on the other disease.

The disease-specific component was more prominent 
for malaria as well as contributed to a higher propor-
tion of the spatial variation in the likelihood of malaria 
compared to that of anaemia. This indicates that there 
are additional unmeasured risk factors relevant to 
malaria only. One of the consequences of malaria is 
anaemia [31]. However, while severe anaemia can 

Fig. 5  Estimated effect of the disease-specific component for anaemia (a) and the disease-specific component for malaria (b)
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exacerbate malaria, it does not lead to malaria [5]. It is 
therefore reasonable to hypothesize that there are other 
drivers of anaemia in children in the districts that are 
associated with an increased likelihood of anaemia but 
a decreased likelihood of malaria based on the disease-
specific spatial component. This study identified mul-
tiple of these districts throughout all four countries. 
Such drivers may include those that have a direct effect 
on anaemia but not malaria, such as iron deficiency, 
sickle cell anaemia and intestinal parasites, some of 
which have been shown to be protective against malaria 
[31–34].

Of note from the malaria-specific spatial pattern is 
that the districts with increased likelihoods were clus-
tered around many of the water bodies in the countries, 
such as Lake Victoria shared by Tanzania, Kenya and 
Uganda, Lake Malawi, and Lake Turkana in Kenya. It 
has been suggested that the lake environments, specifi-
cally wetlands along the lakeshore, may maintain a high 
number of malaria vectors [35]. In particular, several vec-
tor breeding sites have been found to be associated with 
Lake Victoria and Lake Malawi [35, 36]. Thus, efforts 
for malaria vector control, such as insecticide-treated 
nets and indoor residual spraying, should be continued 
and up-scaled in these high risk districts. Such control 
measures have been noted as the primary driver of the 
significant reductions in the burden of malaria in sub-
Saharan Africa over the past two decades [37]. This clus-
tering pattern of increased likelihood of malaria around 
the water bodies differed for the anaemia-specific spatial 
component, which had less distinctive patterns. Anaemia 
is likely driven more by demographic, socioeconomic, 
and dietary-related factors than environmental factors, as 
suggested by the fixed effects results in this study, as well 
as highlighted in other studies which found malnutrition 
and intestinal parasites to also play a role in childhood 
anaemia [38–40].

While the focus of this study was not on determin-
ing the significant risk factors of each disease, the SCM 
allowed us to identify as well as control for such. How-
ever, the findings of this study regarding the child-level, 
household-level and environmental factors largely 
agreed with that of our previous study, which provides 
a detailed discussion on each [7]. In summary, the child’s 
age, the mother’s education level, the household wealth 
index, and cluster altitude had a significant effect on the 
likelihood of both anaemia and malaria. While the type 
of place of residence was not significantly associated 
with a child’s anaemia status, those residing in rural areas 
had a significantly higher likelihood of having malaria. 
This common finding has resulted in malaria being con-
sidered predominantly as a rural disease in Africa [41]. 
In rural areas, poor-quality household construction 

materials are common, which have been shown to be 
associated with a higher incidence of malaria due to 
increased mosquito entry [42, 43].

This study was limited with the amount of data avail-
able on the possible risk factors of either of the diseases, 
which may have had an influence on the spatial effects. In 
addition, the data is cross-sectional in nature, and thus no 
causal effect can be concluded. Another limitation to the 
study includes the dichotomisation of the child’s anaemia 
status which may result in a loss of information. How-
ever, using the ordinal form of anaemia (non-anaemic, 
mild, moderate and severe) would have restricted the 
statistical approach considered as the shared component 
model would not be appropriate. The strength of this 
study lies in the novelty of applying a child-level shared 
component model with district-level shared and disease-
specific spatial effects to model the likelihood of anaemia 
and malaria in a child, which, to our knowledge, has not 
been considered for these two diseases. This individual-
level covariate-adjusted approach has aided in identify-
ing districts with an increased likelihood of either both or 
only one of the diseases, as presented by the shared and 
disease-specific spatial maps, respectively. These maps 
provide a tool to allow for more targeted action, either in 
the form of further investigation into the particular dis-
tricts or in the form of programs and interventions, as 
well as the targeted allocation of limited district health 
system resources.

Conclusion
As it is more common for co-infection to start with 
malaria, we recommend that programs and interven-
tions for malaria in children be targeted in high malaria 
risk districts as identified by both the shared and malaria-
specific spatial components in this study, which would 
likely also make a positive impact on anaemia. Moreover, 
further investigation into those districts with simulta-
neous high anaemia risk and low malaria risk should be 
considered in order to identify the significant drivers of 
anaemia in children within those districts. This would aid 
in applying the appropriate control measures and inter-
ventions for childhood anaemia in those districts, while 
saving on resources for malaria control and prevention 
which should be directed to the districts most in need.
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