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Successful pathogens require metabolic flexibility to adapt to diverse host niches. The
presence of co-infecting or commensal microorganisms at a given infection site can
further influence the metabolic processes required for a pathogen to cause disease. The
Gram-positive bacterium Staphylococcus aureus and the polymorphic fungus Candida
albicans are microorganisms that asymptomatically colonize healthy individuals but can
also cause superficial infections or severe invasive disease. Due to many shared host
niches, S. aureus and C. albicans are frequently co-isolated from mixed fungal-bacterial
infections. S. aureus and C. albicans co-infection alters microbial metabolism relative to
infection with either organism alone. Metabolic changes during co-infection regulate
virulence, such as enhancing toxin production in S. aureus or contributing to
morphogenesis and cell wall remodeling in C. albicans. C. albicans and S. aureus also
form polymicrobial biofilms, which have greater biomass and reduced susceptibility to
antimicrobials relative to mono-microbial biofilms. The S. aureus and C. albicans
metabolic programs induced during co-infection impact interactions with host immune
cells, resulting in greater microbial survival and immune evasion. Conversely, innate
immune cell sensing of S. aureus and C. albicans triggers metabolic changes in the
host cells that result in an altered immune response to secondary infections. In this review
article, we discuss the metabolic programs that govern host-pathogen interactions during
S. aureus and C. albicans co-infection. Understanding C. albicans-S. aureus interactions
may highlight more general principles of how polymicrobial interactions, particularly
fungal-bacterial interactions, shape the outcome of infectious disease. We focus on
how co-infection alters microbial metabolism to enhance virulence and how infection-
induced changes to host cell metabolism can impact a secondary infection.
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INTRODUCTION

Microorganisms co-exist as polymicrobial communities in the
human body, sharing colonization niches and competing for
resources. Interactions among these commensal microbial
communities facilitate persistence of microorganisms that
promote health. However, in the context of a polymicrobial
infection, interactions among co-infecting pathogens may
exacerbate disease. Polymicrobial infections can develop when
infection by one organism creates a favorable host niche for
colonization by additional organisms, when two or more
organisms are simultaneously introduced into the body, or
when host immune defenses are weakened (1). For example,
polymicrobial infections frequently develop in individuals with
compromised host immune responses or disrupted biological
barrier function, in which there may exist a more favorable
environment for co-infection (2–4). Co-infecting pathogens can
behave antagonistically, additively, or synergistically to alter
disease outcome relative to mono-microbial infections (1).
However, many polymicrobial infections are associated with
more severe disease relative to mono-microbial infections (5–
7). Because polymicrobial infections can alter the outcome of
disease, it is critical to understand how the presence of co-
infecting pathogens affect microbial physiology and subsequent
host responses during infection.

Bacteria and fungi are frequently co-isolated from commensal
microbial communities, and inter-species cross-talk facilitates
stable and asymptomatic colonization of these organisms (8).
However, cross-talk between bacteria and fungi can also
contribute to disease progression in the context of a
polymicrobial infection. The opportunistic fungal pathogen
Candida albicans and the Gram-positive bacterium
Staphylococcus aureus are two of the most commonly co-
isolated pathogens from mixed fungal-bacterial infections in
the bloodstream as well as from biofilm-associated diseases
such as cystic fibrosis, periodontitis, and catheter-associated
infections (4, 8–10). The frequency of mixed C. albicans-S.
aureus infections is in part due to shared colonization sites in
the human body as well as a propensity for these microorganisms
to interact and form polymicrobial biofilms (8, 10, 11). C.
albicans and S. aureus both asymptomatically colonize the skin
or gastrointestinal tract, yet under certain circumstances they can
also cause severe invasive disease (12, 13). A key feature of the
virulence of both C. albicans and S. aureus is the ability to utilize
a variety of nutrient sources to establish infection in diverse host
niches (14, 15). C. albicans virulence is mediated in large part by
a morphologic switch from growth as budding yeast to
filamentous hyphae. C. albicans yeast colonize skin and the
gastrointestinal mucosa (12). During invasive infection, C.
albicans hyphal growth penetrates epithelial layers and causes
tissue damage, while C. albicans yeast disseminate through the
bloodstream and colonize other organs (12). C. albicansmutants
that are genetically locked in either morphology are attenuated
during infection, highlighting the importance of the ability to
switch between the yeast and the hyphal forms to cause disease
(12, 16). However, recent studies have challenged this dogma,
demonstrating that certain C. albicans yeast-locked strains retain
Frontiers in Immunology | www.frontiersin.org 2
virulence in disseminated infection due to the metabolic
advantages of yeast growth over hyphal growth (17). S. aureus
virulence is driven by a variety of mechanisms to combat host
responses and adapt to host environments. This includes
production of toxins and immunomodulatory proteins that
evade host immune responses (18–21).

C. albicans-S. aureus co-infection worsens invasive disease
relative to infection with either organism alone. Some of the
earliest studies investigating C. albicans-S. aureus co-infection
identified that this polymicrobial interaction is associated with
greater mortality when both organisms are inoculated into the
peritoneal cavity of mice simultaneously (22–24). The enhanced
virulence of C. albicans-S. aureus co-infection is due in part to
physical and chemical interactions between the two
microorganisms that influence microbial metabolism,
virulence, and physiology. Host immune responses also play an
important role in contributing to the enhanced virulence of C.
albicans-S. aureus co-infection. Co-infection skews the balance
of pro-inflammatory and anti-inflammatory cytokine
production towards greater inflammation. Altered host
responses can occur through direct interactions of host cells
with the microbes that facilitate microbial dissemination, as well
as through increased pro-inflammatory cytokine production by
host cells as a response to co-infection (25, 26). Paradoxically,
outcomes of invasive S. aureus infections are improved when S.
aureus is inoculated after a C. albicans infection, suggesting
cross-species protection in the context of secondary infection
(27). In this review, we discuss advances towards understanding
the factors that contribute to the changes in disease progression
during C. albicans-S. aureus co-infection, with a focus on
interactions that worsen disease outcomes. We highlight the
mechanisms by which virulence is altered during acute
polymicrobial infection, as well as how interactions during
polymicrobial biofilm growth influence virulence and
antimicrobial resistance. Finally, we discuss how polymicrobial
infection alters host cell responses during co-infection and how
sequential infection is protective rather than deleterious.
C. ALBICANS INFLUENCE ON
S. AUREUS VIRULENCE

Co-inoculation of C. albicans and S. aureus into the peritoneal
cavity of mice results in 100% mortality, while inoculation of the
same dose of either organism alone does not result in lethal
disease (25). Recent work identified that C. albicans influences S.
aureus quorum sensing to augment its virulence, which
contributes to the lethality of polymicrobial intra-peritoneal
infection (Figure 1). Co-culture of C. albicans with S. aureus
enhances the S. aureus quorum-sensing system Agr, or accessory
gene regulator (28). The Agr system regulates a variety of toxins
that are important for S. aureus pathogenesis, including a-toxin
(21, 29). Todd et al. determined that co-culture of C. albicans
with S. aureus enhances a-toxin levels in vitro, and co-
inoculation of C. albicans and S. aureus into the peritoneum
also resulted in greater a-toxin levels in the peritoneal lavage
December 2021 | Volume 12 | Article 797550
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fluid relative to S. aureus mono-infection (28). While antibody
treatment that neutralizes a-toxin in mice partially alleviated the
mortality in a C. albicans-S. aureus co-infection, injection of
purified a-toxin combined with live C. albicanswas not sufficient
to induce enhanced mortality (28). Thus, lethal synergism in this
model may require either live organisms or involve additional S.
aureus virulence factors.

One mechanism proposed for enhanced activation of S.
aureus Agr system during co-culture with C. albicans requires
C. albicans amino acid metabolism. During infection, C. albicans
can catabolize amino acids and utilize these nutrients as a carbon
source (14). Amino acids are imported via amino acid
permeases, which are regulated by the transcription factors
Stp1p and Stp2p. As C. albicans catabolizes amino acids, it
exports ammonia, which alkalinizes the extracellular media
and promotes C. albicans hyphal formation (30). C. albicans
stp2D/D is defective in the alkalinization of the extracellular
environment and is more efficiently killed during macrophage
infection (30). The Agr system is sensitive to pH and optimal
activity occurs at neutral pH (31–33). Therefore, it was
hypothesized that C. albicans alkalinization of the extracellular
media as a byproduct of amino acid metabolism provides an
optimal pH for activation of the S. aureus Agr system during co-
culture (34). Indeed, S. aureus co-cultured with C. albicans
stp2D/D produces less a-toxin relative to S. aureus co-cultured
with wild-type C. albicans (34). However, the role of C. albicans
amino acid catabolism in promoting enhanced virulence during
co-infection with S. aureus in vivo remains to be determined.

An additional mechanism by which C. albicans may enhance
S. aureus virulence during co-infection requires C. albicans
morphogenesis signaling. Mice survive intraperitoneal co-
infection of S. aureus and the C. albicans morphogenesis
mutant efg1D/D, while mice inoculated with S. aureus and
wild-type C. albicans all succumb to disease (35). Efg1p is a
transcriptional regulator that induces hyphal gene expression
and filamentous growth, and an EFG1 mutant, which can only
Frontiers in Immunology | www.frontiersin.org 3
grow as yeast, is highly attenuated in vivo (36, 37). To test if
enhanced mortality during intraperitoneal co-infection requires
a specific C. albicans morphology, Nash et al. inoculated mice
with S. aureus and either a C. albicans yeast-locked strain or a C.
albicans hyphal-locked strain (38). However, S. aureus co-
inoculated with either yeast-locked C. albicans or hyphal-
locked C. albicans is as lethal as co-infection with wild-type C.
albicans in this model (38). Considering that morphology-locked
strains are typically attenuated in vivo, it is surprising that
morphology-locked C. albicans strains can still enhance S.
aureus virulence during intraperitoneal co-infection (16, 36).
There may be additional morphology-independent processes
regulated by Efg1p that contribute to lethal synergism during
polymicrobial intra-abdominal infection. In addition to inducing
filamentous growth in C. albicans, Efg1p is a master regulator of
metabolic genes, as well as genes involved in adhesion (39). For
example, C. albicans efg1D/D has significantly reduced transcript
levels for almost all glycolytic genes and several tricarboxylic acid
cycle genes (40). Thus, C. albicans metabolism, as regulated by
Efg1p, may play an additional role in enhancing S. aureus
virulence during intra-abdominal polymicrobial infection.
S. AUREUS INFLUENCE ON C. ALBICANS
VIRULENCE

The mechanisms by which S. aureus directly promotes C.
albicans virulence are less clear. However, one bacterial-derived
molecule with potent effects on C. albicans morphology and
metabolism is peptidoglycan. Serum is a potent inducer of C.
albicans hyphal formation, and an analysis of the hyphal-
stimulating fractions of human and bovine serum found
structures resembling bacterial peptidoglycan fragments (37,
41, 42). Partial hydrolysis of peptidoglycan purified from the
Gram-positive bacterium S. aureus or the Gram-negative
FIGURE 1 | C. albicans and S. aureus interact to enhance virulence. C. albicans enhances S. aureus Agr activation through amino acid metabolism-driven pH
modification and morphogenesis signaling. S. aureus may enhance C. albicans virulence through the release of peptidoglycan fragments that are sensed by Cyr1p
and trigger hyphal morphogenesis.
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bacterium Escherichia coli potently induces hyphal formation
(41). These peptidoglycan fragments are imported by C. albicans
and sensed by the adenylyl cyclase protein Cyr1, which activates
the Protein Kinase A (PKA) pathway and induces hyphal gene
expression (41). One hypothesis is that the source of
peptidoglycan fragments present in serum is from turnover of
the bacteria that comprise the intestinal microbiome (42). Tan
et al. confirmed that culturing C. albicans adjacent to both Gram-
positive and Gram-negative bacteria induced hyphal formation,
and this effect could be further augmented by treatment with
b-lactam antibiotics (43). b-lactams disrupt crosslinking of new
peptidoglycan fragments, freeing peptidoglycan molecules from
the bacterial cell wall during the process of killing the bacteria
(44). Mice that were treated with b-lactam antibiotics before and
after C. albicans oral inoculation developed greater C. albicans
hyphal formation in the gut (43). The b-lactam-treated mice also
had higher C. albicans burdens in the kidneys, indicating
increased dissemination to peripheral organs following
b-lactam treatment (43). However, signaling among the
various bacterial organisms that comprise the intestinal
microbiota and C. albicans likely also influence C. albicans
morphology and pathogenesis in the gastrointestinal tract.

N-Acetylglucosamine (GlcNAc) is also a component of
peptidoglycan that can influence C. albicans metabolism and
virulence. During infection, C. albicans can metabolize
alternative carbon sources, such as GlcNAc, to facilitate host
adaptation and survival (14). GlcNAc is also found as a
component of chitin in fungal cell walls and as a part of the
extracellular matrix in animals (45). However, bacteria release
GlcNAc during cell wall remodeling and peptidoglycan turnover
and may provide a significant source of GlcNAc to C. albicans
cells during mixed fungal-bacterial infections (45, 46). GlcNAc is
imported into the fungal cell via Ngt1p, is phosphorylated, and
either enters an anabolic pathway for the synthesis of chitin or is
catabolized for use in glycolysis (45, 47, 48). Interestingly, C.
albicans mutants that cannot phosphorylate and metabolize
imported GlcNAc still form hyphal filaments following
GlcNAc exposure (49). This indicates a role for GlcNAc as a
signaling molecule in C. albicans that is independent of its role as
a nutrient and carbon source. However, metabolism of GlcNAc
can also induce hyphal formation, as it releases ammonia and
alkalinizes the extracellular media, which triggers hyphal
formation (50). GlcNAc metabolism is important for
alkalinization of the macrophage phagosome following
phagocytosis of C. albicans yeast, which promotes C. albicans
hyphal growth and survival within the macrophage (51). These
studies collectively demonstrate that components of bacterial
peptidoglycan can have potent effects on C. albicansmetabolism,
morphogenesis, and subsequent virulence.

During co-infection, S. aureus grows in close association with
C. albicans hyphae (24). Since S. aureus releases peptidoglycan
fragments during growth (52), it is feasible that peptidoglycan
recycling and remodeling plays a role in altering C. albicans
metabolism and morphogenesis through a ready supply of
released peptidoglycan fragments (Figure 1). Peptidoglycan
detection by C. albicans could be an additional mechanism
Frontiers in Immunology | www.frontiersin.org 4
contributing to the lethal synergism exhibited by C. albicans
and S. aureus co-infections. Whether the ability of C. albicans to
sense and respond to peptidoglycan released by neighboring
bacteria is also important for C. albicans existence as a
commensal within the gastrointestinal tract remains to
be determined.
C. ALBICANS-S. AUREUS BIOFILM
INTERACTIONS

Biofilms pose a major clinical problem as they display tolerance
to standard antimicrobial treatments and can become a niche for
persistent infections. In addition to their ability to form robust
biofilms during mono-infection, C. albicans and S. aureus have a
propensity to form robust polymicrobial biofilms during co-
infection (4, 53, 54). These are often associated with indwelling
medical devices, such as catheters (55). However, certain disease
conditions, such as within the cystic fibrosis lung, are also a niche
for polymicrobial biofilm growth of C. albicans and S. aureus (5).
In this section, we will review metabolic adaptations of both
organisms during polymicrobial biofilm growth. We discuss how
polymicrobial biofilm growth contributes to the altered virulence
observed during a C. albicans-S. aureus co-infection relative to
infection with either organism alone (Figure 2).

Polymicrobial Biofilm Structure
and Metabolism
C. albicans and S. aureus are tightly associated in polymicrobial
biofilms. S. aureus forms microcolonies within the C. albicans
biofilm matrix, and the bacteria primarily attach to the hyphal
form of C. albicans (Figure 2A) (56–58). Binding to C. albicans
hyphae is predominantly mediated by the C. albicans hyphal-
specific protein Als3, which functions as an adhesin (59).
However, in the presence of serum, S. aureus adheres to C.
albicans als3D/D filaments to the same degree as wild-type
filaments, indicating that other factors may play a role in
adherence of S. aureus to C. albicans hyphae under different
conditions (60). In addition to strong adherence to hyphal
filaments, S. aureus colony forming units (CFU) are also
significantly higher when grown with C. albicans in a
polymicrobial biofilm relative to mono-microbial biofilm (56,
61, 62). However, C. albicans CFU remain the same whether
grown in biofilms alone or with S. aureus (56). Biofilm growth is
reduced when S. aureus is co-cultured with efg1D/D cph1D/D and
bcr1D/D C. albicansmutants, but these mutants are also unable to
form robust biofilms during C. albicans mono-microbial growth
(60). Interestingly, S. aureus biofilm growth is enhanced when
co-cultured with amphotericin-B killed, but not formalin killed,
C. albicans biofilm (60). Amphotericin-B disrupts fungal cell
membranes to kill C. albicans, while formalin kills cells by cross-
linking proteins. Therefore, enhanced S. aureus biofilm growth
during co-culture with C. albicans is not dependent on a process
mediated by live C. albicans cells, but rather a surface protein
that can be neutralized by formalin. Fungal glucans are an
December 2021 | Volume 12 | Article 797550
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additional C. albicans cell wall component present in the
extracellular matrix material of C. albicans biofilms, and
glucans enhance S. aureus biofilm formation when supplied
exogenously (63).

The differences in C. albicans and S. aureus behavior and
physiology within a polymicrobial biofilm may be partly
mediated by metabolic changes. Proteomic analysis of C.
albicans-S. aureus polymicrobial biofilm growth identified an
increased abundance of proteins primarily involved in
metabolism and stress response for both organisms relative to
mono-microbial biofilms (57). Metabolic exchange within the
polymicrobial biofilm could also influence biofilm formation
and biomass. For example, glucose is the most abundant
monosaccharide present in the extracellular matrix of a C.
albicans mono-culture biofilm (64). Because glucose enhances
S. aureus biofilm production, greater availability of glucose
provided by the C. albicans biofilm matrix may also enhance S.
aureus growth and biofilm production, contributing to greater
biomass in the polymicrobial biofilms (65). Altered metabolism
in C. albicans-S. aureus biofilm may also contribute to enhanced
persistence of the organisms in vivo. S. aureus biofilms produce
lactate that modulates host macrophages and myeloid-derived
suppressor cells (MDSC) to produce more IL-10, which has an
anti-inflammatory effect that enables persistence of S. aureus
biofilms in vivo (66). S. aureus-produced lactate may also have
Frontiers in Immunology | www.frontiersin.org 5
effects on C. albicans cells within the polymicrobial biofilm.
Lactate induces reorganization of the fungal cell wall to reduce,
or mask, exposure of b-glucan on C. albicans hyphae (67).
Because b-glucan is a potent immunostimulatory factor, the
response to lactate reduces immune detection, allowing greater
C. albicans persistence and survival during infection. While most
studies have focused on synergistic metabolic interactions
occurring within polymicrobial biofilms, broad metabolomic
analyses to characterize both synergistic and antagonistic
interactions between C. albicans and S. aureus are needed.

Chemical Signaling in C. albicans-S.
aureus Biofilms
Several chemicals produced by both S. aureus and C. albicans can
influence polymicrobial biofilm formation through cross-species
signaling. One of the best-studied chemical signals that can alter
both C. albicans and S. aureus physiology is farnesol (68).
Farnesol is a quorum-sensing molecule derived from glycolytic
products via the sterol pathway in C. albicans (68). Farnesol
blocks the C. albicans morphological transition from yeast to
hyphae under high cell density (69). As C. albicans hyphal
growth is required for the development of a biofilm, farnesol
inhibits C. albicans biofilm formation (70). Depending on the
concentration, farnesol exerts both synergistic and antagonistic
effects on S. aureus physiology (4). High concentrations of
A B

C D

FIGURE 2 | C. albicans and S. aureus form robust polymicrobial biofilms. (A) S. aureus adheres to Als3 protein on C. albicans hyphae, promoting strong
attachment and enhancing biofilm growth. (B) C. albicans chemical signals farnesol and PGE2 enhance S. aureus biofilm growth and biomass. (C) Biofilm matrix
components, particularly b-glucan, act as a physical barrier to resist antimicrobials and promote S. aureus survival. (D) C. albicans biofilms generate a hypoxic
microenvironment that may enhance S. aureus toxin production.
December 2021 | Volume 12 | Article 797550
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farnesol were first determined to inhibit S. aureus biofilm
growth, induce cell death, and increase sensitivity of a
methicillin-sensitive S. aureus strain towards a variety of
different classes of antibiotics (71). Farnesol can also inhibit S.
aureus lipases, which hydrolyze host lipids to free fatty acids that
promote colonization (72). However, low levels of farnesol
promote biofilm formation in S. aureus (62). Additionally,
Kong et al. determined that low concentrations of farnesol
could increase S. aureus resistance to antibiotics via a cellular
stress response (73). RNAseq analysis of S. aureus exposed to
farnesol revealed an increase in expression of genes involved in
stress response as well as protection against oxidative stress (74).
Accordingly, farnesol treatment induces greater S. aureus
resistance to killing by H2O2 (74). The ultimate effects of
farnesol on S. aureus during infection may vary spatially or
temporally within the polymicrobial biofilm based on the
changes in C. albicans production of farnesol during
development of the polymicrobial biofilm.

An additional chemical signaling molecule involved in C.
albicans biofilm formation is prostaglandin E2 (PGE2). C.
albicans, in addition to other pathogenic fungi, can synthesize
prostaglandins de novo or following supplementation with
arachidonic acid, which is metabolized to produce
prostaglandins via cyclooxygenase (COX) enzymes (75). The
prostaglandins synthesized by C. albicans stimulate germ tube
formation, which is the precursory step to hyphal growth (75).
Furthermore, C. albicans biofilm formation is significantly
reduced following the use of COX inhibitor drugs to block
prostaglandin biosynthesis (76). PGE2 added to S. aureus
mono-culture stimulated greater biofilm growth relative to
untreated S. aureus biofilms, mimicking the enhanced biomass
following co-culture with C. albicans (62). These data suggest
that PGE2 may be another fungal-derived molecule that
influences biofilm growth of both organisms in a polymicrobial
biofilm (Figure 2B).

The effects of S. aureus chemical signals on C. albicans biofilm
formation and physiology are less understood. When S. aureus
and C. albicans are added together to form a polymicrobial
biofilm, S. aureus increases attachment of C. albicans to plastic
surfaces (77). Additionally, conditioned media from a mature S.
aureus biofilm significantly enhances C. albicans biofilm
formation, suggesting S. aureus secreted factors contribute to
biofilm formation (77). The S. aureus factor(s) that enhances C.
albicans biofilm remains unknown. As discussed earlier,
peptidoglycan fragments induce C. albicans hyphal formation
(41, 43). Because hyphal formation is a requisite step in biofilm
formation, it is possible that peptidoglycan fragments present in
the S. aureus conditioned media are enhancing C. albicans
biofilm. S. aureus can also negatively regulate biofilm
formation through the production of staphylokinase (Sak),
which reduces biomass and metabolic activity of C. albicans-S.
aureus polymicrobial biofilm by causing detachment of cells
from the biofilm (78). Sak also reduced C. albicans gene
expression of morphogenesis regulators (78). However, it is
unclear if Sak-mediated changes in C. albicans gene expression
are directly mediated by Sak or if it is an indirect effect resulting
Frontiers in Immunology | www.frontiersin.org 6
from detachment of C. albicans and S. aureus cells from the
polymicrobial biofilm. The effects of S. aureus chemicals and
other secreted factors on polymicrobial biofilm formation during
infection require further investigation.

Antimicrobial Resistance in C. albicans-
S. aureus Biofilms
Biofilm growth reduces antibiotic efficacy towards multiple
organisms, including S. aureus and C. albicans, presenting a
major barrier for treating infection. In addition to enhanced
growth and biomass of a polymicrobial biofilm, C. albicans-S.
aureus biofilms exhibit greater resistance to killing by
antimicrobials relative to mono-microbial biofilms (Figure 2C)
(56). Vancomycin is less effective at killing S. aureus when S.
aureus is grown in a biofilm with C. albicans, but there are no
changes in amphotericin-B fungicidal activity towards C.
albicans (56). Decreased antibiotic efficacy was also observed
when mice were surgically implanted with small catheters coated
in S. aureus and C. albicans (79). While S. aureus is less
susceptible to tigecycline in a mixed biofilm rather than a
mono-culture biofilm, there is no effect on C. albicans
susceptibility to anidulafungin in mixed or mono-culture
biofilms (79). Treatment with a combination of anidulafungin
and tigecycline improves S. aureus killing in a mixed biofilm
infection (79). Anidulafungin reduces S. aureus poly-b-(1,3)-N-
acetylglucosamine (PNAG) production, which is a component of
S. aureus biofilm matrix for select strains (79). Although the
mechanism by which anidulafungin reduces PNAG production
remains to be determined, the authors suggest that it may inhibit
activity of PNAG synthesis protein IcaA (79). However, the
anidulafungin-mediated reduction of C. albicans biofilm growth
may also contribute to enhanced killing of S. aureus in biofilm, as
reducing C. albicans burdens in a polymicrobial biofilm
consequently reduces the protective effect of C. albicans on S.
aureus antibiotic resistance (56, 80). One proposed mechanism
of reduced antibiotic efficacy towards S. aureus in a C. albicans
biofilm relative to a mono-microbial biofilm is through a
physical barrier of the biofilm preventing appropriate diffusion
of the antibiotics. To this end, Kong et al. demonstrated that b-
glucans present in the ECM of a C. albicans biofilm coat the
surface of S. aureus, preventing penetration of antibiotics (63).
However, there may also be a role for chemical signaling in
inducing a more antibiotic-tolerant phenotype in S. aureus
within the polymicrobial biofilm matrix. Exposure of S. aureus
to physiologic levels of farnesol, the C. albicans quorum-sensing
molecule that regulates biofilm formation, increases S. aureus
survival during vancomycin treatment. The decreased
vancomycin efficacy may be mediated by a global S. aureus
stress response following exposure of the bacteria to farnesol
(73, 74).

There is an urgent need to develop additional therapeutics to
better target microorganisms growing as biofilms. Reducing
biofilm biomass, specifically C. albicans burdens, improves
efficacy of antibiotic treatment (56, 79). Therefore, treatments
that aim to reduce biofilm biomass may improve or synergize
with additional antimicrobial treatments to improve the
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outcomes of polymicrobial biofilm infection. Recent work
demonstrated that biosurfactants limit formation of
staphylococcal and C. albicans biofilm growth on plastic and
metal surfaces (81, 82). Additionally, extracellular DNA
contributes to biofilm biomass, and DNase treatment of C.
albicans biofilms reduces biomass (83, 84). The use of
biosurfactants to prevent biofilm formation and DNase
treatment to reduce biofilm biomass may improve antibiotic
efficacy against C. albicans-S. aureus biofilms.

Hypoxic Microenvironment in
C. albicans Biofilm
Sites of infections, particularly invasive infections, are often
hypoxic. Hypoxia influences C. albicans and S. aureus
metabolism and subsequent interactions with host cells. Both
C. albicans and S. aureus biofilm growth provide a localized
hypoxic environment within the deepest sections of the biofilm
(85, 86). Under hypoxic conditions, C. albicans induces
transcription of genes for iron metabolism, ergosterol and
heme biosynthesis, fatty acid metabolism, and cell wall
biosynthesis, while reducing transcription of genes involved in
mitochondrial respiration and the tricarboxylic acid cycle (87).
In addition to regulating C. albicansmorphogenesis, Efg1p is also
a key regulator of biofilm-specific gene expression under hypoxic
conditions (88). During invasive C. albicans infection,
neutrophils are rapidly recruited to the site of infection and
contribute to the hypoxic environment (89). In response to
hypoxia, C. albicans masks b-glucan on its cell surface via a
mechanism that requires C. albicans reactive oxygen species
signaling within mitochondria and the cAMP-PKA pathway
(90). Increased lactate produced by the recruited neutrophils
under hypoxic conditions may also contribute to masking of b-
glucan under hypoxic conditions, which leads to enhanced C.
albicans survival following interactions with neutrophils (89).
Hypoxia also impairs neutrophil responses towards S. aureus,
contributes to S. aureus abscess formation, and enhances
localized tissue destruction (91, 92). S. aureus toxin production
is also increased under hypoxic conditions (93). Therefore, it is
possible that the hypoxic microenvironment created within a
polymicrobial biofilm with C. albicans could enhance S. aureus
toxin production relative to S. aureus grown as a mono-culture
biofilm (Figure 2D). Determining how C. albicans-S. aureus
biofilm formation alters the distribution or availability of oxygen
relative to mono-microbial biofilms will be important to define
the consequences of hypoxia on microbial metabolism during
polymicrobial biofilm growth.

Staphylococcus epidermidis and
C. albicans Biofilms
Although typically less severe than the infections caused by S.
aureus, Staphylococcus epidermidis can also cause recalcitrant
biofilm-related infections and can grow as a polymicrobial
biofilm with C. albicans (23, 94). Early studies determined that
C. albicans and S. epidermidis have greater biomass in the
polymicrobial biofilm relative to mono-microbial biofilm
Frontiers in Immunology | www.frontiersin.org 7
growth on a catheter disc model (94). Fluconazole is less
effective against C. albicans and vancomycin is less effective
against some strains of S. epidermidis when both organisms are
grown in a polymicrobial biofilm (94). S. epidermidis added to
pre-formed C. albicans biofilms adhere to C. albicans, and single
cell force spectroscopy was used to demonstrate that the strong
attachment is primarily mediated by C. albicans hyphal
proteins Als1 and Als3, as well as O-linked mannans on the C.
albicans cell surface (95, 96). Surgical implantation of a S.
epidermidis-C. albicans infected catheter in mice resulted in
greater S. epidermidis growth on the catheter and enhanced
dissemination, highlighting a role for C. albicans in
enhancement of staphylococcal virulence in vivo following
polymicrobial biofilm growth (83). Microarray analysis
revealed 223 differentially expressed S. epidermidis genes
following biofilm growth with C. albicans relative to growth in
the absence of C. albicans (83). C. albicans polymicrobial biofilm
growth increases expression of genes encoding the global
transcriptional regulator SarA and nucleic acid metabolism
pathways, while reducing genes involved in carbohydrate
and amino acid metabolism pathways (83). Pammi et al.
demonstrated a role for S. epidermidis extracellular DNA in
contributing to the greater biofilm growth and biomass of a
S. epidermidis-C. albicans polymicrobial biofilm (83). Taken
together, S. epidermidis, like S. aureus, has enhanced biofilm
growth when co-cultured with C. albicans. Comparing the
metabolic changes that are species-dependent may reveal both
shared and unique mechanisms of staphylococcal interactions
with fungi during polymicrobial biofilm growth.
HOST-MEDIATED MECHANISMS OF
VIRULENCE DURING C. ALBICANS-
S. AUREUS CO-INFECTION

Host immune responses during acute C. albicans-S. aureus co-
infections typically contribute to disease severity rather than
promote resolution of infection. While increased virulence
during C. albicans-S. aureus intraperitoneal co-infection is
mediated in part by alterations to microbial physiology, host
immune responses also contribute to the lethal synergism of co-
infection. Intraperitoneal co-infection of C. albicans and S.
aureus induces increased levels of pro-inflammatory cytokines
IL-6 and G-CSF and chemokines CXCL-1, CCL2, and CCL3 as
well as greater neutrophil influx to the peritoneal cavity
compared to infection with either organism alone (25). The
robust inflammatory response during intraperitoneal C.
albicans-S. aureus infection is driven in part through host
inflammatory mediator PGE2 (25). Treating mice with a
NSAID, which inhibits PGE2 production, reduces neutrophil
recruitment and improved survival of mice (25). The
contribution of C. albicans-derived PGE2 to lethality during
intraperitoneal co-infection of mice is unknown. The addition
of pro-inflammatory cytokines also enhances the growth of S.
aureus in liquid culture (97, 98). Whether the enhanced pro-
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inflammatory cytokine production during C. albicans-S. aureus
directly promotes greater S. aureus growth during co-infection in
the peritoneum is also unknown. Oral co-infection of C. albicans
and S. aureus results in greater dissemination of S. aureus to the
kidneys relative to S. aureus inoculated alone by “hijacking” of
macrophages (26, 99–101). It was initially proposed that S.
aureus binds Als3p on C. albicans hyphae and is physically
pushed into the subepithelial layer as C. albicans hyphae grow,
facilitating spread beyond the initial infection site in a
“hitchhiking” mechanism (99). However, it was later
determined that C. albicans hyphae attract macrophages that
fail to phagocytose the large hyphal filaments but instead
phagocytose S. aureus bound to the hyphae in a “bait-and-
switch” mechanism (26). The engulfed S. aureus evade
macrophage-mediated killing, and instead the S. aureus-loaded
macrophages traffic to the draining lymph node and facilitate
bacterial spread to other organs, such as the kidneys (26).
Supporting a role of macrophages in enhancing S. aureus
dissemination during oral co-infection, treatment of mice
orally co-infected with C. albicans and S. aureus with high
levels of steroids reduces circulating immune cells and
decreases the incidence of S. aureus dissemination beyond the
oral mucosa to the kidneys (101). There may also be a secondary
role for C. albicans-induced epithelial damage in mediating S.
aureus dissemination during oral co-infection. Co-inoculating
mice with S. aureus and C. albicans ece1D/D, which cannot
produce the candidalysin toxin, results in smaller tongue
lesions and reduced dissemination to the kidneys relative to
co-infection with wild-type C. albicans (101). Infection of the
oral mucosa with C. albicans and S. aureus highlights a role for
macrophage phagocytosis in facilitating dissemination of S.
aureus beyond the initial site of infection.

C. albicans and S. aureus secreted factors produced during co-
infection also negatively impact host cells by direct toxicity.
Epithelial cell lines exhibit greater cell death (as measured by
lactate dehydrogenase release) following treatment with
conditioned media from C. albicans-S. aureus biofilms
compared to treatment with conditioned media from either
organism grown as a mono-microbial biofilm (102) . S. aureus
mono-culture biofilm growth produces higher levels of toxins
leukocidin A/B and a-toxin compared to planktonic cell growth,
which inhibits macrophage phagocytosis and induces
macrophage cytotoxicity (103). Because C. albicans enhances S.
aureus a-toxin secretion in planktonic co-culture, C. albicans
may further enhance S. aureus toxin production in a
polymicrobial biofilm (28). Chemical signals produced by C.
albicans-S. aureus biofilms also target host cells (104). Farnesol,
the C. albicans quorum sensing molecule that impacts both C.
albicans and S. aureus biofilm growth, induces apoptosis of
human squamous carcinoma cells (105). Additionally, even
brief exposure of pre-osteoblastic cell lines to farnesol inhibited
cell spreading, suggesting that chemical signaling from
polymicrobial biofilms that form on orthopedic devices may
influence bone cell physiology (106). Additional work to
understand the full effects of polymicrobial biofilm growth on
host cell responses during infection is needed. Because host
Frontiers in Immunology | www.frontiersin.org 8
responses can be influenced by the local environment of the
infection site, it will be important to analyze host responses
during C. albicans-S. aureus co-infection in multiple models.
C. ALBICANS AND S. AUREUS
INFLUENCE ON SECONDARY
INFECTIONS

There is significant overlap in immune responses to both C.
albicans and S. aureus. For example, a Th1/Th17 response is
required for clearance of both S. aureus and C. albicans in mice
(107). STAT3 is activated downstream of Th17 cytokine
signaling and is important for clearance of C. albicans and S.
aureus. STAT3 deficiencies predispose individuals to both S.
aureus and C. albicans skin and mucosal infections (108). IL-17,
a Th17 signature cytokine, is important for host defense against
both C. albicans and S. aureus skin and mucosal infections (109).
IL-17 induces epithelial cells to produce antimicrobial peptides
as well as CXC chemokines, which contribute to neutrophil
recruitment (109). Pro-inflammatory cytokines, antimicrobial
peptides, and neutrophils are important for S. aureus clearance
during skin infection, while the epithelial cell-derived
antimicrobial peptides are critical for protection against C.
albicans mucosal infections (110–112). Additionally, a vaccine
derived from the C. albicans Als3 protein not only provides
protection against C. albicans infections but also S. aureus
bacteremia and skin and soft tissue infection, and the
protection against both organisms is mediated via STAT3 and
Th17 signaling (113–115). The dual-species protection of the
Als3p-derived vaccine may result from structural similarities
between Als3p and S. aureus surface adhesins, such as collagen
binding protein and clumping factor (116). Interestingly, Als3p
is also the main factor to which S. aureus binds on C. albicans
hyphal filaments, although this interaction was not shown to
involve S. aureus collagen binding protein or clumping factor
(59, 99).

In addition to providing cross-protection via adaptive
immune responses, C. albicans also induces protection against
secondary S. aureus infections through innate immune memory,
often referred to as trained immunity (Figure 3). Trained
immunity is the process by which an initial infection induces
epigenetic changes in innate immune cells that alter their
response to a secondary infection (117, 118). A key feature of
trained immunity is that the immune cell returns to a baseline
after the initial infection is cleared, but the epigenetic changes
induced by the initial infection persist (119). During a secondary
infection, the trained immune cells generate a robust immune
response that contributes to clearance of the secondary infection
(119). C. albicans infection and the fungal cell wall protein b-
glucan are potent inducers of trained immunity. Non-lethal C.
albicans injection in mice provides protection against a
secondary lethal C. albicans challenge (27, 120). Protection
occurs via C. albicans b-glucan signaling through Dectin-1 on
monocytes, which is associated with changes in histone
methylation, indicating an epigenetic mechanism (120).
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Powering the trained immunity effect induced by b-glucan is a
shift in monocyte metabolism from oxidative phosphorylation to
aerobic glycolysis (121). Additionally, training induced by C.
albicans b-glucan not only provides protection against a
secondary C. albicans infection, but also secondary challenge
by other microorganisms, including S. aureus (27, 121, 122).
These data indicate that host exposure to C. albicans influences
subsequent S. aureus infection by providing protection via innate
immune memory. However, the protection generated during
primary infection may depend on the degree of immune
stimulation by C. albicans. A high infectious dose of C.
albicans induces a tolerant phenotype in monocytes in vitro, a
state in which monocytes have a diminished response to
secondary challenge (118, 123). The amount of b-glucan
exposure during infection may also vary based on the infection
site and local environment. Typically, b-glucan comprises the
inner cell wall layer of C. albicans, and C. albicans can modulate
levels of b-glucan display in the cell wall during infection in
response to host cues such as pH or available lactate (67, 124–
126). Therefore, C. albicans regulation of b-glucan exposure
in vivo likely influences the training phenotype. Other
signaling mechanisms stimulated during infection may also
contribute to the generation of innate immune cell memory.
Treatment of mice with monophosphoryl lipid A, a Toll-like
receptor 4 agonist, induces protection against a secondary
infection with either C. albicans or S. aureus (127, 128). Cell
signaling pathways induced by multiple PAMPs during
infection, particularly polymicrobial infections, may influence
the development of innate immune memory.
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Innate immune training by Candida also influences the
outcome of polymicrobial infection. Lilly et al. revealed that
inoculation of mice intraperitoneally with other Candida species,
such as C. dubliniensis, provides protection against a secondary
co-infection challenge with a lethal dose of C. albicans and S.
aureus (129). Mice that are rechallenged have greater neutrophil
recruitment to the peritoneal cavity as well as enhanced C.
albicans clearance, suggesting a role for neutrophils in
providing protection against secondary infection (129).
Inoculation of mice with C. dubliniensis provides protection
against a lethal C. albicans-S. aureus infection for up to 60
days and was not dependent upon B and T cells (130). One
hypothesis for C. dubliniensis-mediated immune protection is
that following inoculation of certain Candida species, the bone
marrow is transiently colonized, myelopoiesis is altered to skew
cell development towards suppressor cells, and upon secondary
challenge by a lethal polymicrobial infection, suppressive cells
are activated that minimize the harmful pro-inflammatory
response that occurs when naïve mice are co-infected (130,
131). Whether the protective effect conferred by primary C.
dubliniensis inoculation is also mediated by b-glucan and
Dectin-1 signaling is unknown.

While Candida and b-glucan induce a robust trained
immunity response, S. aureus has a more limited ability to
induce innate immune memory. Inoculating mice with S.
aureus to induce a skin and soft tissue infection (SSTI)
conferred protection against a secondary challenge with S.
aureus after the initial infection cleared (132). Macrophages
isolated from the S. aureus-infected mice were able to induce
FIGURE 3 | C. albicans induces innate immune training to provide broad protection against secondary infections. The generation of innate immune memory is
dependent upon C. albicans cell wall component b-glucan signaling through Dectin-1 on monocytes. Dectin-1 signaling induces epigenetic changes and a metabolic
shift from oxidative phosphorylation to aerobic glycolysis. Upon clearance of the primary C. albicans infection, monocytes enter a resting state, but retain the
epigenetic changes from the primary challenge. Secondary challenge with a lethal infection of C. albicans or other organisms such as S. aureus causes the trained
monocyte to produce a robust immune response that facilitates greater clearance of secondary S. aureus and C. albicans infections.
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greater killing of S. aureus when infected ex vivo as compared to
macrophages isolated from naïve mice (133). Enhanced
macrophage-mediated killing is specific for S. aureus as the
macrophages from S. aureus-infected animals did not enhance
killing of S. epidermidis, Enterococcus faecalis, or E. coli (133).
Additionally, protection against secondary SSTI infection is
limited to the site of inoculation and is dependent upon the
resident dermal macrophages present at the site of inoculation
(134). Transfer of bone marrow cells from mice that received an
initial S. aureus intradermal challenge failed to induce protection
against secondary challenge. This differs from training with b-
glucan, which induces changes in the hematopoietic progenitor
cells of the bone marrow (134, 135). S. aureusmay also negatively
impact trained immunity during growth as small colony variants,
or SCVs. SCVs can arise from mutations in metabolic genes and
are associated with chronic S. aureus infections due to their long-
term persistence within host cells and increased resistance to
standard treatments (136). S. aureus DhemB is a SCV with altered
metabolic activity that fails to induce protection against a
secondary S. aureus challenge in a murine intradermal
infection model (137). The absence of trained immunity was
proposed to be the result of an enhanced use of fumarate by S.
aureus DhemB, which depletes this metabolite from the local
environment and prevents macrophages from using fumarate to
drive the epigenetic changes required for training (137). Taken
together, these studies demonstrate that S. aureus can produce a
localized trained immunity that protects against secondary S.
aureus challenge in an SSTI murine model of infection, and the
protection is in part due to host metabolism as well as the activity
of resident dermal macrophages.
CONCLUSIONS AND FUTURE
PERSPECTIVES

C. albicans and S. aureus are formidable opportunistic
pathogens, and their interactions during acute polymicrobial
infection further worsen disease. Physical interactions mediate
tight association of S. aureus with C. albicans hyphal filaments,
facilitating enhanced chemical signaling and metabolite
exchange between the two organisms. Adherence of S. aureus
to C. albicans is particularly important for polymicrobial biofilm
growth, which reduces antibiotic efficacy due to physical
shielding of S. aureus from antibiotics as well as influencing
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S. aureus stress responses. C. albicans-S. aureus co-infection
induces a severe pro-inflammatory response characterized by
neutrophil influx, greater microbial burdens, and cytokine
responses. Paradoxically, separating the timing of C. albicans
and S. aureus inoculation induces a protective effect due to the
induction of trained immunity by C. albicans that provides
protection against a secondary S. aureus infection. Metabolic
changes during co-infection underpin a variety of outcomes of C.
albicans-S. aureus interactions, particularly during biofilm
growth and when interacting with host cells. It is important to
establish clinically relevant models of polymicrobial infection,
particularly chronic infection models, to better characterize
metabolic changes during C. albicans-S. aureus co-infection.
Future studies that examine molecular interactions among C.
albicans, S. aureus, and host immune cells during polymicrobial
infection are needed to identify therapies that may target these
challenging infections. Determining how C. albicans and S.
aureus physiology changes during various co-infection models
may reveal additional mechanisms of interaction that can be
targeted to reduce mortality and enhance antimicrobial efficacy.
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