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Abstract: One of the challenges to implementing sensitivity analysis for exposure 

misclassification is the process of specifying the classification proportions (eg, sensitivity and 

specificity). The specification of these assignments is guided by three sources of information: 

estimates from validation studies, expert judgment, and numerical constraints given the data. 

The purpose of this teaching paper is to describe the process of using validation data and expert 

judgment to adjust a breast cancer odds ratio for misclassification of family breast cancer 

history. The parameterization of various point estimates and prior distributions for sensitivity 

and specificity were guided by external validation data and expert judgment. We used both 

nonprobabilistic and probabilistic sensitivity analyses to investigate the dependence of the 

odds ratio estimate on the classification error. With our assumptions, a wider range of odds 

ratios adjusted for family breast cancer history misclassification resulted than portrayed in the 

conventional frequentist confidence interval.
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Introduction
A standard quantitative analysis of epidemiologic data implicitly assumes the exposure 

(risk marker, risk factor) classification proportions (eg, sensitivity and specificity) 

equal 1.0 (ie, perfect classification). For many studies, however, this assumption may 

not be justified. Epidemiologists are strongly encouraged to incorporate sensitivity 

analyses into the analysis for these situations.1–9

One of the challenges to implementing sensitivity analysis for exposure misclas-

sification of a binary exposure variable is the process of specifying the sensitivity and 

specificity values. The difficulty lies in determining which values should be used and 

explaining why these values were used. The specification of these values is guided 

by three sources of information: estimates from validation studies, expert judgment, 

and numerical constraints given the data.10

These three sources of information can be used in both nonprobabilistic and 

probabilistic (Monte-Carlo) sensitivity analysis. When adjusting for exposure 

misclassification, nonprobabilistic sensitivity analysis11 uses multiple fixed values 

for the sensitivity and specificity proportions. In contrast, in probabilistic sensitivity 

analysis,5,7,11–15 an investigator specifies probability distributions for the classification 

proportions. Prior probabilities are not specified for the effect measure of interest or 

the exposure prevalence; thus the analysis corresponds to using noninformative priors 

for these parameters in Bayesian bias analysis.7,11,16–18

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical Epidemiology 2009:1110

Jurek et al Dovepress

submit your manuscript | www.dovepress.com

Dovepress 

The goal of  this teaching paper is to illustrate how to specify 

values of classification parameters for nonprobabilistic11 and 

probabilistic sensitivity analyses5,7,11–15 using two of the three 

sources of information: validation data and expert judgment. 

We will specify single-point estimates and probability 

distributions for classification parameters. Then we will use 

these estimates and distributions to adjust one odds ratio (OR) 

estimate for possible exposure misclassification.

Application
For many types of cancer, an important predictor of a 

person’s cancer risk is an established family history of that 

cancer. While accurate reporting by affected relatives might 

be expected, in fact, validation studies have shown that self-

reported history of cancer in family members is inaccurately 

reported.19–21

Epidemiologic studies that rely on these self-reports of 

cancer in family members without adjustment for classification 

errors can provide inaccurate results and underestimates of 

the true uncertainty. Adjusting relative-risk estimates for 

systematic error under such circumstances (eg, exposure 

misclassification) has been strongly encouraged.1–8,11,22,23

We selected breast cancer as our example because it is 

both prevalent and because a family history of breast cancer 

is an established predictor of breast cancer risk. We chose 

one case-control study24 that provided a 2 × 2 table of 

first-degree relative’s (FDR’s) breast cancer history and 

breast cancer risk. There were 316 exposed breast cancer 

cases, 1567 unexposed cases, 179 exposed noncases, and 

1449 unexposed noncases, where exposure was any FDR’s 

breast cancer history. From these data, the calculated crude 

OR estimate associating FDR with breast cancer occurrence 

for women from Los Angeles County, California, was 1.63 

(95% confidence limits: 1.34, 1.99). The OR adjusted for 

confounders was 1.68.

Methods
Source 1:  Validation data
Identifying validation studies
The observed exposure measure was self-reported breast 

cancer history in any FDR – a parent, sibling or child – by the 

index subject. “Gold standard” measurements used to verify 

the breast cancer status in FDRs were verbal confirmation 

by the FDR, medical records, pathology reports, cancer 

registries, and/or death certificates. While these are labeled 

“gold standard,” they are themselves likely measured with 

some error. We defined sensitivity as the proportion of FDRs 

reported as having breast cancer among those according to the 

gold-standard measurement, and specificity as the proportion 

of FDRs not reported as having breast cancer given it was 

absent from the gold standard measurement at the time of 

index subject’s interview.

With these criteria, we sought out articles that validated 

self-reported data on any FDR. Our approach was guided by 

a 2004 article by Murff and colleagues19 that summarized the 

results from validation studies that determined the accuracy 

of self-reported history of cancer in family members for 

colon, prostate, breast, endometrial, and ovarian cancers. The 

first author met with a research librarian for search-strategy 

assistance since medical subject headings change over 

time. In April 2008, after discussions with a librarian, AMJ 

performed a database literature search to find English-

language articles that provided sensitivity and specificity 

values for classification of self-reported family breast 

cancer history. The following medical subject headings from 

PubMed were used: “sensitivity and specificity”, “breast 

neoplasms”, “reproducibility of results”, and “medical 

history taking”. A text-word search for “validation study” 

as well as the above terms was also performed. Article titles, 

abstracts, and text were reviewed for inclusion. Reference 

lists of identified articles were searched to identify additional 

studies.

We also performed a cited-reference search of the Murff 

and colleagues19 article to learn whether it was referenced 

in recently published studies. Studies that determined 

accuracy (eg, positive-predictive value) of family breast 

cancer history,25–29 expanded first-degree relatives to include 

aunts,30 did not distinguish between FDRs and second-degree 

relatives,31 validated bilateral breast cancer,32 or were a 

sub-study of a larger included validation study33 were not 

used. Five publications20,21,34–36 met our criteria.

Incorporating validation data
We assumed the data from the five validation studies 

(Table 1) to be appropriate for adjusting the OR for misclas-

sification. Using these data, we explored various scenarios 

for possible classification error. The scenarios involved 

differential classification error because the validation 

data (Table 1) indicated the classification processes were 

differential.

For nonprobabilistic sensitivity analysis
We specified single-point values as scenarios for possible 

classification proportions. Since Kerber and Slattery34 

reported classification proportions for both cases and 

noncases (Table 1), we considered this validation study as one 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical Epidemiology 2009:1 111

Exposure classification parameters for sensitivity analysisDovepress

submit your manuscript | www.dovepress.com

Dovepress 

scenario (scenario 2, Table 2). Then we combined the noncase 

sensitivity and specificity values from Chang and colleagues20 

with the breast cancer case sensitivity and specificity 

values from Verkooijen and colleagues35 and Ziogas and 

Anton-Culver36 for scenarios 3 and 4 (Table 2), respectively. 

Similarly, we combined the noncase classification propor-

tions from Soegaard and colleagues21 with case classification 

proportions from Verkooijen and colleagues35 and Ziogas and 

Anton-Culver36 for scenarios 5 and 6 (Table 2), respectively. 

We also defined scenarios for the lower (scenario 7, 

Table 2) and upper (scenario 8, Table 2) extreme values 

from all five studies. Finally, we investigated a scenario 

within the ranges of validation data (scenario 9, Table 2) 

and other combinations from the validation data (scenarios 

10 and 11, Table 2).

For probabilistic sensitivity analysis
To assign probability distributions to the classification 

parameters, we examined each column of sensitivity 

and specificity data in Table 1 for cases and noncases 

separately. Although we assumed the ranges of validation 

data to be adequate for our probability distributions, we 

were not 100% confident in the distributions’ shapes. As a 

result, we constructed different distribution scenarios to 

determine the dependence classification error had on the 

crude OR.

Table 1 Validation studies that reported sensitivity and specificity values for self-reported first-degree relative’s breast cancer history

Breast cancer cases Healthy noncases

 
 
Authors

Sensitivity  
(No./Total)  
(95% CI)

Specificity 
(No./Total) 
(95% CI)

Sensitivity  
(No./Total)  
(95% CI)

Specificity  
(No./Total)  
(95% CI)

 
Source 
population

“Gold standard”  
measurement  
tool(s)

Chang et al20 – – 0.72 (61/85) 
(0.62, 0.81)

0.99 (1114/1127) 
(0.98, 0.99)

Sweden Swedish Cancer Registry

Kerber and 
Slattery34

0.85 (11/13) 
(0.55, 0.98)

0.96 (107/112) 
(0.90, 0.99)

0.82 (18/22) 
(0.60, 0.95)

0.91 (167/184) 
(0.87, 0.95)

Utah, USA Utah Population  
Database

Soegaard et al21 – – 0.94 (121/129) 
(0.90, 0.98)

1.00 (4505/4527) 
(0.99, 1.00 )

Denmark Danish Cancer Registry

Verkooijen 
et al35

0.98 (60/61) 
(0.91, 1.00)

0.99 (247/249) 
(0.97, 1.00)

– – Geneva, 
Switzerland

Cantonal Population 
Office and Geneva 
Cancer Registry

Ziogas and 
Anton-Culver36

0.95 (188/197) 
(0.93, 0.98)

0.97 (850/873) 
(0.96, 0.98)

– – Orange County, 
California, USA

Pathology, self-reported, 
or death certificates

Abbreviation: CI, confidence interval.

Table 2 Single point-estimate values for classification errors and nonprobabilistic sensitivity analysis results

Breast cancer cases Healthy noncases

Scenario Sensitivity Specificity Sensitivity Specificity ORadjusted

1a 1.00 1.00 1.00 1.00 1.63

2 0.85 0.96 0.82 0.91 6.67

3 0.98 0.99 0.72 0.99 1.19

4 0.95 0.97 0.72 0.99 1.08

5 0.98 0.99 0.94 1.00 1.46

6 0.95 0.97 0.94 1.00 1.33

7 0.85 0.96 0.72 0.91 5.73

8 0.98 0.99 0.94 1.00 1.47

9b 0.92 0.98 0.93 0.99 1.61

10 0.98 0.96 0.72 1.00 0.87

11 0.85 0.99 0.94 0.91 9.62

Notes: aCrude odds ratio scenario;  bApproximately nondifferential.
Abbreviation: ORadjusted, odds ratio adjusted for family breast cancer history (exposure) misclassification.
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To allow each value within the range an equal probability 

of occurring, we began by specifying continuous uniform 

distributions informed by the lower and upper values of 

the validation data values (scenario 13, Table 3). Since the 

case and noncase classification proportions each had three 

values, triangular distributions were then used for both 

cases and noncases (scenarios 14 and 15, Table 3). That is, 

we specified triangular distributions using the lower and 

upper validation data values as the minimum and maximum, 

respectively, and the middle value (scenario 14) and average 

value (scenario 15) as the modes for each distribution.

Source 2: Incorporating expert 
knowledge
We changed the upper limit to 1.00 (perfect sensitivity and 

specificity) in scenarios 13–15 (Table 3), because we cannot 

rule out the possibility that all individuals with and without 

breast cancer may be correctly classified.

Source 3: Incorporating numerical 
constraints given the data
Adjustment for misclassification may result in negative cell 

frequencies when certain combinations of observed data 

and classification proportions are used. However, negative 

cell frequencies are impossible. Therefore, combinations 

of values yielding negative corrected cell frequencies are 

impossible and should be excluded from the sensitivity 

analysis. In our sensitivity analyses, no combinations of 

values assigned to sensitivity and specificity resulted in 

adjusted-cell frequencies that were negative. Therefore, 

no values were excluded within the explored ranges of 

values.

Nonprobabilistic sensitivity analyses
For each of the 11 scenarios (Table 2), we calculated an OR 

adjusted for family breast cancer history misclassification 

(OR
adjusted

) using the exposure misclassification adjustment 

methods of Greenland and Lash.11 Briefly, we used the 

observed cell frequencies of data along with sensitivity and 

specificity values for cases and noncases (Table 1) to calcu-

late a 2 × 2 table of cell frequencies adjusted for exposure 

misclassification and an odds ratio adjusted for exposure 

misclassification (Table 4).

Probabilistic sensitivity analyses
We employed probabilistic sensitivity analysis based 

on published methods.5,11,37 In short, we used equations 

in Table 4 to adjust the observed cell frequencies for 

exposure misclassification and substituted the probability 

distributions from Table 3 for the sensitivity and specificity 

values. We also included a correlation11,37 value of 0.80 

between the sensitivities for cases and noncases and between 

the specificities for cases and noncases to prevent extreme 

differentiality on any particular simulation trial. As a last 

step, we incorporated random error to obtain an OR estimate 

adjusted for exposure misclassification and random error. 

Adjustment for random error requires specification of a 

random error distribution for the data-generating process.38 

We used the following formula, exp ( )In OR z SEadjusted -  , 

which assumes that random error is modeled by a standard 

normal deviate (z) and the standard error (SE) of the original 

(misclassified) cell frequencies.11,22,23

For each scenario, we graphed a frequency (uncertainty) 

distribution of the odds ratio adjusted for exposure misclas-

sification only and for exposure misclassification and random 

error. These frequency distributions are dependent on our 

assumptions for the classification proportions and random 

error parameters. We also calculated 95% uncertainty limits 

by taking the lower 2.5 and upper 97.5 percentiles of the 

frequency distribution. These percentiles provide the lower 

and upper limits for the odd ratio adjusted for our beliefs 

about the relative proportions of the exposure-classification 

Table 3 Descriptions of the probability distributions used for exposure classification errors

Breast cancer cases Healthy noncases

 Scenario Sensitivity Specificity Sensitivity Specificity

12 Custom uniforma (1.00) Custom uniform (1.00) Custom uniform (1.00) Custom uniform (1.00)

13 Uniformb (0.85, 1.00) Uniform (0.96, 1.00) Uniform (0.72, 1.00) Uniform (0.91, 1.00)

14 Triangularc (0.85, 0.95, 1.00) Triangular (0.96, 0.97, 1.00) Triangular (0.72, 0.82, 1.00) Triangular (0.91, 0.99, 1.00)

15 Triangular (0.85, 0.93, 1.00) Triangular (0.96, 0.97, 1.00) Triangular (0.72, 0.83, 1.00) Triangular (0.91, 0.97, 1.00)

Notes: aDiscrete uniform distribution with a single value at 1.00 with probability of occurring = 1; bContinuous uniform distribution (minimum value, maximum value); 
cTriangular distribution (minimum value, mode, maximum value).
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values (ie, uncertainty-analysis-parameter values).8 Crystal 

Ball (version 7.3; Oracle, Redwood Shores, CA, USA) 

software was used to run 50,000 simulation trials for the four 

simulation experiments.

Results
Table 2 presents the results of the nonprobabilistic sensitivity 

analyses. The OR adjusted for misclassification resulted 

in a wide range of values, assuming the OR adjusted 

for misclassification is the true value, our assumptions 

are correct, and no other systematic errors exist. Some 

combinations of classification proportions (scenarios 2, 7, 

and 11, Table 2) gave ORs adjusted for misclassification 

that were much greater than the crude OR of 1.63, other 

combinations resulted in ORs between 1 and the crude OR 

(scenarios 3–6, 8, and 9, Table 2), and one combination 

produced a protective effect (scenario 10, Table 2). Thus, 

demonstrating that differential classification error can 

cause error toward (scenarios 2, 7, and 11, Table 2), away 

from (scenarios 3–6, 8, and 9), or past the null value of 1 

(scenario 10, Table 2).39 Approximately nondifferential 

misclassification (scenario 9, Table 2) resulted in an OR 

adjusted for exposure misclassification that was less than 

the crude value.

The probabilistic sensitivity analyses results are found 

in Table 5 and Figures 1 and 2. The geometric means and 

medians are greater than the crude OR value of 1.63 for 

scenarios where classification was imperfect, and over 

Table 4 2 × 2 tablea after adjustment for exposure misclassification

Breast cancer outcome

Any first-degree family breast cancer history Odds ratio adjusted for 
exposure misclassificationYes No

Breast cancer cases
e

a Sp a b

Se Sp

cases

cases cases

=
- - +

+ -

( )( )1

1

f = a + b - e
OR

e h

f g
adjusted =

⋅

⋅

Breast cancer noncases
g

c Sp c d

Se Sp

noncases

noncases noncases

=
- - +

+ -

( )( )1

1

h = c + d - g

Notes: aa, breast cancer cases classified as having a first-degree family breast cancer history; b, breast cancer cases classified as not having a first-degree family breast cancer 
history; c, breast cancer noncases classified as having a first-degree family breast cancer history; d, breast cancer noncases classified as not having a first-degree family breast 
cancer history;
Abbreviations: OR, odds ratio; Se, sensitivity; Sp, specificity.

Table 5 Probabilistic sensitivity analyses resultsa after 50,000 simulation trials, by scenario

 
 
Scenario

 
 
Analysis

ORadjusted 
geometric 
mean

 
ORadjusted 
median

95% uncertainty 
limits for  
ORadjusted

% of trials with  
ORadjusted  crude 
ORb

Ratio of upper 95% 
uncertainty limit to lower 
95% uncertainty limit

12c a. No misclassification 1.63 1.63 (1.63, 1.63) 0 1.00

b. Conventional analysis 
(random error only)

1.63 1.63 (1.34, 1.99) 50.6 1.49

13 a. Misclassification only 2.46 2.25 (1.41, 5.88) 84.4 4.17

b. Misclassification and 
random error

2.46 2.27 (1.33, 6.01) 83.3 4.52

14 a. Misclassification only 1.89 1.74 (1.36, 3.84) 62.5 2.82

b. Misclassification and 
random error

1.89 1.77 (1.25, 3.93) 64.0 3.14

15 a. Misclassification only 2.09 1.96 (1.46, 4.13) 85.0 2.83

b. Misclassification and 
random error

2.09 1.99 (1.37, 4.21) 81.8 3.07

Notes: aCorrelation between the sensitivities for cases and noncases and between the specificities for cases and noncases = 0.80; bCrude odds ratio = 1.63; cCrude odds 
ratio scenario.
Abbreviation: ORadjusted, Odds ratio adjusted for family breast cancer history (exposure) misclassification.
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Figure 1 Frequency distributions of breast cancer odds ratios adjusted for family breast cancer history misclassification, by scenario.
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Figure 2 Frequency distributions of breast cancer odds ratios adjusted for family breast cancer history misclassification and random error, by scenario.
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half of the simulation trials resulted in ORs adjusted for 

exposure misclassification greater than the crude OR. The 

95% uncertainty limits are wider than the conventional 

limits (1.34, 1.99). Compared to the conventional analysis 

(scenario 12, analysis b, Table 5), the ratio of the upper 

95% uncertainty limit to the 95% lower uncertainty limit 

was largest for the uniform scenario (scenario 13, analysis 

b, Table 5). Minor changes in the modal values shifted the 

distribution of ORs adjusted for exposure misclassification 

further away from the crude OR for scenario 15 compared 

with scenario 14 because scenario 15 is slightly more 

differential than scenario 14.

Discussion
We performed partial sensitivity analyses to adjust a breast 

cancer OR estimate for misclassification of family breast 

cancer history. In general, three sources10 of information are 

used to specify scenarios for sensitivity analysis: validation 

data (we found existing data in the literature20,21,34–36); expert 

judgment (we modified ranges of values from the validation 

studies based on our expert judgment of sensitivity 

and specificity for family history of breast cancer); and 

numerical constraints given the data (we were prepared 

to exclude values assigned to classification proportions 

that yielded negative cell frequencies). For all sensitivity 

analyses we further assumed that the OR estimate adjusted 

for exposure misclassification was not affected by other 

systematic errors.

We used both nonprobabilistic and probabilistic sensitivity 

analyses because they are complementary yet imperfect 

techniques. Since no likelihood (probability) is associated 

explicitly with each scenario in the nonprobabilistic 

sensitivity analysis, the results should not necessarily be 

viewed as having equal probability. The nonprobabilistic 

sensitivity analyses resulted in a wide range of ORs adjusted 

for exposure misclassification: from less than 1 to almost six 

times the crude OR value. Similar results were found using 

probabilistic sensitivity analyses.

As guided by the literature, classification errors were 

differential for all scenarios. It is well known that the 

effect of differential misclassification on study results is 

unpredictable. Both our nonprobabilistic and probabilistic 

sensitivity analysis results show the wide range of values 

that are possible. Importantly, approximately nondifferential 

misclassification resulted in an OR adjusted for 

misclassification that was less than the crude (Table 2, 

scenario 9). Thus, the sensitivity analysis results demonstrate 

the importance of quantitatively evaluating the effect of 

differential misclassification. Nevertheless, nondifferential 

misclassification only biases the expected value of an 

OR estimate toward the null value under very specific 

conditions.39

When available, internal validation data from the study of 

interest are the recommended data to inform the values used 

for sensitivity analysis, so long as the internal validation study 

itself was not biased by, for example, selection of subjects 

into the validation substudy. When such unbiased validation 

data are available, we specify sampling-error distributions 

for the classification probabilities observed in the validation 

substudy. Since we did not have internal validation data for 

the sensitivities and specificities from the study of interest,24 

we could not use this approach.

We were able to find external validation data to inform 

the values assigned to classification proportions in our 

sensitivity analyses. The validation data, however, were 

not generated from the same population as that from the 

crude OR data. Therefore, these external validation data 

may not be generalizable across different populations. 

Further, the classification proportions were not calculated 

by first-degree relative status (eg, grandmother, sister, and 

daughter), which may differ by generation. Nonetheless, 

we know of no existing methodology that incorporates 

selection forces into the classification proportions for 

sensitivity analyses.

When only external validation data for the classification 

proportion estimates are available, it is difficult to know which 

of these estimates to use. Therefore, we varied our probability 

distributions by specifying several different distributions. 

In addition, it is not recommended to pool the results from 

multiple-validation studies or to use the variance of the pooled 

result to parameterize a distribution. Instead, it is usually 

better to use the range of classification proportion values to 

parameterize a probability distribution (eg, triangular) or to 

use the range of values to conduct a multidimensional bias 

analysis. Further, we did not specify a probability distribution 

for each classification probability reported in external 

validation studies (a complete sensitivity analysis that takes 

into account the uncertainty in the classification proportions 

is the best route for funded analyses). Rather, we used the 

reported classification proportions to construct one composite 

probability distribution for each scenario.

The specification of the shape and range of the probability 

distribution is often difficult in light of internal or external 

validation data. In this research, we specified one uniform 

and two triangular distributions out of an infinite number 

of possibilities. Other probability distributions that can be 
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used include the trapezoidal, logit-normal, logit-logistic, 

and beta.11,14

When validation data are unavailable or inapplicable, 

investigators must assign values to the classification 

parameters based on expert judgment and numerical 

constraints given the data. This option, while perhaps 

suboptimal, has two advantages over conventional analyses 

that ignore quantitative estimates of uncertainty from 

classification errors. First, it emphasizes the absence of 

reliable validation data and identifies that absence as 

a research gap that should be a priority to fill. Second, 

conventional analyses implicitly treat the classification 

as perfect, and substituting expert judgment about actual 

classification errors for this often untenable assumption at 

least allows a quantitative assessment of the uncertainty 

arising from these errors.
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