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Megafauna play a disproportionate role in developing and maintaining their
biomes, by regulating plant dispersal, community structure and nutrient
cycling. Understanding the ecological roles of extinct megafaunal commu-
nities, for example through dietary reconstruction using isotope analysis,
is necessary to determine pre-human states and set evidence-based restor-
ation goals. We use δ13C and δ15N isotopic analyses to reconstruct
Holocene feeding guilds in Madagascar’s extinct megaherbivores, which
included elephant birds, hippopotami and giant tortoises that occurred
across multiple habitats and elevations. We compare isotopic data from
seven taxa and two elephant bird eggshell morphotypes against contempor-
ary regional floral baselines to infer dietary subsistence strategies. Most taxa
show high consumption of C3 and/or CAM plants, providing evidence of
widespread browsing ecology. However, Aepyornis hildebrandti, an elephant
bird restricted to the central highlands region, has isotope values with much
higher δ13C values than other taxa. This species is interpreted as having
obtained up to 48% of its diet from C4 grasses. These findings provide
new evidence for distinct browsing and grazing guilds in Madagascar’s
Holocene megaherbivore fauna, with implications for past regional
distribution of ecosystems dominated by endemic C4 grasses.
1. Introduction
Late Quaternary and older terrestrial ecosystems were typically dominated by
megaherbivores, which shaped their environments through top–down
interactions with plant communities and vegetation structure [1,2]. Megaherbi-
vores impact diversity and structure of ecosystems by suppressing plant
growth through physical disturbance and herbivory, influencing nutrient cycling
within and between landscapes, and dispersing plant propagules [3,4]. However,
megafauna have been disproportionately vulnerable to human-caused extinction,
and many ecosystems now lack these keystone species [5]. Reconstructing the
ecology of now-extinct megaherbivore guilds is essential to identify disrupted
ecological processes and guide environmental management and restoration [1,6].

Late Quaternary Madagascar supported a diverse megafauna, including
elephant birds, hippopotami and giant tortoises. Madagascar’s megaherbivores
became extinct in the late Holocene during a period of intensive anthropogenic
forest clearance and conversion to open habitats around 1100–1000 BP [7–9].
Today 80% of Madagascar is covered by grassland [10,11], but the pre-disturb-
ance distribution and extent of native grasslands remain uncertain [12,13].
Madagascar contains native grass lineages dating from the Miocene, and 40%
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Table 1. Mean isotope values and dietary proportion estimates for Madagascar’s megaherbivores, inclusive of bone/eggshell correction and Suess correction.

taxon
no.
specimens

δ13C
(mean) s.d.

est. diet proportion
(mean) C3 plants

est. diet proportion
(mean) CAM plants s.e.

1. Arid spiny bush

Aepyornis maximus 2 −28.42 0.71 0.93 0.07 0.04

Mullerornis modestus (bone) 7 −26.44 0.81 0.79 0.21 0.02

Mullerornis modestus (eggshell) 9 −25.58 0.48 0.73 0.27 0.01

thick eggshell 93 −26.35 0.92 0.79 0.21 0.01

Hippopotamus lemerlei 10 −21.87 2.49 0.48 0.52 0.06

Hippopotamus sp. 18 −22.99 2.33 0.55 0.45 0.04

Aldabrachelys sp. 18 −25.18 2.75 0.71 0.29 0.05

2. Succulent woodland

Aepyornis maximus 1 −28.02 0.71a 0.9 0.1 0.05

Vorombe titan 11 −29.26 0.72 0.99 0.01 0.02

Hippopotamus lemerlei 4 −28.13 0.73 0.91 0.09 0.03

Hippopotamus

madagascariensis

3 −20.17 1.56 0.36 0.64 0.06

Hippopotamus sp. 15 −26.07 3.71 0.77 0.23 0.07

Aldabrachelys sp. 1 −33.52 2.75a 1 0 0.19

taxon
no.
specimens

δ13C
(mean) s.d.

est. diet proportion
(mean) C3 plants

est. diet proportion
(mean) CAM plants s.e.

3. Central highlands

Aepyornis hildebrandti 8 −21.12 1.42 0.52 0.48 0.03

Mullerornis modestus (bone) 1 −28.22 0.81a 0.98 0.02 0.06

Hippopotamus

madagascariensis

3 −28.27 3.25 0.99 0.01 0.12

Hippopotamus sp. 13 −27.83 4.29 0.96 0.04 0.08
as.d. not available and arid spiny bush value used.
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of its grass species are unique; it contains among the world’s
highest grass diversity and endemism, with particularly
diverse assemblages in the island’s central highlands ecogeo-
graphical region [10,11]. However, there is limited evidence
for regional existence of a late Quaternary vertebrate grazing
guild, suggesting that endemic grasses may have been
limited to small, low-density clearings [13–16].

Most trees, shrubs and herbs use a C3 (Calvin) metabolic
pathway for carbon fixation during photosynthesis, whereas
most tropical grasses use a C4 (Hatch-Slack) pathway [17].
Stable carbon isotope (δ13C) values in bones of animals that
consumed these plants can indicate likely former presence
of forests or grasslands, and isotope analysis is widely used
for late Quaternary palaeoecological reconstruction [14]. Ani-
mals with pure C3 diets have δ

13C values below −21.5‰ and
pure C4 diets above −9‰. Reported δ13C values for Mada-
gascar megaherbivores are interpreted as indicating forest
environments [18–20]. However, some Madagascar megaher-
bivore subfossil sites are interpreted as open grassland
biomes [21,22]. Using δ13C values to infer open-habitat
grasses as dietary resources can be confused by plants
using crassulacean acid metabolism photosynthesis (CAM
plants); for example, the succulent plant Kalanchoë exhibits
flexible CAM patterns across Madagascar, with δ13C values
similar to C3 plants in humid environments and to C4

plants in dry environments [23]. The CAM-specialist extinct
lemur Hadropithecus shows δ13C values of −24.2‰ in the
mesic central highlands, and −9.6‰ in the arid southwest
[14]. However, wetland C4 plants (rushes, sedges) also
occur in Madagascar, so comparison of δ15N values between
co-occurring taxa can also be included in dietary assessments
using δ13C data; plants in arid environments have higher
δ15N values [24], enabling differentiation between wetland
and dryland C4 plants.

Research into Madagascar’s extinct vertebrate ecology has
mainly focused on giant lemurs, with studies of mega-
herbivores hindered by poorly resolved taxonomy [25].
However, recent taxonomic reassessments have clarified
species diversity in elephant birds [26] and hippopotami
[27], enabling the investigation of species-specific niches
and landscape ecology. Here we investigate new and
published dietary isotope data for all Madagascar hippopota-
mus and elephant bird species and for the regionally extinct
giant tortoise Aldabrachelys across three distinct ecogeographi-
cal zones, to determine megaherbivore dietary niches and
presence of natural open grassland habitats (e.g. savannahs,
open wooded habitats) in Madagascar’s late Quaternary
ecosystems [25].
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Figure 1. Madagascar ecoregions, showing localities for specimens in this
study. Adapted from [29].
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2. Material and methods
We assembled a database of 203 δ13C and 118 δ15N values for late
Quaternary skeletal elements of all recognized Madagascar hippo-
potami (Hippopotamus lemerlei, n = 15; H. madagascariensis, n = 6),
elephant birds (Aepyornis hildebrandti, n = 8; A. maximus, n = 3;Mul-
lerornis modestus, n = 9; Vorombe titan, n = 11) and Aldabrachelys sp.
(n = 19), and for both elephant bird eggshell morphotypes (‘thin
eggshell’ representingM. modestus, n = 9; ‘thick eggshell’ represent-
ing Aepyornis or Vorombe, n = 93; [28]) (table 1). We include 243
published values (160 δ13C, 83 δ15N), and previously unreported
data for 42 specimens from accelerator mass spectrometry (AMS)
dating of bone collagen [9] performed at the Oxford Radiocarbon
Accelerator Unit (ORAU). In total, 86 samples have associated
radiocarbon dates, with just one predating the Holocene
(NIUTSM 01539: 14 580 ± 460 BP). Collection localities cover three
Madagascan ecoregions: southern arid spiny bush (n = 147, 14
localities), western succulent woodland (n = 25, six localities) and
the central highlands (n = 21, four localities) (figure 1; electronic
supplementarymaterial, table S1). Ecoregions varied in megaherbi-
vore composition; although Mullerornis occurred in highland and
lower-elevation regions, A. hildebrandti and H. madagascariensis
were largely/completely restricted to the central highlands, and
most other species only occurred in southern and/or western
ecoregions [25,30] (table 1). Aldabrachelys data are only available
for the arid spiny bush, although specimens are also recorded
from the central highlands [28] (table 1).

We assessed dietary sources using mixing models in ISSOER-
ROR v. 1.04 [31] to investigate dietary niche differentiation
between taxa within ecoregions. We calculated proportionate
consumption of C3 versus CAM plants in the more arid southern
and western ecoregions, and C3 versus C4 plants in the compara-
tively wet central highlands, which do not support significant
CAM plant biomass and contain a regionally restricted endemic
C4 plant community [10,11,14,15]. We used δ13C isotope values
for discrimination model end-members from ref. [32]: C3

plants, arid spiny bush and succulent woodland (Beza Maha-
faly), −29.4‰ (σ: 2.4, n = 240); central highlands (Tsinjoarivo):
−28.5‰ (σ: 1.8, n = 49); CAM plants, arid spiny bush and succu-
lent woodland (Beza Mahafaly): −15‰ (σ: 1.2, n = 67). C4 grass
end-member values used the global mean value of −13.1‰
[33], with substituted σ and sample size from central highlands
C3 plants. δ13C values used in fractionation were corrected to
account for δ13C enrichment in bone (+5‰) [34] and eggshell
(+2‰) collagen [35], and by +1.22‰ to account for δ13C shifts
in atmospheric CO2 (Suess effect; [36]).
3. Results
In arid spiny bush, elephant birds and giant tortoises show
low δ13C values (species means: −25.18 to −28.42‰), with
dietary fractionation indicating these taxa all consumed
mainly C3 plants and only limited amounts of CAM plants
(mean estimated proportions of CAM consumption: 0.07–
0.27). M. modestus (bone and thin eggshell) shows highest
estimated CAM consumption (sample means: 0.21–0.27).
Hippopotami (H. lemerlei and samples unidentified to
species) show higher δ13C values (sample means: −21.87 to
−22.99‰) and correspondingly much higher estimated pro-
portions of CAM consumption, with C3 and CAM plants
both comprising about half of their diet (mean estimated pro-
portions, C3: 0.48–0.55, CAM: 0.45–0.52) (table 1 and figure 2;
electronic supplementary material, file S1).

In succulentwoodland, elephant birds (A.maximus, V. titan),
giant tortoises and H. lemerlei show low δ13C values (species
means:−26.46 to−33.52‰) and very low estimated proportions
of CAM consumption (0.01–0.09). By contrast,H. madagascarien-
sis shows high δ13C values (species mean: −20.16‰) and much
higher mean estimated CAM consumption (0.64).

In the central highlands, M. modestus and hippopotami
(H. madagascariensis and samples unidentified to species)
show high δ13C values (sample means: −28.22 to −28.83‰),
and are estimated to have consumed almost entirely C3

plants and minimal C4 grasses (mean estimated proportions
of C4 consumption: 0.02–0.04). Conversely, A. hildebrandti
shows high δ13C values (sample mean: −21.12‰) and
much higher mean estimated C4 consumption (0.48).

For hippopotami, H. madagascariensis had δ15N values of
3.0–5.2‰, and H. lemerlei of 7.0–13.3‰. The lowest hippopota-
mus δ15N value was from Antsirabe, central highlands (1.3‰)
and the highest was from Beloha, arid spiny bush (13.3‰). For
elephant birds, A. hildebrandti had δ15N values of 5.0–7.8‰,
A. maximus of 11.8–15.3‰, M. modestus of 6.4–16.0‰, V. titan
of 5.5–13.7‰ and ‘thick eggshell’ of 8.7−17.6‰. Aldrabrachelys
in arid spiny bush had values of 8.4–13.3‰. Across ecoregions,
non-overlapping δ15N ranges were observed for single
measurements in A. maximus (dry deciduous forest, 11.8‰;
arid spiny bush, 12.7–15.3‰) and M. modestus (central
highlands, 6.4‰; arid spiny bush, 6.5–15.8‰).
4. Discussion
We present the first species-level dietary niche reconstruction
for Madagascar’s megaherbivores, revealing a range of δ13C
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and δ15N values and trophic ecologies across taxa and ecore-
gions. Our findings indicate the former existence of multiple
herbivore guilds across Madagascar. These data support pre-
vious identification of a widespread browsing guild and
provide the first direct evidence for a megaherbivore grazing
guild in Madagascar’s central highlands.

δ13C values in hippopotamus samples indicate broad
trophic niches for both species, suggesting both browsing
and grazing behaviours. This contrasts with the mainland
African hippopotamus (H. amphibius), which is predomi-
nantly a terrestrial grazer [37]. Madagascar hippopotami
were trophically closer to Africa’s extant pygmy hippopota-
mus (Choeropsis liberiensis), which is comparable in size to
Madagascar’s extinct species, and browses on forest plants
[38]. Interestingly, δ15N ratios indicate more aquatic feeding
in H. madagascariensis than H. lemerlei. Aquatic habitats
were available for H. madagascariensis in the central high-
lands [25]. This result contrasts with aquatic adaptations
inferred from cranial morphology in H. lemerlei [39], but is
consistent with behavioural ecology (emergence onto land
for feeding) in the otherwise aquatic H. amphibius, suggest-
ing a similar lifestyle for H. lemerlei. Aldabrachelys isotopes
from arid spiny bush show a comparable δ13C/δ15N signal
to H. lemerlei, indicating a similar browsing niche in
this ecoregion.

CAM plants comprised a substantial proportion of the
diets of one or both hippopotamus species in arid spiny
bush and succulent woodland, but δ13C values are lower in
the central highlands, suggesting higher reliance upon C3

plants. CAM plants are relatively scarce in this region;
however, they occur across numerous biomes and elevations
in Madagascar, with a range of δ13C values (e.g. Kalanchoë,
−11.4 to −27.3‰) [23]. CAM plant CO2 is fixed by the C3 path-
way in humid environments such as the central highlands,
producing δ13C values below −22‰ [23] and thus consistent
with CAM consumption in this region as well. Hippopotami
therefore probably consumed C3 and CAM plants across
Madagascar, matching the varying δ13C pattern in the
CAM-specialist Hadropithecus across different ecoregions [14].

Elephant bird δ13C values from arid spiny bush and suc-
culent woodland fall outside the range for C4 consumption
(open-habitat dryland grasses or wetland sedges and
rushes). In arid spiny bush, δ13C values indicate that all ele-
phant birds had predominantly C3 diets, with some CAM
consumption by M. modestus; higher δ15N values compared
to sympatric hippopotami indicate that these plants were
less likely to be from wetlands. Differences between sympa-
tric elephant birds may indicate further species-specific
dietary differences; for example, higher δ15N values (e.g. in
A. maximus) are associated with frugivory or omnivory
(including invertebrate or small vertebrate consumption)
[32], which comprise extant ratite dietary strategies [40]. Egg-
shell and bone values also differ in M. modestus, possibly
indicating seasonal reliance upon dietary resources during
oogenesis, or that eggshell and bone fractionation rates may
need separate assessment.

Our most striking result is that δ13C data for A. hildeb-
randti provide the first evidence for grazing ecology in
elephant birds. Although unique within Madagascar’s ratites,
grazing is also the primary dietary strategy in greater rhea
(Rhea americana) [41], and other large flightless birds (e.g.
geese) also have important regulatory effects on island grass-
lands [42]. Our results thus identify A. hildebrandti as a likely
top–down regulator of native grassland ecosystems in the
central highlands [13,15,16]. δ13C values for this species indi-
cate a mixed diet containing large quantities of C4 plants
(c. 48%), whereas co-occurring hippopotami consumed only
tiny amounts of C4 plants (1–4%). Although A. hildebrandti
had higher mean δ15N values compared to sympatric hippo-
potami, this disparity is much lower than between species in
other ecoregions. Indeed, lower δ13C values in CAM plants
within mesic conditions [23] suggest that A. hildebrandti
might not have consumed any forest plants and was exclu-
sively an open-habitat forager, consuming a mixture of C4
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and CAM plants. High variability in CAM plant δ13C values
complicates interpretation of results, but the likelihood of
A. hildebrandti exhibiting grazing behaviour is supported by
the non-matching regional δ13C signature of the CAM
specialist Hadropithecus (mean: −24.2 δ13C‰) [14]. This
hypothesis is consistent with the small olfactory bulb in
skulls assigned to A. hildebrandti, comparable to the neuroa-
natomy of extant open-habitat palaeognaths [43]. However,
the taxonomic identity of these crania is uncertain; they are
not associated with diagnostic postcrania or locality data,
and two separate skull morphotypes have been referred to
A. hildebrandti [44–46].

δ13C data from skeletal collagen provide a comprehensive
new understanding of Madagascar megaherbivore dietary
ecology. Most available subfossils originate from southern
Madagascar, and further research should investigate data
across wider areas. For example, giant tortoises from the cen-
tral highlands remain isotopically unstudied; these animals
might also have been grazers, but their shell shape (associated
with biomechanical advantage for grazing or browsing in
extant species [47]) is poorly understood, making ecological
inference difficult. However, whereas most modern-day open
habitats on Madagascar are anthropogenic in origin, our
results provide important evidence for former existence of
native ecosystems dominated by endemic C4 grasses. It is
clear that Madagascar supported multiple megaherbivore
trophic guilds with differing relationships to native vegetation,
which must have played important roles in regulating diverse
natural landscapes. Madagascar’s ecosystems are now highly
degraded, and protection and sustainable management
of landscapes and ecosystem services represents a global
priority for biodiversity conservation and human well-
being [48,49]. Hypotheses of what constitutes a ‘natural’
Madagascar ecosystem must therefore consider the ecologies
and regulatory roles of the island’s now-extinct megafauna,
to support evidence-based restoration of this ecologically
complex island.
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