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Abstract: The molecular pathways underlying the induction and maintenance of long-term synaptic
plasticity have been extensively investigated revealing various mechanisms by which neurons
control their synaptic strength. The dynamic nature of neuronal connections combined with
plasticity-mediated long-lasting structural and functional alterations provide valuable insights into
neuronal encoding processes as molecular substrates of not only learning and memory but potentially
other sensory, motor and behavioural functions that reflect previous experience. However, one key
element receiving little attention in the study of synaptic plasticity is the role of neuromodulators,
which are known to orchestrate neuronal activity on brain-wide, network and synaptic scales.
We aim to review current evidence on the mechanisms by which certain modulators, namely
dopamine, acetylcholine, noradrenaline and serotonin, control synaptic plasticity induction through
corresponding metabotropic receptors in a pathway-specific manner. Lastly, we propose that
neuromodulators control plasticity outcomes through steering glutamatergic transmission, thereby
gating its induction and maintenance.
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1. Introduction

A huge emphasis has been put into discovering the molecular pathways that govern synaptic
plasticity induction since it was first discovered [1], which markedly improved our understanding
of the functional aspects of plasticity while introducing a surprisingly tremendous complexity
due to numerous mechanisms involved despite sharing common “glutamatergic” mediators [2].
The considerable variation in the signalling pathways and induction requirements, mostly attributable
to various methodological approaches across heterogeneous neuronal populations, itself is key to
comprehend and properly stratify the diverse mechanisms by which specific neuronal subclasses
control their synaptic strength and structure in association with learning, memory, sensory and motor
functions [3,4]. However, at least in relation to long-term synaptic plasticity, the focus has been directed
predominantly towards glutamatergic transmission, particularly the roles of N-methyl d-aspartate
receptors (NMDARs) and calcium/calmodulin-dependent protein kinase II (CAMKII). Nonetheless,
an extensive number of studies show critical roles for other neurotransmitters and modulators in
long-term potentiation (LTP) and depression (LTD) through corresponding G-protein coupled receptors
(GPCRs). In this review, we explore current evidence on the roles of neuromodulators as key effectors
in the induction and maintenance of long-term synaptic plasticity and associated GPCRs involvement
in the modulation and steering of glutamatergic transmission focusing on plasticity induction, which
could facilitate future development of models determining the mechanisms that underlie certain
cognitive, behavioural, learning and memory subtypes.
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2. Metabotropic Pathways Are Necessary for Long-Term Synaptic Plasticity

Long-term synaptic plasticity (i.e., LTP and LTD) can be generally classified either based on
the loci of expression into presynaptic and postsynaptic forms or based on the molecular mediators
into two broad categories, NMDAR-dependent and NMDAR-independent forms, both of which
have been reported in different brain regions. It is thought that the “early” phase of LTP (e-LTP)
mediates short-term “labile” memories that still require maintenance and the late phase for long-term
storage [5–7]. Despite previous evidence in relation to NMDAR-dependent LTP showing key roles
for CAMKII not only in the induction but also the maintenance of LTP [8–10], other studies show
the opposite and it is proposed that the use of structural CAMKII inhibitors is difficult to interpret
as they might affect baseline transmission [11–14]. However, it is well-known that long-term storage
of plasticity-induced memories requires in the vast majority of cases gene expression, which is often
referred to as the protein-synthesis phase of plasticity that is necessary for long but not short-term
memory formation [15–19]. Accordingly—at least at specific synapses—the activation of certain GPCRs
during plasticity induction is found to trigger the gene-expression and/or translation of messenger
ribonucleic acid (mRNA) of proteins implicated, either functionally or structurally, in plasticity
regulation, maintenance and memory consolidation such as brain-derived neurotrophic factor (BDNF),
activity-regulated cytoskeleton-associated protein (Arc), fragile-x mental retardation protein (FMRP)
and others [20–22].

It was previously shown that NMDAR-dependent LTP involves local protein synthesis, which
precedes gene expression, or de novo protein production; however, various studies report that it is
induced via activation of BDNF, dopamine and metabotropic glutamate receptors (mGluRs) [23]. In
addition, local protein synthesis is also observed in NMDAR-independent forms of both LTP and LTD;
for instance, through BDNF signalling and mGluRs, respectively [24,25]. Therefore, NMDAR-mediated
activation of CAMKII auto-phosphorylation does not fully and solely explain both LTP induction and
maintenance. However, recent evidence shows ion flux-independent metabotropic roles of NMDARs
particularly in LTD, as some studies report that use-dependent blockade of NMDAR ion channel
using dizocilpine (MK-801) is found to block LTP but not LTD in contrast to competitive antagonism
using D-AP5 which blocks both [26]. With regards to NMDAR-independent plasticity in which
GPCRs, most commonly mGluRs, have primary functions it might be argued that one exception
is the voltage-gated calcium channel (VGCC)-dependent long-term plasticity in which VGCCs can
induce NMDAR-independent plasticity and may be sufficient for induction [27–29]. However,
VGCC-dependent LTP and LTD are also found to depend on either mGluRs (e.g., hippocampus
and cerebellum) or both mGlu and NMDA receptors (insular cortex) [30–32]. Despite that different
induction protocols, tissue preparations and experimental conditions can lead to varying results that
should not be directly compared, experimental findings show that some plasticity mechanisms are
shared by various neuronal populations and that the same synaptic population can exhibit different
mechanisms for plasticity induction—with distinct expression mediators—that could have independent
functional outcomes.

Another mechanism by which GPCRs mediate both early and late phases of plasticity is through
the activation of protein kinases, which can mediate the expression, trafficking and synaptic insertion
of NMDA and/or AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors through
downstream signalling, such as protein kinase A (PKA), PKC, PKMzeta, mammalian target of rapamycin
(mTOR), phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinases (MAPK) all of which
have been shown to be involved, either differentially or synergistically, in plasticity induction and/or
maintenance [33–37]. In addition, with regards to the critical roles of astrocytes, GPCR activation
and subsequent induction of astrocytic calcium signalling is found to trigger gliotransmitter release
that can subsequently induce multiple forms of long-term plasticity either directly through both pre-
and postsynaptic mechanisms or indirectly via altering neurotransmission to augment or prevent
plasticity induction [38,39]. Another possible mechanism for GPCRs in synaptic plasticity is based
on intracellular calcium mobilisation during induction as seen with mGluRs in cerebellar LTD [40].
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Lastly, evidence shows G-protein-specific effects in plasticity outcome modulation; for instance,
the activation of hippocampal (CA1) mGluR5 lowers the threshold for (i.e., promotes) LTD, while
group II mGluRs prime NMDAR activation and facilitate LTP. On the other hand, mGluR3 blockade
in the dentate gyrus impairs post-synaptic LTD while its activation modulates LTD presynaptically
and impairs LTP; similarly, blocking group III mGluRs impairs LTD and long-term spatial memory
but not LTP in CA1 neurons [41–44]. Additionally, mGluR activation is found to control the polarity
of plasticity; for instance, in acute spinal slices of substantia gelatinosa, blocking mGluRs switches
spike timing-dependent plasticity (STDP) following a pairing stimulation protocol from LTP to LTD,
while, in hippocampal slices, the activation of mGluRs switches chemical LTD (cLTD) induced by brief
application of NMDA into sustained LTP [45,46].

3. Neuromodulators in Synchronisation and Synaptic Plasticity

Accumulating evidence illustrates critical plasticity roles for GPCRs, particularly mGluRs, through
differential signalling pathways, and shows the involvement of other transmitters and modulators as
key participants in synaptic plasticity and memory. It is evidently supported that long-term synaptic
plasticity is the molecular mechanism of learning and memory as shown by evidence addressing the
assessment criteria of the synaptic plasticity and memory (SPM) hypothesis [47]. Furthermore, since at
its core long-term plasticity is a neuronal encoding mechanism, it is plausible to assume its involvement
in the control of behaviour which is induced by previous experience. Indeed, evidence shows a
strong correlation between synaptic plasticity and experience-dependent (i.e., motor and sensory)
learning [48,49]. In addition, synaptic plasticity is found to be physiologically involved in stress,
fear and emotional memory as well as pathologically in anxiety, major depressive disorder (MDD) and
drug addiction [50–55]. It is well-known that the majority of aforementioned psychological, behavioural
and learning subtypes rely heavily or at least partly on cholinergic, dopaminergic, serotonergic or
adrenergic transmission [56].

The artificial—mostly in vitro—induction of long-term plasticity in acute slices or primary cultures
requires the use of certain stimulation protocols suggested to mimic physiological patterns of network
activity required for synaptic plasticity and memory, most commonly high-frequency, theta-burst
and low-frequency stimulation (HFS, TBS and LFS, respectively) as well as pairing protocols [57].
It is strongly believed that brain rhythms represent oscillatory network activities responsible for
multiple emotional, behavioural and memory functions. In addition, it is proposed that the clinical
consequences of transcranial magnetic stimulation at certain frequencies are mediated by either short
or long-lasting synaptic plasticity mechanisms [58,59]. Indeed, clinical and in vivo evidence shows
frequency and network-based correlations between single-band/coupled brain oscillations and memory
retention and/or retrieval; for instance, theta, theta/gamma, beta/gamma, theta/theta synchronous and
alpha/gamma rhythms in different brain regions associate with spatial, associative, olfactory, fear and
visual memories, respectively [60–64].

Neuromodulators provide fine regulation of network activities and are suggested to control
frequency-dependent transmission [65]. Accordingly, evidence indicates that neuromodulators couple
rhythmic activity and synaptic plasticity; for instance, hippocampal muscarinic M1 receptors are
critical for theta-oscillations, LTP induction and spatial memory performance [66]. Moreover, increased
expression of serotonin reuptake transporter blocks theta-oscillations in the amygdala and impairs fear
learning while its deficiency causes delayed extinction learning and increased amygdala–prefrontal
cortex (PFC) theta-synchronisation [67,68]. Furthermore, noradrenaline release following direct
stimulation of locus coeruleus is reported to induce narrow-theta (7–9 Hz) oscillations and LTP in
the dentate gyrus while in hippocampal CA1 region it results in transient theta suppression and LTD
facilitation through β adrenergic receptors [69,70]. Additionally, selective activation of dopamine D4

receptor—which is associated with attention and working memory—induces gamma oscillations in the
hippocampus though parvalbumin-positive interneurons; in contrast, D3 activation inhibits gamma
oscillations and certain memory functions, whereas blocking D1/5 receptors during memory-encoding
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impairs long- but not short-term retention [71–73]. On the other hand, low-frequency (slow-wave) delta
oscillations are mostly observed during non-rapid eye movement (NREM) sleep. Slow-wave oscillations
are hypothesised to downscale synaptic strength of synapses potentiated during wakefulness that
would otherwise become saturated [74]. Little is known about the roles of modulators in slow-wave
oscillations; however, the oscillations are found to be partly regulated by astrocytic adenosine-mediated
inhibition through A1 receptors; additionally, blocking activity-driven BDNF expression reduces both
NREM slow-wave oscillations and synchronous PFC–hippocampal theta oscillations during extinction
learning [75,76]. Lastly, GPCR-induced expression of certain immediate early genes, namely c-Fos and
fos B genes, is found to regulate slow wave sleep and delta oscillations [77].

The above findings provide direct evidence for the essential involvement of neuromodulators in
both brain oscillations and memory processes. Despite extensive efforts to unravel the association
between rhythmic brain activity and various behavioural and cognitive functions, the specific roles
of neuromodulators remain incompletely understood. Additionally, network activity regulation is
most likely resultant from balanced effects of multiple transmitters and modulators that vary between
different brain states. Lastly, the metabotropic pathways by which neuromodulators control long-term
synaptic plasticity, summarised in Figure 1 below, are shared by various neuromodulators, hence
suggesting activity/behaviour-dependent and pathway-specific mechanisms. Therefore, the roles
of neuromodulators in synaptic plasticity need to be investigated in relation to specific innervation
pathways as well as associated learning subtypes through characterising their direct (i.e., synaptic)
involvement in glutamatergic steering and plasticity induction, as discussed below.
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Figure 1. Schematic representation of the main metabotropic signalling pathways by which
neuromodulators control long-term potentiation (LTP). Neuromodulators activate various protein
kinases that can: Firstly, modulate neuronal excitability through controlling ion-channel conductance
(e.g., NMDAR and VGCC) leading to the facilitation or direct induction of LTP. Secondly, protein
kinases (e.g., PKA, MAPK and PKC) can initiate the expression, trafficking, phosphorylation and/or
synaptic insertion of AMPA receptors leading to LTP expression. Lastly, protein kinases trigger the gene
expression of proteins necessary for LTP maintenance. * It is also implicated in long-term depression
(LTD), mostly through AMPA receptor internalisation.
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4. Transmission System-Based GPCR Modulation of Plasticity

4.1. Dopaminergic Transmission

Dopamine is the most-extensively studied neuromodulator in relation to synaptic plasticity due
to its crucial roles in emotion and motor control in addition to its non-fully characterised but still
critical involvement in cognition [78]. Despite subtype-specific polymorphisms, dopamine receptors
are classified into two main classes, namely D1 and D2 receptors, also known as D1-like and D2-like
receptors (subscript denotes receptor subtypes), respectively, which are widely but differentially
expressed across the brain. The former (D1) comprises D1 and D5 receptor subtypes while the latter
(D2) comprises D2–4 subtypes [79]. D1 receptors are coupled to Gs-protein, the activation of which
stimulates adenylyl cyclase and subsequent cAMP (cyclic-adenosine monophosphate) production and
PKA activation, while D2 receptors are coupled to Gi-protein and produce the opposite effect leading
to reduced cAMP production. However, dopamine receptors have been shown to stimulate or inhibit
other signalling pathways and intracellular effectors including Ca2+ channels, K+ channels, Na+/H+

exchanger and Na+/K+ ATPase pump in addition to critical roles in the induction and regulation of
gene expression [80].

Dopaminergic pathways have been identified for decades; however, the clinical aspects,
newly-identified inputs and projections and the concept of co-transmission represent more recent
insights into dopamine signalling [81,82]. Midbrain dopaminergic neurons in the ventral tegmental
area (VTA) and substantia nigra pars compacta (SNc) represent the two predominant sources of brain
dopamine as a modulator of neurotransmission, that project to distinct brain regions [83]. More recent
evidence shows that VTA and SNc exhibit differential connectivity covering the majority of brain regions.
In addition, direct electrical and optogenetic stimulation of VTA dopamine release causes brain-wide
network activity modulation even in regions receiving minimal to no VTA innervation [84,85]. However,
in relation to long-term synaptic plasticity and associated learning and memory, the greatest body of
evidence exists for mesocortical, nigrostriatal and mesolimbic pathways.

4.1.1. Mesocortical Pathway

Mesocortical projections from the VTA extend to the PFC and other cortical regions, particularly
the primary motor cortex (M1-cortex). The roles of PFC dopamine in learning and memory are
well-documented in relation to context encoding, spatial working memory, and emotional and
associative learning mostly through phasic release [86]. Functional coupling between the PFC and
VTA is shown to be mediated through phasic bidirectional control over sub-second timescales, which
is found in computational models to be important for mediating and determining the maintenance
and magnitude of long-term plasticity, respectively [87,88]. In addition, dopaminergic control of PFC
activity is suggested to regulate the thresholds for LTP and LTD [89].

Evidence shows critical roles for dopamine in LTP and LTD of PFC neurons as D1 receptor is
found essential for the maintenance but not induction of LTP while its agonist activation facilitates
LTD induction through transforming transient LFS-induced depression into sustained LTD [90].
Additionally, dopamine is also reported to be essential for NMDAR-dependent LTP induction in vivo
at hippocampal–PFC synapses through a D1- and PKA-dependent mechanism [91]. Moreover, direct
VTA stimulation shows frequency-dependent modulation of plasticity and synaptic transmission at
hippocampal–PFC synapses, highlighting the importance of mesocortical dopaminergic transmission
in the induction of PFC long-term plasticity [92]. In vitro evidence shows that dopamine can
facilitate either LTP or LTD at PFC Layers I/II–V synapses, in which brief dopamine application
induces LTD and facilitates tetanic stimulation-induced LTD as well. On the other hand, when
dopamine application precedes tetanic stimulation, it facilitates NMDAR-dependent LTP, suggesting
an activity-dependent role of “background” dopamine, which reflects concurrent synaptic activation
and NMDAR priming, in determining the polarity of plasticity [93,94]. Additional evidence for the
critical involvement of dopaminergic transmission in long-term plasticity comes from novel forms of
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associativity; as dopamine-facilitated LTD following tetanisation is found to depend on simultaneous
mGluR activation and synergistic activation of MAPK, cooperative activation of D1 and D2 receptors
additionally allows extended timing-dependent LTP (t-LTP) through neuronal excitation and inhibition
of GABAergic transmission, respectively [95,96].

Most established evidence for PFC dopamine shows key roles in working memory and
consolidation especially at hippocampal–PFC synapses as opposed to mostly-glutamatergic induction
of long-term plasticity [97]. However, recent studies unveiled various mechanisms by which dopamine
receptors modulate glutamatergic transmission to augment or depress PFC plasticity induction;
for instance, D2 receptor activation depresses NMDAR transmission and disrupts synaptic function at
hippocampal–PFC synapses, whereas at Layer V neurons D1 activation strengthens and depresses
NMDAR-mediated and non-NMDAR-mediated excitatory currents, respectively, while decreasing
neurotransmitter release following moderate-frequency (20 Hz) stimulation [98,99]. Moreover,
dopamine receptors can directly affect NMDA and AMPA receptor expression, as D1 activation
induces NR1/NR2B-containing NMDAR expression and trafficking in PFC neuronal cultures through a
tyrosine kinase-mediated PKA-independent mechanism; moreover, D1 activation is found to induce
PKA-dependent expression of surface GluA1 (formerly known as GluR1) subunit-containing AMPARs,
which is suggested to be an LTP-facilitating mechanism, while D2 activation decreases synaptic
expression of AMPARs in primary PFC cultures [100,101]. Interestingly, D1 receptors co-localise with
NMDARs in PFC pyramidal neurons and D1 activation is found to potentiate NMDAR-mediated
calcium influx through a PKA-mediated mechanism [102]. Furthermore, the activation of D4 receptor
subtype on PFC GABAergic interneurons supresses their glutamatergic transmission through regulating
calcineurin-dependent AMPAR trafficking; accordingly, D4-selective activation results in decreased
neuronal and interneuronal (following a transient increase) spontaneous action potential frequency
in contrast to dopamine itself, which depresses and increases neuronal and interneuronal firing,
respectively [103,104].

The critical involvement of dopamine in various functions of the PFC including executive function,
attention and learning are indirectly supported by pathology and drug-induced effects on PFC
plasticity; for instance, D2 receptor overactivation is found to induce LTD and subsequent long-lasting
suppression of NMDAR transmission of hippocampal–PFC synapses as a suggested mechanism of
schizophrenia-associated cognitive deficits [98]. On the other hand, low-dose amphetamine induces
cAMP-PKA mediated LTP through D1, but not D2, and adrenergic receptors. However, higher doses
impair potentiation through both D1 and D2 receptors by activating protein-phosphatase 1 (PP1),
similar to the observed effects of inhibited dopamine reuptake, which impaired D1/D2-dependent
MAPK (ERK1/2)-signalling-mediated LTD through D1 overactivation that was rescued by positive
allosteric-modulation of mGluR5 [105,106]. Lastly, D1-induced PKA/mTOR signalling-dependent
LTP is shown to underlie the antidepressant mechanism of the D1 agonist and D2/3 antagonist
levo-stepholidine in the medial PFC [107]. The aforementioned findings show distinct rather than
directly opposite effects of D1- and D2-like receptors and indicate that PFC dopamine is critically
involved not only in the maintenance but also the gating, induction and expression of long-term synaptic
plasticity and support key therapeutic potential in attention defects and psychiatric disorder-related
mood and cognitive impairments.

The second main cortical region receiving VTA dopaminergic inputs is the M1-cortex in which
dopamine is found essential in motor skill acquisition and associated long-term plasticity through
D1 and D2 receptors [108]. Immunohistochemistry staining-based retrograde tracing provides direct
evidence that VTA projections release dopamine in the M1-cortex that subsequently mediates gene
expression and plasticity-based motor skill learning but not retrieval, which is mimicked through direct
VTA stimulation and blocked by VTA lesioning that is rescued via direct levodopa injection [109]. Similar
to the aforementioned results in the PFC, dopamine-mediated LTP is not necessarily PKA-dependent
as LTP and motor learning are found to depend on D1 and D2 receptor modulation of phospholipase
C (PLC) activation rather than PKA in the M1-cortex [110]. Dopamine also has direct modulatory
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effects on M1-cortex network activity, neuronal excitability, gene expression, synaptic transmission and
LTP induction supporting its roles in the encoding, mapping and storage of skill memory [111]. It is
found that D2 but not D1 receptor blockade reduces forelimb representation and elevates movement
thresholds. In addition, dopamine denervation results in the loss of LTP, neuronal recruitment
and synaptic reorganisations that are required for accurate and refined movement during motor
learning [112,113].

4.1.2. Nigrostriatal Pathway

SNc dopaminergic projections extend to the dorsal striatum (DS)—comprising the putamen and
caudate nucleus—which receives excitatory glutamatergic inputs from the thalamus and cortex (i.e.,
corticostriatal pathway) and is suggested to be critically involved not only in movement, as a critical
component of the basal ganglia system, but various other functions including cognitive, emotion and
motivation-based decision making and learning [114]. The vast majority (95%) of striatal neurons
are GABAergic principal medium spiny neurons (MSNs) while the rest are cholinergic interneurons
(0.5%–1%) and distinct subtypes of GABAergic aspiny interneurons (3%–4%) [115]. A considerable
body of evidence shows key roles for SNc in learning and memory in addition to associated dopamine
release in the control of LTP and LTD of striatal MSNs. Early investigations showed that direct
stimulation of SNc during learning impairs memory retention, followed by studies directly implicating
SNc in spatial/relational learning independently from hippocampal function in rodents and a potential
role in reinforcement learning in humans [116–119].

Multiple experimental models of Parkinson’s disease (PD) have been developed, of which the most
commonly studied models are based on direct lesioning or selective-toxicity induction of dopaminergic
SNc neurons [120,121]. In PD models and patients, the disruption or loss of SNc dopamine is found
to impair long-term plasticity in both M1-cortex and DS in which plasticity alterations are believed
to mediate PD and L-DOPA associated motor impairments and dyskinesia, respectively [122,123].
The corticostriatal plasticity impairments are found to depend on the level of denervation in which
minimal dopamine reductions which correspond to mild/early PD impair NMDAR-dependent LTP
but not LTD in contrast to complete depletion, which impairs both [124]. Consistent with this,
dopaminergic neuron transplantation in PD rat-model shows that improved motor symptoms are
associated with synaptic plasticity restorations that are seen only within the region of the graft [125].
Furthermore, the inability of L-DOPA to rescue M1-cortex plasticity in naïve PD patients despite clinical
improvements, while restoring M1-cortex LTP in non-dyskinetic but not dyskinetic patients in some
studies in addition to direct evidence in mouse models associating unidirectional striatal plasticity
of the direct and indirect pathways in PD symptoms and L-DOPA-induced dyskinesia provide clear
evidence for the critical roles of corticostriatal plasticity in motor control and that pathway-selective
effects of dopamine mediate plasticity-associated functional alterations under healthy/physiological
conditions [126–128].

Various studies investigating the mechanisms underlying long-term plasticity at corticostriatal
synapses show that LTP is readily induced via TBS and HFS, NMDAR-mediated and dependent on
D1 receptor activation [129,130]. Furthermore, corticostriatal D1 activation is found essential for the
induction of both LTP through a PKA-dependent mechanism and LTD through a PKG-dependent
mechanism that are induced in functionally-distinct neuronal populations [131]. On the other hand,
t-LTP induced via pairing stimulation requires endocannabinoids (eCB) and presynaptic D2-like
receptors in contrast to t-LTD that requires D1-like receptors and eCB signalling at corticostriatal but
not thalamostriatal synapses and is mostly expressed postsynaptically [132–134].

Despite the lack of structurally-defined subsets of corticostriatal MSNs, two main
movement-control and possibly action-selection pathways arising from DS projections have been
identified and are classified based on the connection with the basal ganglia “interface” into direct
and indirect pathways, both of which being critically modulated by SNc dopamine afferents [135].
Direct-pathway MSNs primarily express D1-like receptors while D2-like receptors are primarily found
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on indirect-pathway MSNs, both of which are found to undergo LTP and LTD through different
mechanisms as discussed, and are described in detail by Cerovic and colleagues in a recent review
(2013) in which the authors propose models explaining the induction and expression of long-term
plasticity at both pathways [136]. Interestingly, strain variations in the proportion of long and short
splice variants of D2 receptors result in differential responses to mesostriatal D1/2 co-stimulation in
relation to c-Fos expression and neurobehavioural plasticity, which is suggested to affect liabilities to
certain psychopathologies [137].

Lastly, in relation to long-term synaptic plasticity, dopamine is found to control glutamatergic
transmission in the DS through differential D1 and D2 receptor-mediated modulation of intrinsic
neuronal excitability via multiple mechanisms through regulating K+, Na+, VGCC, AMPAR and
NMDAR channel currents during transmission that adjust dendritic excitability and subsequently
plasticity induction in addition to regulating AMPAR surface expression and presynaptic
neurotransmitter release [138,139].

4.1.3. Mesolimbic Pathway

The second main VTA dopaminergic projection innervates the ventral striatum, particularly the
nucleus accumbens (NAcc)—comprised of core and shell subregions involved in limbic and motor
control—which has long been heavily implicated in various behaviours and cognitive functions
such as reward, aversive learning, motivation, addiction, declarative learning and memory [140,141].
The NAcc receives glutamatergic excitatory inputs from five main brain structures or pathways:
the PFC, hippocampus, amygdala, thalamus and VTA all of which are modulated by dopamine and
proposed to mediate distinctive functions [142–145]. However, the functional differences between
input pathways are not clear and show various interrelated roles; for instance, thalamic–NAcc
inputs are found to mediate aversive memory and opiate withdrawal effects following chronic
exposure-induced LTP, while amygdala but not PFC inputs facilitate reward seeking. On the other
hand, hippocampal–NAcc inputs are found essential for spatial/reference memory and conditioned
place preference LTP that is impaired following stress. In addition, PFC–NAcc inputs are potentiated
following cocaine self-administration and believed to mediate seeking and withdrawal while VTA
glutamatergic inputs on NAcc GABAergic interneurons are shown to drive aversion [146–151].

NAcc dopamine efflux is found critical in regulating activity-based selection of multiple inputs that
either converge monosynaptically, as hippocampal and PFC inputs, or heterosynaptically; for instance,
stimulating the hippocampal pathway causes D1-mediated potentiation and inhibits amygdala inputs
through D1 and adenosine A1 receptors, whereas simultaneous pathway stimulation potentiates
both [143,152]. In addition, it was found that direct amphetamine injection, during simultaneous place
and cue conditioning, in the NAcc shell and core regions facilitate and impair hippocampal-dependent
place conditioning respectively; similarly, blocking dopamine receptors in NAcc shell attenuated
place conditioning in contrast to NAcc core dopamine blockade which facilitated and also impaired
place and cue-conditioning, respectively [153]. Lastly, one plausible input-selection mechanism is
based on lateral inhibition through GABAergic MSN transmission which is found to be attenuated
by D1 receptor activation that is suggested to: eliminate competitive pathway interactions, cause a
shift in input selection and amplify associated afferent signals [154]. Therefore, NAcc dopaminergic
modulation of input signal gains could determine which pathways undergo plasticity changes based
on behaviourally relevant stimuli.

The roles of NAcc dopamine in learning and behaviour are well-documented: for instance,
in spatial memory consolidation through both D1 and D2 receptors, food-reinforced instrumental
learning requiring coincident D1 and NMDAR activation, fear conditioning, reward learning through
distinct but still cooperative effects of D1/D2 receptors and motivation, which is suggested to depend on
neuronal-calcium sensor 1-mediated regulation of D2 receptors [155–159]. The neuronal composition
of the NAcc is very similar to the DS consisting primarily of D1- and D2-like receptor-expressing MSNs
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and, in addition to the aforementioned modulatory roles of dopamine, various studies report its direct
roles in plasticity induction, particularly LTP at NAcc synapses.

The D1-mediated activation of PKA in NAcc neurons is found to induce the expression,
phosphorylation and synaptic insertion of AMPARs in NAcc cultures; in addition to priming LTP,
providing a narrow time-detection mechanism for potentiation and mediating both the induction and
maintenance of aversive memory at D2-expressing MSNs [160–165]. Furthermore, the induction of
LTP in the NAcc requires D1/mGluR5 coactivation in a concentration-dependent manner as elevated
dopamine and/or glutamate levels are found to impair associated HFS-induced LTP [166]. On the other
hand, little is known about the mechanisms by which dopamine regulates NAcc LTD. Nonetheless,
plasticity-related functional and structural alterations in motivational drive and drug abuse provide
key insights on NAcc dopamine signalling and possible therapeutic potential in the management of
drug addiction and withdrawal [167,168].

4.1.4. Hippocampal Dopamine

The hippocampus has a central role in the study of learning and memory mechanisms with regards
to synaptic plasticity and has been the focus of extensive research for many decades with multiple
pathway-specific and network-based models [169]. The roles of various neuromodulators were studied
in relation to hippocampal plasticity including dopamine. The VTA has been previously considered as
the main and only source of hippocampal dopaminergic transmission; however, dopamine is shown to
be released from the axons of locus coeruleus adrenergic neurons as well, which are more-densely
found in the dorsal hippocampus, particularly the dorsal CA1 and CA3 regions, in contrast to VTA
projections that innervate ventral regions with only sparse dorsal presence [170]. The roles of dopamine
in relation to hippocampal-dependent learning and memory are well-documented and dopamine is
argued to promote more-motivational memories in relation to adaptive behaviour and hippocampal
function [171].

Interestingly, it was previously proposed that dorsal and ventral regions of the hippocampus
mediate distinctive memory subtypes (cognition and emotion-based memories respectively) [172].
More recent evidence suggests that dopaminergic modulation is source/region-dependent and that
VTA–ventral and locus coeruleus–dorsal hippocampal inputs are proposed to control two types of
novelty-related memories described as “common” and “distinct” novelties, respectively, with regards
to the presence or lack of past experience [173]. Similarly, novel-environment exposure results in a brief
period of reduced LTP induction threshold through a D1 receptor-mediated facilitation mechanism,
suggesting a key role in the retention of unexpected information [174]. Environmental novelty is found
to trigger locus coeruleus neuronal firing that subsequently mediates the enhancement of acquired
novelty-related memories through dopaminergic D1 but not adrenergic receptors [175]. Dopamine
is also found essential for functional coupling of network activities during learning and memory
formation; for instance, between the hippocampus and amygdala during the acquisition of fear
conditioning through D1 receptors and between the hippocampus and caudate nucleus for episodic
memory, which shows positive interrelation with D2 receptor availability in both regions [176,177].

In regards to the mechanisms by which dopamine modulates hippocampal long-term plasticity,
most studies have focused on the CA1 region. In hippocampal neuronal cultures D1 receptor activation
induces dendritic local protein synthesis, GluA1-subunit upregulation, AMPAR surface insertion
and enhanced synaptic transmission [178]. Early evidence from acute hippocampal slices showed
that D1 receptor activation during LTP induction is required for the late phase of CA1 LTP induced
following stratum radiatum (i.e., Schaffer collaterals) tetanisation, as D1 antagonists applied during
but not directly following induction impair the late phase, confirmed by a later study showing
that D1 mediates the maintenance of HFS-induced Schaffer collateral–CA1 NMDAR-dependent LTP
which requires CA1 protein synthesis and that direct D1 activation by itself can induce a slow-onset
LTP [179,180]. Interestingly, it was found in a later study that the D1 agonist-mediated LTP requires
NMDAR activation as well [181]. Accordingly, D1 receptor activation is found to partly contribute to
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the magnitude (20%–25%) of early (up to 40 minutes) LTP, an effect mimicked by the adenylyl-cyclase
activator forskolin, suggesting a PKA-mediated mechanism [182]. However, a more recent study
investigating the slow-onset D1-induced LTP, in CA1 neurons, shows differential dose-dependent
roles of MEK (MAPK/ERK pathway) and CAMKII enzymes as both were essential for LTP induction
following weak/low-dose D1 activation, whereas with stronger dopaminergic D1 activation the role of
CAMKII becomes partial and no longer a prerequisite for LTP induction in contrast to MEK1/2 role
which remains necessary [183].

CA1 dopamine is found in vivo to facilitate not only late-phase LTP but also late LTD associated
with object exploration through D1 receptors; similarly, D2 receptors are essential for the expression of
both LTP and LTD as well, the latter of which is found necessary for spatial learning and dependent
on presynaptic D2 receptors [184,185]. Interestingly, the D1 agonist SKF83959, which is reported to
activate PLC, is found to induce and facilitate LFS-induced LTD, which was dependent on NMDAR,
PLC, calcineurin and free cytosolic Ca2+, as the LTD facilitation was attenuated using a cell permeable
Ca2+ chelator (BAPTA-AM) [186].

Lastly, subtype-selective effects of D2 receptors in plasticity are also reported; for instance, D3

activation significantly increases LTP while D4 receptor activation results in complete depotentiation
(i.e., LTP reversal) in CA1 neurons and mediates the plasticity effects of neuregulin-1, which has been
linked to schizophrenia [187,188].

4.2. Cholinergic Transmission in the Hippocampus

The critical involvement of acetylcholine in learning and memory, particularly in relation to
acquiring novel information, are well-documented through studying the effects of lesioning and
pharmacological antagonism that show region and task-specific functions which are suggested to
rely on acetylcholine-mediated afferent input enhancement, spiking persistence and modulation of
inhibition [189]. Acetylcholine exerts its actions through two main classes of receptors: ionotropic
nicotinic (nAchR) and metabotropic muscarinic (mAchR) acetylcholine receptors that include various
subclasses. Nicotinic receptors are ligand-gated cation channels the permeability of which relies on
the subunit composition; generally, most subtypes are permeable to Na+ and K+ while α7-nAchR
shows rapid sensitisation and significant Ca2+ permeability [190]. In relation to synaptic plasticity,
most evidence exists for α7-nAchR, which has been shown to be heavily involved in Alzheimer’s
disease pathology in addition to cognition and memory processes [191,192]. On the other hand, five
muscarinic receptor subtypes have been identified and are either coupled to Gq (M1, M3 and M5

subtypes) or Gi (M2 and M4 subtypes) G-proteins and show differential distribution across multiple
brain regions and synaptic loci of expression [193].

Three main populations or nuclei of cholinergic neurons have been identified; the medial septal
nucleus, which is the main source of hippocampal acetylcholine, the basal nucleus of Meynert (NBM)
which mostly innervates the cerebral cortex and the pedunculopontine tegmental nucleus, all of which
are suggested to coordinate cognitive processes [194,195]. Moreover, cholinergic (i.e., acetylcholine
releasing) interneurons are known contributors to synaptic plasticity in specific synaptic populations,
particularly at corticostriatal synapses [196]. With regards to long-term synaptic plasticity, cholinergic
pathways have not been characterised as well as dopamine; however, the most studied cholinergic
system is the septohippocampal pathway—encompassing the hippocampal formation, the septum and
their interconnections in addition to afferent and efferent pathways—which has been heavily implicated
in memory-related processes including information encoding, retrieval and consolidation [197]. As
previously mentioned, neuromodulators induce synchronous neuronal activity associated with synaptic
plasticity as well as memory and of particular importance in relation to the hippocampus is the septal
cholinergic transmission which is often described as the theta-rhythm generator, which is required
for hippocampal LTP [66,198]. Moreover, evidence suggests intrinsic theta-generating capabilities
of the hippocampus that, together with septum-originating rhythms, rely heavily on muscarinic
receptors [199,200].
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Muscarinic receptors are essential for various types of learning and memory functions; for instance,
M1 receptor blockade impairs emotional and spatial memory as well as the retrieval of fear conditioning
while blocking presynaptic M2 autoreceptor enhances acetylcholine release and subsequently improves
spatial memory and cognitive performance in contrast to M2 knockout mice that exhibit impairments
in working memory and acquisition but not reference memory or retention [201–206]. Evidence shows
key memory roles for hippocampal M3 and M4 receptors, the latter of which is significantly reduced
in Alzheimer’s disease and its activation, and, in addition to M1 receptor, is proposed as a novel
treatment approach in Alzheimer’s disease [207–210]. Conversely, the molecular mechanisms by
which muscarinic receptors modulate synaptic plasticity and cognitive functions are less understood;
however, evidence shows critical modulatory roles on hippocampal network functions accomplished
via coordinated muscarinic and nicotinic receptor activation [211]. Briefly, presynaptic muscarinic
receptors (i.e., M2 and M4) regulate neurotransmitter release while postsynaptically expressed (i.e.,
somatic and dendritic) in addition to astrocytic and inhibitory interneuron receptors control their
excitability, through multiple mechanisms, via precise spatiotemporal regulation arising from both
phasic and tonic release which is supported by evidence showing that synergistic activation of multiple
muscarinic receptor subtypes is essential for both memory acquisition and retrieval [212,213].

Various studies have directly investigated the roles of muscarinic receptors, particularly M1, in the
induction and maintenance of long-term synaptic plasticity in the hippocampus and show timing and
concentration-dependent effects. Early evidence shows that HFS-induced LTP at CA3–CA1 synapses can
be enhanced by the activation of M1 receptors using low carbachol concentration or direct stimulation
of acetylcholine release, and both effects were abolished in M1 but not M3 knockout mice despite that
LTP was preserved. In contrast, high concentrations of carbachol resulted in short-lasting synaptic
inhibition, which was impaired in M1 and M1/M3 knockout mice [214]. These results were confirmed in
a later study in which M1 activation facilitated TBS-induced LTP through inhibiting postsynaptic small
conductance Ca2+-activated K+ (SK) channels, thereby preventing their hyperpolarising effect leading
to enhanced NMDAR channel opening/activation during TBS and subsequently LTP facilitation [215].
Moreover, direct agonist activation of M1 receptors significantly increases neuronal excitability, enhances
spike-coupling and is found sufficient to induce robust NMDAR-dependent LTP that occludes, and
therefore shares similar mechanisms with, stimulus/TBS-induced LTP at CA3–CA1 synapses [216].
Interestingly, the activation of not only surface but also intracellular M1 receptors enhances LTP,
the latter of which is mediated through the phosphorylation of ERK1/2 [217]. It was found in vivo
as well that the muscarinic M1 receptor is required for CA1 LTP induction and that acetylcholine
preconditioning through stimulating septal release provides a narrow time-window of lowered LTP
induction threshold that was prevented when atropine was applied [218]. Lastly, a special form of
anti-Hebbian LTP induced at inhibitory CA1 interneurons that favour postsynaptic hyperpolarisation
is found dependent on the co-activation of M1 and group I mGluR, which shows a new mechanism
by which cholinergic inputs regulate network transmission as this form of potentiation results in a
long-term increase of inhibition that is suggested to regulate input/pathway selection [219].

The M1 receptor is also involved in LTD induction; for instance, presynaptic (CA3) M1 receptors
are found essential, through a PKC-dependent mechanism, for the induction of mGluR cLTD [220].
In addition, LTD induced through direct agonist activation of M1 receptors in the hippocampus
is shown to rely on different molecular mediators that lead to AMPAR endocytosis compared
to mGluR-cLTD despite sharing the same G-protein subtype (i.e., Gq); moreover, another form
of M1-induced NMDAR-dependent LTD is found dependent on IP3-mediated intracellular Ca2+

release and is expressed via NMDAR internalisation [221,222]. On the other hand, the molecular
mechanisms by which M2–5 muscarinic receptors modulate synaptic plasticity are less understood
despite being critically involved in learning and memory as previously discussed; however, the different
subtypes of muscarinic receptors exhibit different roles in plasticity modulation [223]. Ultimately, the
substantial involvement of acetylcholine in cognitive processes and synaptic plasticity in addition to
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network function modulation, neuronal synchronisation and neurodegenerative disorders, particularly
Alzheimer’s disease, warrant further investigation.

4.3. Adrenergic Transmission

Noradrenaline (norepinephrine) in the brain has fundamental roles in various behaviours, namely:
arousal, attention, motivation, stress and vigilance. In addition, emerging evidence supports its key
roles in learning and memory [224]. Noradrenaline is exclusively released from a specific group of
brainstem nuclei (A1–A7), predominantly locus coeruleus, that project and supply noradrenaline
across various brain regions and of particular importance in relation to cognitive function are the PFC
and the hippocampus [225]. Noradrenaline targets two main classes of receptors, namely α and β

adrenoceptors. The former comprises α1 and α2 receptors, which are coupled to Gq and Gi proteins,
respectively, while the latter comprises β1, β2 and β3 receptors, all of which are coupled to Gs protein
while β2/3 receptors are also coupled to Gi.

In relation to learning and memory functions, noradrenaline release in the hippocampus, within a
narrow time window of learning/acquisition, is found essential in memory formation and consolidation.
In addition, the key modulatory roles of noradrenaline in emotional/stress, fear and spatial working
memories are well-documented [226–230]. Accordingly, noradrenaline release from the locus coeruleus
is proposed to control cognitive flexibility and orientation of attention as supported by evidence
showing spatiotemporal association between noradrenaline release and different brain states through
both brain-wide and region-specific activity modulation, especially in relation to hippocampal and
cortical oscillations [231,232].

It has been recently found that dopamine is also released from locus coeruleus adrenergic
neurons [170], which would require reinterpretation of earlier findings that investigated noradrenaline
role in synaptic plasticity through locus coeruleus stimulation, or activity monitoring, without
pharmacological confirmation of adrenoceptor involvement. Therefore, the molecular mechanisms
by which noradrenaline regulates synaptic plasticity are reviewed based on adrenoceptor-selective
effects. The strongest evidence in relation to synaptic plasticity exists for β2 receptors; however, other
adrenoceptors have been shown to not only be involved in synaptic plasticity and memory but also
exhibit complex interactions requiring the combined effects of multiple receptor subtypes as will
be discussed.

Early evidence showed that α1 receptor activation facilitates spatial learning despite not being an
essential requirement for acquisition [233]. This was later confirmed using mutant mice expressing
a continuously active form of α1A receptor subtype. These exhibited enhanced hippocampal LTP
induction and cognitive performance, in contrast to α1A knockout mice which exhibited poor cognitive
functions [234]. Interestingly, the simultaneous blockade of α1- and β-type adrenoceptors is found to
impair spatial avoidance learning; however, the antagonism of either receptor separately was unable to
impair locomotion, which suggests an adrenoceptor interaction required for the regulation of navigation
and learning [235]. Similarly, α1A and β1 adrenoceptors provide bidirectional regulation of the
magnitude of kainate-induced hippocampal gamma oscillations, which illustrates how noradrenaline
can either promote or depress oscillations with possible relation to information processing in learning
and memory [236]. In contrast, antagonisingα1 receptors is found to facilitate LTP and fear conditioning
in the amygdala through suppressing and promoting inhibitory and NMDAR currents, respectively.
In addition, α1 antagonism is also shown to dose-dependently potentiate NMDA but not AMPA
or kainate receptor currents in hippocampal CA1 neurons resulting in significant enhancement of
spatial learning and memory [237,238]. These results show how noradrenaline, through α1 receptors,
bidirectionally regulates synaptic plasticity and memory formation not only through regulating
LTP induction/maintenance but also through direct LTD induction, as previously reported in the
hippocampus that α1 receptor activation induces NMDAR-dependent LTD, which requires pre- and
postsynaptic neuronal activity and is independent on the activation of GABAA receptor or other
adrenoceptors [239].
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α2 adrenoceptors mostly serve an inhibitory presynaptic autoreceptor role and their in vivo
activation is reported to impair HFS-LTP induced at Schaffer collaterals CA3–CA1 synapses in a
dose-dependent manner that was accompanied with decreased hippocampal overall neuronal glutamate
content and increased paired-pulse facilitation ratio (i.e., reduced presynaptic glutamate release), which
is suggested to be mediated through inhibiting HCN channels (i.e., hyperpolarisation-activated cyclic
nucleotide-regulated channels) [240]. Interestingly, the activation of α2 receptors in the basolateral
amygdala was shown in vivo to augment HFS-induced LTP at hippocampal–PFC synapses while
its blockade impaired LTP induction; as opposed to the non-selective activation and blockade of β
receptors in the amygdala which reduced and enhanced LTP respectively at the same synapses [241].

β adrenoceptors, particularly the β2 subtype, have been more-heavily investigated in relation
to synaptic plasticity induction and maintenance. In the hippocampus, a recent study shows that β
adrenoceptors selectively augment LTP in the ventral CA1 region, which shows higher adrenergic
sensitivity compared to the dorsal region, leading to enhanced TBS-induced LTP magnitude and
stability. In addition, the exogenous application of isoprenaline resulted in increased postsynaptic
excitability, facilitated VGCC-mediated LTP and the induction of robust NMDAR-dependent LTP
following subthreshold primed stimulation in the ventral CA1 in contrast to moderate burst response
enhancement in dorsal CA1 region [242]. This is in accordance with more recent findings that the
source of hippocampal dopamine is region-dependent as ventral regions are mostly VTA innervated
while dorsal regions receive dopamine from locus coeruleus [173], suggesting distinct modulatory
roles between hippocampal dopamine and noradrenaline. Additionally, the facilitated induction of
hippocampal prefrontal path LTP, following weak electrical stimulation, through the application of
methylphenidate which inhibits the reuptake of dopamine and noradrenaline is found to rely on both
β and, to a larger extent, D1 receptors leading to improved working memory [243]. Moreover, the
combined activation of β1 receptor and M1 muscarinic receptor using isoprenaline and carbachol,
respectively, shows synergistic activation of mTOR, ERK and protein translation in hippocampal CA1
neurons leading to the transformation of stimulus-induced short-term potentiation into sustained
LTP [244]. Despite some studies using exogenous agonist application, which may be argued to be an
imperfect physiological representation, these results show novel forms of interactions hinting towards
intracellular coincident detectors downstream of GPCR activation.

Multiple studies selectively investigated β2 adrenoceptors which have been shown to play
critical plasticity roles through various mechanisms; for instance, β2 activation and subsequent
cAMP-PKA pathway stimulation enhance the magnitude of LTP at hippocampal CA3–CA1 synapses
through AMPAR GluA1-subunit phosphorylation and augment t-LTP at PFC Layers II/III lateral
synapses through postsynaptic PKA activation and suppression of GABAA-mediated inhibitory
transmission [245,246]. Additionally, the kinase-anchoring protein gravin has been identified—using
knockout mice lacking its α-isoform which exhibit plasticity and selective memory impairments—as an
essential mediator for PKA-induced β2 receptor phosphorylation and memory formation-associated
ERK activation in the hippocampus. This suggests that gravin protein provides a molecular coupling
mechanism and shows further interactions between glutamatergic and adrenergic transmission [247].
Similarly, a recent study investigating synergistic cAMP production in response to simultaneous
β/NMDA receptor activation, using isoprenaline and NMDA respectively as an LTP mechanism,
showed that, when β adrenoceptor activation precedes NMDARs (by several minutes), it results
in the attenuation of the NMDAR–cAMP response that through simulation modelling suggests a
novel “Gs-to-Gi” adrenoceptor switch in response to PKA-mediated β2 receptor phosphorylation
and subsequent Gi-mediated adenylyl cyclase inhibition [248]. Lastly, other β2-mediated plasticity
mechanisms have been identified and include the phosphorylative enhancement of L-type VGCC and
subsequent LTP induction in addition to the inactivation and removal of dendritic Kv1.1 channels
resulting in increased excitability, depolarisation, coincident activity detection and subsequently the
facilitation of t-LTP at hippocampal CA3–CA1 synapses [249,250].



Brain Sci. 2019, 9, 300 14 of 34

4.4. Serotonergic Transmission

Serotonin (5-hydroxy tryptamine, 5-HT) has essential roles in the control of a wide-range of
functions including sensory and motor modulation, emotion regulation and cognitive control in
addition to its critical involvement in the pathophysiology of various disorders such as migraine,
anxiety and depression [251]. The exclusive source of brain serotonin is a group of nuclei (B1–B8)
collectively referred to as the Raphe nuclei which project and release serotonin throughout the brain.
Serotonin targets seven main receptor types (i.e., 5-HT1–7) that are further subdivided into at least 14
different subtypes, all of which are GPCRs except for 5-HT3 which is an ionotropic receptor permeable
to Na+, K+ and Ca2+ ions. Metabotropic serotonin receptors are coupled to different G-proteins
including Gi (5-HT1 and 5-HT5), Gq (5-HT2) and Gs (5-HT4, 5-HT6 and 5-HT7) [252].

The crucial roles of serotonin receptors in learning and memory are well-established; for instance,
5-HT1A is necessary for object recognition memory while 5-HT2C is required for stress-induced
consolidation of fear memory [253,254]. On the other hand, the chronic activation of 5-HT4 is found
to reverse episodic and spatial memory impairments in mouse models of anxiety and depression in
addition to passive avoidance and spatial memory in scopolamine-treated mice [255,256]. In contrast,
the blockade of 5-HT6 receptor enhances object recognition memory, whereas 5-HT7 activation improves
spatial, cognitive and contextual memory with suggested therapeutic potential in autism and fragile-X
syndrome [257,258].

However, serotonin remains the least characterised neuromodulator in relation to its molecular
mechanisms of plasticity regulation as most studies do not undertake a receptor subtype-selective
approach. Nonetheless, a few studies investigated the roles of 5-HT2 receptor and show similar
mechanisms to other neuromodulators, in the regulation of glutamatergic transmission and subsequent
plasticity induction in various brain regions. In the basolateral amygdala, 5-HT2 receptor activation
transforms TBS-induced short-term potentiation into LTP through enhanced NMDAR-mediated
potentials and calcium influx; consistently, the presynaptic 5-HT2A receptor subtype in the PFC
is also shown to enhance NMDAR transmission, thereby gatekeeping subsequent induction of
presynaptic t-LTD at corresponding thalamocortical synapses [259,260]. Similarly, the application of
LFS in the NAcc stimulates serotonin release and LTD induction through 5-HT2 receptor-mediated
enhancement of L-type VGCC influx and eCB release [261], while in the PFC serotonin facilitates tetanic
stimulation-induced NMDAR-independent LTD through 5-HT2A and group-I mGluR synergistic
p38-MAPK activation and subsequent AMPAR internalisation [262].

Lastly, serotonin is able to modulate glutamate and GABA-mediated excitatory and inhibitory
transmission, respectively, through various receptor subtype-selective mechanisms such as
AMPAR recruitment, NMDAR conductance modulation, cooperative GABAB interaction, GABAA

phosphorylation and neurotransmitter release regulation [263].

5. Astrocytes and Neuromodulators

Astrocytes are increasingly recognised as active signalling elements that exhibit the abilities
to adjust neuronal excitability and synchronous activity [264]. In addition, astrocytes are heavily
implicated in synaptic plasticity and are found to undergo plasticity changes in response to neuronal
activity [265]. Astrocytic perisynaptic processes express a wide range of receptors the activation of
which triggers astrocyte excitation—through the generation of dynamic intracellular Ca2+ transients
that rely primarily on the Gq–IP3 pathway (IP3R2 in astrocytes)—and induces subsequent release
of gliotransmitters; thus, providing a bidirectional communication mechanism [266,267]. Moreover,
astrocytes express the receptors of, and respond to a vast number of neuromodulators [268]; hence,
astrocytes are able to detect and respond to both neuromodulatory signals and neuronal activity.

Accumulating evidence shows that astrocytes are key mediators of neuromodulator actions.
In regards to rhythmic activity and synaptic plasticity, astrocytes are critically involved in the regulation
of synchronous neuronal activity and associated processes, possibly in response to neuromodulator
signals, as astrocytes are found necessary for cognitive flexibility and theta/gamma coupling in
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addition to delta-, alpha- and gamma-power oscillations [269]. Accordingly, astrocytes exhibit
neuromodulatory interactions in relation to network activity regulation; for instance, astrocytes respond
to septal-released acetylcholine through α7-nAchR, via increased glutamate release and subsequent
activation of hilar interneurons in the dentate gyrus, hence performing an essential intermediary
role of septal cholinergic modulation of hippocampal activity [270]. Moreover, noradrenaline in
the visual cortex is found necessary for astrocytic sensitisation to localised neuronal activity which
occurs in a behaviour-dependent manner [271]. Additionally, it was found in vivo that somatosensory
cortex astrocytes show wide spread Ca2+ signalling responses following electrical stimulation of
locus coeruleus and peripheral sensory stimulation, through α-adrenoceptors, and this response was
found independent on sensory-driven glutamatergic pathways [272]. The above findings indicate a
potentially central role for astrocytes in the neuromodulation of network activity, synaptic plasticity
and sensory signal processing. A schematic representation of astrocytic synaptic coverage in relation
to afferent neuromodulatory signals is shown in Figure 2. Despite being key regulators of neuronal
transmission and a major target for neuromodulators, astrocytes have not been adequately studied in
relation to neuromodulator roles in synaptic plasticity; nonetheless, recent and emerging evidence
shows critical roles for astrocytes in various brain regions.
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Figure 2. A schematic representation of astrocytic synaptic coverage and neuromodulatory inputs.
Astrocytes are able to detect and respond to both synaptic activity and neuromodulatory afferent
signals. Neuromodulators and neuron-released transmitters (presynaptic and postsynaptic retrograde
messengers) activate associated receptors on perisynaptic astrocyte processes leading to intracellular
calcium signalling and subsequent induction of gliotransmitter release to modulate local activity
and synaptic plasticity. Similarly, neuromodulatory signals can target neurons, astrocytes or both;
hence, neuromodulators transmit behaviour-related signals to induce neuronal activity directly and/or
through astrocytes.
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In the hippocampus, the activation of muscarinic receptors is found to induce coincident activity
between postsynaptic neurons and astrocytes leading to glutamate release that targets mGluRs to
induce LTP which can be prevented via: buffering astrocytic calcium, deleting IP3R2 receptors which
mediate astrocytic intracellular calcium release (IP3R2-kockout mice) or inhibiting G-protein signalling
in astrocytes, and mimicked by direct astrocyte stimulation and calcium uncaging when combined
with neuronal depolarisation [273]. Furthermore, in the somatosensory cortex, in vivo activation
of astrocytic muscarinic receptors following combined NBM and whisker stimulation results in
d-serine release and subsequent activation of NMDAR-dependent LTP which was also impaired in
IP3R2-knockout mice [274]. Astrocytic α1 adrenoceptor activation induces astrocytic ATP/D-serine
release and subsequent LTP induction in the somatosensory cortex [275], while, in the hippocampus,
astrocytic but not neuronal β2 adrenoceptors are necessary for fear memory consolidation [276].
In addition, deleting astrocytic β2 adrenoceptor significantly impaired learning and hippocampal
LTP in aged mice despite intact physical health and motor functions in mutant ones [277]. In relation
to dopamine, a subset of astrocytes has been shown to express vesicular monoamine transporter-2
(VMAT2), which is necessary for dopamine homeostasis, and its conditional deletion from astrocytes
in the developing PFC is found to impair neurotransmission, executive function and LTP [278].

A recent finding shows that hippocampal t-LTD (induced via LFS combined with postsynaptic
depolarisation) is dependent on astrocytic and not neuronal p38α-MAPK which is responsible
for increased gliotransmitter (glutamate) release and astrocyte to neuron communication during
LTD induction while its selective deletion leads to long-term memory enhancement in vivo [279].
Interestingly, the requirement of p38-MAPK activation has been observed for NMDAR-dependent
hippocampal t-LTD previously [280], which was presumed to be purely neuronal. Similarly,
endocannabinoids acting as retrograde messengers have been found essential for t-LTD induction
at different synapses, for instance, in the hippocampus (CA3–CA1) and developing somatosensory
cortex (Layers IV–II/III) through CB1 receptors [281,282]. However, at the same synapses, more recent
evidence shows that t-LTD requires endocannabinoid-induced CB1-mediated activation of astrocytic
Ca2+ signalling and subsequent gliotransmitter (d-serine/glutamate) release [283,284]. These findings
indicate that astrocytic control of neuromodulatory actions and synaptic plasticity is critical and
necessitate further attention.

6. Neuromodulators Steer Glutamatergic Transmission and Plasticity

Experimental findings illustrate various mechanisms by which neuromodulators govern
the induction and maintenance of long-term synaptic plasticity across multiple brain regions
through steering excitatory glutamatergic transmission on multiple scales. First, at the
network level, neuromodulators regulate synchronous neuronal activity thereby fulfilling the first
previously-identified criterion for plasticity induction which is associativity (i.e., coincident activity
between pre- and post-synaptic neurons) [285]. This is based on the generation of single-band or nested
network rhythms mostly representing theta-, alpha- or gamma-power oscillations, which are shown to
drive overall network plasticity, synaptic plasticity, STDP and episodic memory [286–288]. In addition,
neuromodulator-regulated oscillations across distinct neuronal populations may provide a mechanism
for cross-network coupling. This is analogous to the evident role of modulators in input pathway
selection that presumably represents a signal amplification and possibly synapse-selection process.
The molecular mechanisms underlying the regulation of synchronous neuronal activity are diverse
and mostly rely on the spatiotemporal modulation of intrinsic neuronal excitability and regulation of
inhibitory transmission [289].

Various neuromodulators have been identified in a considerable number of studies both in vitro
and, in particular, in vivo to be essential for the induction of long-term plasticity at specific synapses,
which is the second main neuromodulatory function, rather than having a “supplementary” role. This is
despite the use of plasticity-inducing stimulation protocols that bypass the requirement of synchronous
(i.e., coincident) activity which is one mechanism by which neuromodulators, through rhythmic
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neuronal activity, control synaptic plasticity induction, and therefore indicating other neuromodulatory
mechanisms that are critical for induction.

On a synaptic scale, neuromodulators are found to control the activity, strength and dynamics
of glutamatergic synapses via multiple similar and modulator-specific mechanisms such as altering
glutamate release and ionotropic (i.e., AMPA and NMDA) receptor conductance. Additionally,
neuromodulators regulate glutamatergic responses on the cellular level as well; for instance, though
adjusting voltage-gated currents, membrane properties and intracellular messenger systems [290].
Accordingly, the third main role for neuromodulators is to gate the induction and control the polarity
of plasticity especially in relation to STDP through regulating the threshold and time-window of
induction, respectively [291,292].

The fourth key function of neuromodulators in plasticity is based on the previously mentioned
“supplementary” role which in the literature is commonly referred to as a plasticity facilitation
mechanism. This can take two main forms: the facilitation of plasticity induction following
a “sub-threshold” stimulus, which is comparable to the conversion of short-term into long-term
plasticity, which presumably reflects acquisition enhancement, or the augmentation of long-term
plasticity, specifically LTP, which mostly represents a slow increase in the magnitude of potentiation.
The augmentation of LTP has been observed for various neuromodulators and in the vast majority of
cases is PKA mediated and expressed via multiple mechanisms in relation to AMPAR and/or NMDAR
function. However, the additional PKA component is argued to serve more intriguing and pivotal
roles. The first previously-suggested function of PKA is to provide a synaptic tag that would allow the
capture of plasticity gene products required for maintenance [293]. The second possible role is based
on epigenetic modifications and gene-expression alterations that would arguably serve a memory
stabilisation mechanism required for consolidation as seen with noradrenaline and hippocampal LTP
maintenance [294,295].

Another key aspect of particular interest in relation to possible plasticity and memory functions is
the spatiotemporal release pattern of neuromodulators—reflecting certain tasks and environmental
stimuli such as reward, uncertainty and novelty—that is governed by the timing of release, nature
of diffusion, duration of action and receptor distribution in target brain region. It is found that the
release of neuromodulators is behaviour-dependent and their cognitive functions require a balance of
tonic and phasic transmission that rely on tasks and novel/unexpected stimuli, respectively, and that
tonic/baseline levels determine phasic transmission responses as observed for noradrenaline [296–298],
acetylcholine [299–301], serotonin [302,303] and dopamine [304–307]. Furthermore, tonic levels control
phasic actions in an inverted-U-shaped effect in which very low or high background concentrations
eliminate phasic-induced responses as observed for dopamine in working memory and cognition [308] in
addition to determining the polarity and magnitude of long-term synaptic plasticity [88,307]. Similarly,
the inverted-U-shaped effect has been described for acetylcholine, serotonin and noradrenaline as
well [309–311] and is a shared neuromodulator property involved in attention-induced neuronal
activity modulation [312]. A proposed model for neuromodulatory control of plasticity in relation to
behaviour-dependent release patterns is shown in Figure 3.

These findings indicate complex finely-tuned interactions between neuromodulators, especially
when considering the intersecting signalling pathways and the relatively slow kinetics of
metabotropic regulation when compared to glutamatergic ionotropic transmission, instead of isolated
mutually-exclusive functioning [313]. Accordingly, some studies show complex metabotropic
neuromodulatory interactions in synaptic plasticity with considerable therapeutic potentials;
for instance, amphetamine-induced β adrenoceptor activation rescues D1-mediated LTP in the PFC in
dopamine transporter knockout mice, which resembles the hyperdopaminergic state in schizophrenia
and attention defective disorder [105]. Additionally, the activation of M4 receptor alleviates dyskinetic
symptoms and prevents abnormal D1-mediated striatal LTP using an l-DOPA-induced dyskinesia
model [314]. On the other hand, antagonising group-I mGluRs alleviates PFC D1-mediated LTP in a
mouse model of fragile-X syndrome and improves learning when combined with a D1 agonist [315].
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Figure 3. A model of behaviour-dependent neuromodulation of synaptic plasticity. Tonic release of
neuromodulators controls baseline and task-induced levels which mediate attention. The cooperative
actions of tonic and phasic release during learning tasks modulate network activity and neuronal
oscillations that prime plasticity induction through functional coupling, pathway selection and
signal amplification. Salient stimuli such as unexpected novelty and reward cues (in rodent models)
trigger sub-second phasic transmission to provide the induction/maintenance signal provided that
background/tonic levels are “appropriate” for induction. * Salient stimulus.

Another aspect in relation to neuromodulation of transmission and excitatory/inhibitory balance
is the plasticity of synaptic inhibition reported in hippocampal pyramidal neurons. This has been
observed particularly for GABAB-mediated slow inhibitory currents through G-protein regulated
inward rectifying K+ (GIRK) channels in vitro [316] as well as in vivo for LTP of GABAA inhibitory
postsynaptic responses with potentially key roles in the control of excessive excitation in early
Alzheimer’s pathology [317]. Interestingly, GIRK channels are found to be coupled to and regulated
by various neuromodulator receptors [318]. Therefore, modulation of synaptic inhibition is another
mechanism by which neuromodulators could shape glutamatergic transmission and synaptic plasticity.

The numerous roles of neuromodulators with regard to synaptic plasticity in learning, memory
and behavioural functions provide significant insights into the molecular changes underlying certain
pathologies, thereby unveiling multiple novel treatment approaches. Alzheimer’s disease represents the
most challenging disorder in relation to synaptic plasticity impairments due to its complex underlying
pathological alterations. Most neuromodulators have been heavily implicated in Alzheimer’s disease
including other newly investigated modulator-related molecules, the roles of which are still emerging
such as neurosteroids, cytokines, neuropeptides and peripherally-derived metabolic regulators.
For instance, bile acids have recently been shown to indirectly affect synaptic plasticity and improve
Alzheimer’s cognitive impairments in rodent models [319,320]. However, the roles of neuromodulators
in Alzheimer’s disease-associated plasticity impairments remain unclear. Moreover, since Alzheimer’s
disease is characterised by significant imbalance in neurotransmission and modulation, it is important
to understand the interaction between deficits in Alzheimer’s disease and how these are affected by
current and emerging therapeutic interventions [321,322].

Further research is required to explore behaviour-dependent neuromodulatory interactions and
how astrocytes are involved in transmitting modulatory signals into synaptic activity and long-term
plasticity. Ultimately, neuromodulators are key participants in synaptic plasticity and associated
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cognitive functions through corresponding GPCRs and their therapeutic potentials extend to cover
mood and psychiatric and neurodegenerative diseases.
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