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Abstract: Cardiovascular diseases are the leading cause of death globally, with no cure currently.
Therefore, there is a dire need to further understand the mechanisms that arise during heart failure.
Notoriously, the adult mammalian heart has a very limited ability to regenerate its functional cardiac
cells, cardiomyocytes, after injury. However, the neonatal mammalian heart has a window of regen-
eration that allows for the repair and renewal of cardiomyocytes after injury. This specific timeline
has been of interest in the field of cardiovascular and regenerative biology as a potential target for
adult cardiomyocyte repair. Recently, many of the neonatal cardiomyocyte regeneration mechanisms
have been associated with epigenetic regulation within the heart. This review summarizes the cur-
rent and most promising epigenetic mechanisms in neonatal cardiomyocyte regeneration, with a
specific emphasis on the potential for targeting these mechanisms in adult cardiac models for repair
after injury.
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1. Introduction

Heart failure has been the leading cause of death worldwide for many years, making
it a major public health and clinical concern globally [1]. Because of the detrimental and
devastating effect heart failure induces on our population, it is crucial to understand the
pathology and progression of the disease to find improved treatments and clinical approaches.

Current clinical approaches have been modest at best. Most treatments, including
hypertensive medications, diuretics, and lifestyle changes, have helped decrease the risk
factors of cardiovascular disease and heart failure [2], but there is currently no cure for heart
failure [3]. To truly cure heart failure, the use of heart transplants and stem cells has been the
major focus of most research [4,5]. More dire and aggressive measures are needed for heart
failure treatment because the adult heart has a limited ability to regenerate after injury [6].
Specifically, the adult cardiomyocytes or muscle cells in the heart do not grow and divide
frequently, leading to a loss of functional cells in the heart after an injury that is often
replaced by scarring [7–9]. The use of stem cells was originally hypothesized as an option
for cardiac cell replacement because of the ability of some stem cells to differentiate into
cardiomyocyte-like cells and replaced any lost cardiomyocytes after injury. This is a major
area of research currently, but engraftment issues, immune responses, and actual clinical
approaches have still caused barriers to stem cell use in patients [10]. Thus, unfortunately,
heart transplants are rare and stem cells have been less than promising. This has led to new
cardiac-based therapeutics, including cardiac regeneration and epigenetic regulation of
cardiac cells, specifically of cardiomyocytes [11].

Cardiac regeneration has been of interest because of the important timeline of car-
diomyocyte development. The embryonic and neonatal mammalian heart has the ability
to grow and repair after injury, but the adult mammalian heart has a subsequent inability
to regenerate cardiomyocytes [12]. The embryonic mammalian heart can regenerate and
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grow cardiomyocytes in cycles of proliferation. Often, these new cardiomyocytes are de-
rived from progenitor cells utilized during embryonic development [12,13]. The neonatal
mammalian heart does have the ability to regenerate after injury. It is usually summarized
that within the first week of life, neonatal murine cardiomyocytes can proliferate. More
recent studies have narrowed this down to within the first two days of life, stating that
neonatal mice can fully recover only after an aggressive injury that is received within the
first two days after birth [14,15]. For other animals and models, this window of regeneration
can vary [16,17]. However, for all mammals, once into adulthood, the ability of the heart
to regenerate cardiomyocytes is lost, especially after severe injury [18]. Unlike mammals,
the Danio rerio (zebrafish) is an exception to this ability. Zebrafish have cardiomyocytes
that can regenerate into adulthood. Zebrafish can fully repair an adult heart after injury,
making them a model organism to study cardiac regeneration [19].

Because there is such a distinct window of regeneration in most mammalian organisms,
cardiomyocyte regeneration regulation has been a major area of focus in mouse, rat, and
zebrafish models. Often, neonatal heart injury can be induced via apical resection, and a
neonatal mouse heart can regenerate and heal to become fully functioning [20]. The ability
is then lost into adulthood. Due to the regenerative potential of neonatal hearts, targeting
neonatal regenerative genes and signaling has been considered for adult heart mechanisms,
specifically after injury [21,22]. Current research has found that some developmental genes
could be a major target [23–25], but the standout of these findings has narrowed major
changes to epigenetic modifications [25,26].

Epigenetic modifications are chemical modifications that occur on top of the DNA,
outside of the normal genetic coding [27]. Often, epigenetic regulation dictates chromatin
structure and accessibility [28]. Epigenetic modifications and their subsequent chromatic
regulation play a major role in compacting the DNA that is wrapped around histones within
the nucleus of the cell, which can affect gene expression and DNA binding proteins [29].
These epigenetic modifiers often fall into three main roles: writers, readers, or erasers [30].
For example, an epigenetic modification such as methylation or acetylation can be added
to a lysine residue, changing chromatin accessibility and, therefore, altering downstream
gene expression. There are many types of epigenetic modification, which are summarized
in this review. Specifically, these changes have been documented in many cardiac cell
lines, including fibroblasts, endothelial cells, and cardiomyocytes [28,31]. Due to these
changes, assessing the epigenetic mechanisms in neonatal versus adult cardiomyocytes
would be of interest as potential targets in regulating cardiomyocyte regeneration as a
possible therapeutic for heart failure.

2. Mammalian Cardiomyocyte Development and Differentiation

Cardiomyocytes are the main functional cells in the heart. They are responsible for the
contraction and relaxation within the heart muscle [32], which has directly correlated these
cells to heart function via echocardiography and histological measurements [33,34]. Often,
with the loss of functional cardiomyocytes after injury, there is a decrease in heart function
as measured by ejection fraction, fractional shortening, and cardiac output [34]. Because
mammalian cardiomyocytes have a very specific ability to regenerate in the early stages of
development, it is vital to understand the epigenetic differences and changes that occur
in adult cardiomyocytes. Embryonically, cardiomyocytes are derived from the mesoderm
during gastrulation. Specifically, these cardiac precursor cells form a cardiac crescent,
which is often where committed cardiovascular cells are found during development [35].
The commitment to the cardiac lineage is often associated with transcription factors, such
as Nkx2.5 and Gata4 [35]. Interestingly, more recently, this has also been connected to
epigenetic changes, including increased histone modifications, DNA methylation, and
chromatin remodeling, directly regulating cardiomyocyte differentiation genes and path-
ways [9]. In a neonatal heart, the cardiomyocytes have a unique ability to regenerate during
the first few days after birth [20]. It has been found that earlier in the neonatal stages, the
cardiomyocytes have increased ability to repair after injury, respond to immunological
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challenges, and even divide regularly often due to changes in chromatin accessibility and
epigenetic regulation [25]. Targeting these mechanisms has been of interest for potential
cardiomyocyte regeneration and will be discussed throughout this review.

The neonatal mammalian cardiomyocytes eventually become terminally differentiated [36].
These are deemed the mature adult cardiomyocytes, which are known for the contractile
function in the adult heart muscle. Once the cardiomyocytes become terminally differenti-
ated, they can no longer regenerate. Importantly, this means they do not go through the
cell cycle regularly [37]. Thus, neonatal cardiomyocytes are often categorized by genes
that are associated with this dedifferentiated state or ability to transition through the cell
cycle [38], while adult cardiomyocytes are often labeled and characterized by genes that are
associated with this terminally differentiated state [39]. Additionally, adult cardiomyocytes
are often characterized by their mitochondrial function, which can provide a detailed
understanding of the adult cell metabolism [40]. The maturation of adult cardiomyocytes
is associated with the cell’s terminal structure, metabolism, and function of differentiated
cardiomyocytes [23]. Normally, the need for new mature cardiomyocytes is not necessary
in the adult heart. However, after injury or stress, the heart loses adult cardiomyocytes and
can no longer grow and replace the lost cells [41]. This results in the cells being replaced by
proliferative pathological fibroblasts, which increase scarring and decreases heart function.
Overall, this cellular replacement can have long-lasting negative effects on health and heart
function [42]. Because of these monumental changes, targeting the differences between the
differentiated adult cardiomyocytes and their neonatal counterparts have been of interest,
with the overall goal of reprogramming adult cardiomyocyte to be like their neonatal
counterparts [43]. One of the most substantial methods for this theory has been through
epigenetic regulation in neonatal versus adult mammalian cardiomyocytes.

3. Epigenetic Regulation of Cardiomyocytes through Development

Assessing changes in epigenetic regulation through cardiomyocyte development has
been of interest because of the drastic change in the regenerative ability of the heart after
the first few days of life [15]. Changes in epigenetics have proven to vary from neonatal
to adult differentiated cardiomyocytes and may be a novel therapeutic target for heart
failure [9,25,30], and as summarized in Table 1.

3.1. DNA Methyltransferases (DNMTs)

The epigenetic regulation by DNA methyltransferases (DNMTs) has been studied
in many models including zebrafish, mice, rats, and even humans [44]. This epigenetic
modification often transfers a methyl group to a C5 position on cytosine. The methyl group
addition can affect gene expression and binding of transcription factors directly to the
DNA [45]. There are also scenarios in which the methyl group is removed, called demethy-
lation which has the reverse effect [45]. Two well-studied DNMTs include DNMT3a and
3b, which have been shown to regulate various genes’ expression in cardiomyocytes
through methyl-CpG binding domains, which alter chromatin accessibility and therefore
downstream gene expression. Specifically, a study found that DNA methylation by these
DNMTs can alter important transcription factors such as MeCP2, a methyl-CPG binding
protein [46]. MeCP2 caused increased methylation in neonatal rat cardiomyocytes that
are not seen in adult differentiated cardiomyocytes, thus making it a potential target for
cardiomyocyte regeneration and differentiation mechanisms. Another study found that
DNMT3a was essential for embryonic cardiomyocyte phenotypes, specifically that the
loss of DNMT3a caused a decrease in morphology and contractility that was deemed vital
during development [47,48]. Additionally, it was found that the inhibition of DNA methyl-
transferases, specifically using 5-azacytidine, caused a stunt in zebrafish cardiomyocyte
development that parallels the changes seen in adult mammalian cardiomyocytes [49].
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3.2. RNA Methylation

Similar to DNA, RNA molecules can be methylated, specifically messenger RNA
(mRNA). A common mRNA epigenetic modification includes the methylation of adenosine
at the N6 position (m6A) [50]. The role of m6A methylation in the development of cardiomy-
ocytes is still not completely understood; however, this epigenetic modification has been
initially associated with the progression of some cardiovascular disease states [51]. More
specifically, this modification was enhanced in the development of cardiac hypertrophy
of human and mouse cardiomyocytes [52,53]. It is believed that the m6A modification
regulates the primary factor called methyltransferase-like 3 (METTL3), which is directly
connected to cardiac disease progression [54]. Importantly, in neonatal cardiomyocytes,
it was found that the m6A modification leads to the loss of miRNAs, such as miR-133a,
leading to changes in cardiac development [55]. Another study found that the expression
of the m6A epigenetic modification varies over the first week of life in rat models, with
an increase in the modification at p0 that is lost by p7 [56]. Overall, this RNA epigenetic
modification has a great influence on cardiomyocyte homeostasis and a major role in the
development of functional cardiomyocytes [57].

3.3. Histone Methylation

Unlike DNA or RNA methylation, histone methylation involves changes to chromatin
accessibility due to the addition or loss of a methyl group to a histone tail [58]. Epigenetic
regulation by histone modifiers such as the Polycomb Repressive Complex 2 (PRC2) has
been shown to modulate the epigenetics of cardiomyocytes through development [59]. A
study found that Ezh2, the PRC2 histone modifier that methylates histone 3 at lysine 27,
was used to transition progenitor cardiomyocytes to adult differentiated cardiomyocytes.
Yue et al. found that a knockout of Ezh2 causes a loss of this epigenetic methylation and
loss of neonatal cardiomyocyte proliferation. This study linked the epigenetic regulation in
the heart to platelet-derived growth factor receptor β (PDGFRβ) and the phosphatidyli-
nositol 3-kinase (PI3K) pathway [60]. Additionally, Tang et al. found Ezh2 as a block
for reprogramming, and by inhibiting this epigenetic methylation it resulted in increased
cardiac reprogramming of human inducible cardiomyocytes [61]. Finally, a study that
assessed changes in H3K27me in zebrafish development found that the silencing of this
epigenetic modification in adult models provided cardiac regeneration similar to those
of neonatal mouse models [62]. The tri-methylation of histone 3 on lysine 9 (H3K9me3)
has also been shown to have a profound effect on the development of mouse cardiomy-
ocytes. This epigenetic modification was found to directly regulate the expression of a
fetal troponin gene necessary for myofibril proteins in the heart [63]. Interestingly, this
epigenetic mark has also been associated with mitochondria function and adult cardiomy-
ocyte metabolism [64]. Other histone methylations, including the H3K4me3, have been
associated with the terminally differentiated state of adult mammalian cardiomyocytes
as well [65].

3.4. Histone Acetylation

Histone acetylation is a form of epigenetic regulation that has been strongly associated
with increased gene transcription. Therefore, the loss or removal of the acetyl group has
often been connected to a decrease in gene expression [66]. Regarding cardiomyocytes,
histone acetylation has been linked to cardiomyocyte proliferation, differentiation, and
regeneration [67,68]. Specifically, the acetylation of H3K9 was associated with a more hy-
pertrophic response in heart failure and led to the progression of a cardiomyocyte disease
state [67]. Another study found that histone acetylation linked with UCP2, a metabolic
regulator, altered not only the chromatin but also the metabolism of cardiomyocyte cells.
This was specifically linked to hypoxic conditions and the regenerative ability of neona-
tal cardiomyocytes in the early stages of development. In the hypoxic condition, there
was an increase in histone acetylation, but without UCP2 that acetylation was lost, in-
dicating a connection between cardiomyocyte growth and regeneration associated with
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cardiomyocyte metabolism [69]. Histone acetyltransferases (HATs) have been shown to
regulate stem cell differentiation into cardiomyocytes. Specifically, HAT activation of Gcn5
was found to cause terminal differentiation of mesenchymal stem cells to differentiated
cardiomyocytes [70].

3.5. Histone Deacetylation

Histone deacetylases (HDACs) have also been studied for their role in epigenetic
changes in cardiomyocytes [68]. The general role of HDACs has been connected to the
growth and regulation of neonatal mammalian cardiomyocytes [68]. HDACs are very
diverse and have been classified into four main categories, class I, class IIa, class IIb, and
class IV based on functions in various cell types [71]. Specifically, the class IIa HDACs,
which include HDAC4, 5, 7, and 9 have been associated with the Mef2 gene, a vital
regulator of the adult cardiomyocyte phenotype [71,72]. Additionally, the gene, Brg1, has
been shown to maintain the fetal cardiomyocyte state, allowing for growth and cardiac gene
expression. This Brg1 gene was specifically found to regulate HDAC mechanisms through
development [73]. In zebrafish, it has been found that the histone deacetylates 1 (HDAC1)
is conserved in zebrafish and plays a vital role in the regeneration and proliferation of
cardiomyocytes similar to that of neonatal and embryonic mammalian cardiomyocytes [74].
Finally, it has been observed that by inhibiting HDACs, such as HDAC2, has helped with
cardiac repair after injury by specifically inhibiting increased cardiac cell autophagy [75].

3.6. Histone Ubiquitination

Histone ubiquitination is a dynamic epigenetic modification, as it has many roles and
functions modulating gene expression. Often, histone ubiquitination occurs on histones
2A, 2B, and 3. The most well-studied is the single ubiquitination addition on H2A at lysine
119 [76,77]. The addition or removal of a ubiquitin group has been associated with genomic
stability, gene expression regulation, and DNA damage regulation in many cell types [78].
In cardiomyocytes, histone ubiquitination has been connected to heart development and
even regulating the progression of congenital heart disease [79]. It has been found that
mono-ubiquitination by the Polycomb Repressive Complex 1 (PRC1) has played a major
role in maintaining cardiac profiles, transcriptional regulation, and DNA damage through
development [80,81]. In a mouse model, the ubiquitination of histone 2a on lysine 120 was
found to regulate the maturation of cardiomyocytes through the RNF20/40 complex [82],
which had an overall effect on cardiomyocyte gene expression through development.

3.7. SUMOylation

One form of epigenetic regulation similar to histone ubiquitination is SUMOylation,
or small ubiquitin-related modifier (SUMO), which is usually the addition of one ubiquitin
modification to a histone [83,84]. SUMOylation has been connected to cardiomyocyte
gene expression and development [85,86]. This epigenetic modification has been directly
connected to cardiomyocyte-regulated proliferation through development using an E3 or
E2 ubiquitin ligase [85,87]. The SUMO1 and SUMO2 were connected to the embryogenesis
and the growth of cardiomyocytes [87]. SUMO1 was found to regulate the Nkx2-5 gene
transcription in the cardiomyocyte development [88]. SUMO2 was found to target the
PcG regulation of Gata4 in cardiomyocyte growth and development [87,89]. Specifically,
this SUMOylation epigenetic mechanism was associated with cardiomyocyte renewal
and disease progression regulation through the modulation by p65 in the inhibition of
cardiomyocyte hypertrophy [90], which is summarized in Table 1.
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Table 1. Summary of cardiomyocyte-related epigenetic modifications.

Epigenetic Modification Species/Model Summary of Role in CM Regeneration and
Development References

DNMTs

DNMT1

DNMT2

DNMT3a/3b

Rat ventricular myocytes, mouse embryonic
cardiomyocytes, zebrafish cardiomyocytes

Increased regenerative ability and proliferation,
necessary for embryonic development, increased

survival, increase CM gene expression
[46–49,91,92]

RNA Methylation

m6A

Mouse and human adult cardiomyocytes,
neonatal mouse and rat cardiomyocytes

Increased development of hypertrophic CMs,
regulation of CM growth [52,53,55,56]

Histone Methylation

H3K27me3

H3K4me3

H3K9me3

Human inducible cardiomyocytes, zebrafish
heart, mouse cardiomyocytes

Increased regenerative ability, improves cardiac
reprogramming and cell growth, increases cardiac

gene expression and metabolism
[60–64,92–94]

Histone Acetylation and Histone
Acetyl Transferases (HAT)

H3K9ac

H3K14ac

HAT

Adult and neonatal mouse cardiomyocytes Regulation of cardiomyocyte regeneration,
reprogramming, development [69,93–95]

Histone Deacetylases (HDAC)

HDAC1

Class IIa HDACs (4, 5, 7, 9)

Zebrafish heart,
mouse cardiomyocytes

Needed for development and regeneration,
Mef2 expression [71,72,74]

Histone Ubiquitination

H2Bub1

H2BK120ub

H2AK119ub

Adult and neonatal mouse cardiomyocytes,
Xenopus heart

Cardiac gene expression, gene transcription, and
cardiomyocyte maturation [79,80,82]

SUMOylation

SUMO1/PIAS1

SUMO2

Neonatal Sprague–Dawley rats, neonatal and
adult mouse cardiomyocytes

Cardiomyocyte survival, neonatal cardiac
gene expression [88–90]

4. Targeting Neonatal Epigenetic Mechanism in Adult Cardiomyocytes for
Therapeutic Potentials following Heart Failure

Due to these changes seen in neonatal versus adult cardiomyocytes, targeting epige-
netic regulation could provide a clinical approach to healing a failing heart. By targeting
neonatal epigenetic regulation in adult cardiomyocytes, clinicians could regenerate pre-
viously thought to be terminally differentiated cardiomyocytes as illustrated in Figure 1.
By reintroducing neonatal epigenetic mechanisms in adult cardiomyocytes, cardiac re-
generation could be possible in pre-existing cells in the heart. It has been hypothesized
that by targeting the neonatal pattern of epigenetic histone modifications and CpG sites
of methylations, adult cardiomyocytes could become proliferative and regenerative [96].
Specifically, this has been attempted by targeting the enhancer region of cardiomyocytes
after injury in an attempt to activate epigenetic regulation, such as the H3K27ac as well as
DNA methylation at 5-cytosine [96].
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Figure 1. Overview of murine epigenetic regulation and cardiomyocyte regenerative potential
through development.

Due to the potential of targeting more neonatal-like epigenetic regulation in adult
cardiomyocytes, direct epigenetic-oriented drugs have been considered for a therapeutic
approach to cardiovascular disease [97]. These “epidrugs” would potentially interfere
with various epigenetic mechanisms to enhance regenerative cardiomyocytes or inhibit the
negative response to cardiac injury [97]. It has even been suggested that some standard
hypertensive drugs could play a major role in indirect epigenetic regulation [98]. Finally, the
reconfiguration of mCpG regions has been suggested as a more individualized approach to
cardiovascular-based therapies via epigenetic regulation [99].

5. Conclusions, Limitations, and Future Directions

With major phenotypic differences in neonatal versus adult cardiomyocytes, therein
lies some powerful therapeutic potential to be utilized for heart failure treatments. Specifi-
cally, targeting epigenetic mechanisms commonly found in the neonatal cardiomyocytes
and optimizing them in adult cardiomyocytes provides a promising and powerful tool
for cardiac regeneration. Currently, there are modest changes that can be made to prevent
adverse cardiac events, with no substantial cure for heart failure. Targeting neonatal epige-
netic mechanisms in adult cardiomyocytes is therefore a novel approach to heart failure
treatments. With that, there are limitations and barriers that still need to be understood and
overcome to fully utilize epigenetic mechanisms in cardiomyocytes for heart failure therapy.
There is still a need to understand the adverse effects of instigating neonatal epigenetic
mechanisms and how that would affect other cells, organs, and immune responses. Epige-
netic modifications have also been strongly associated with microRNAs, long non-coding
RNAs, and circulating RNAs. There is extensive data that indicate a connection with these
signaling molecules that would be of interest moving forward as well [100–102]. Overall,
epigenetic regulation differences in neonatal and adult cardiomyocytes are currently the
untapped potential of cardiac regeneration therapy, which could eventually provide a great
resource and therapeutic for heart failure patients in the future.
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