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We perform an in-depth study for mean first-passage time (MFPT)—a primary quantity for random walks
with numerous applications—of maximal-entropy random walks (MERW) performed in complex
networks. For MERW in a general network, we derive an explicit expression of MFPT in terms of the
eigenvalues and eigenvectors of the adjacency matrix associated with the network. For MERW in
uncorrelated networks, we also provide a theoretical formula of MFPT at the mean-field level, based on
which we further evaluate the dominant scalings of MFPT to different targets for MERW in uncorrelated
scale-free networks, and compare the results with those corresponding to traditional unbiased random
walks (TURW). We show that the MFPT to a hub node is much lower for MERW than for TURW. However,
when the destination is a node with the least degree or a uniformly chosen node, the MFPT is higher for
MERW than for TURW. Since MFPT to a uniformly chosen node measures real efficiency of search in
networks, our work provides insight into general searching process in complex networks.

R
andom walks in complex networks have been heavily studied in the past years1–3 due to their wide range of
applications in science and engineering4. Recently, continuously increasing efforts have been devoted to
maximal-entropy random walks (MERW)5–9, also called Ruelle-Bowens random walks10,11, where all walk-

ing trajectories from given starting and ending points of a given length are equiprobable. In this sense, MERW is
the most random of random walks, which maximizes the entropy rate12,13 and is in striking contrast with the
traditional unbiased random walks (TURW) and other biased random walks. The unique diffusion process of
MERW leads to several unusual phenomena, such as localization of stationary distribution5 and fast relaxation14.

As a powerful tool, MERW has been fruitfully applied in various fields. For instance, the localization phe-
nomenon of stationary distribution for MERW makes it a good measure of centrality that is more discriminating
than some classic centrality measures, e.g. PageRank, in the sense that it can distinguish evidently those nodes that
PageRank regards as almost equally important15,16. Furthermore, since MERW incorporates both network struc-
ture and eigenvector centrality of nodes, it was also applied to establish a new algorithm of link prediction, which
outperforms various supervised and unsupervised techniques of link prediction, on most test databases17. In
addition, MERW has also found applications in optimal sampling algorithm18, demographic stability of popu-
lation19, community detection20.

A fundamental quantity related to random walks is first-passage time (FPT)21–24, which is the expected time
required for a random walker starting from a source point to a given target point. The mean first-passage time
(MFPT) is defined as the average of FPTs over all source nodes in the network, which is a useful tool to analyze the
behavior of random walks. The importance of MFPT originates from the essential role played by first encounter
features appearing in various real situations, such as lighting harvesting25–27 and target search28,29. The MFPT can
also serve as a significant indicator measuring node importance30 and efficiency of trapping process31. It is thus of
utmost importance to study MFPT for different random-walk processes. Thus far, MFPT has been intensively
studied for TURW32–40 and some biased random walks41–44, while related research about MFPT for MERW is still
much less, although the particular diffusion process of MERW is suggested to significantly affect the leading
behavior of MFPT.

In this paper, we propose a theoretical framework for MERW in complex networks and perform an in-depth
study on the MFPT for MERW to a given target. We derive an explicit expression of FPT for MERW from one
node to another in any connected network in terms of the eigenvalues and eigenvectors of adjacency matrix for
the network. Based on the obtained representation for FPT, we further deduce an exact formula for MFPT to an
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arbitrary target node. Moreover, for uncorrelated networks, we also
provide an analytical expression of MFPT for MERW at the mean-
field level, using which we obtain the leading scalings of MFPT for
uncorrelated scale-free networks with various degree exponent c, and
show how the MFPT scales with the network size.

For MERW in uncorrelated scale-free networks, we study the
MFPT for three representative cases with the target node being
located at a hub node, a node with the smallest degree, and a node
uniformly chosen from the system, respectively. For all the three
cases, we derive analytically the leading scalings for MFPT, all of
which depend on the degree exponent c that characterizes the het-
erogeneity extent of scale-free networks. Our results indicate that for
the last two cases that the target is placed at a smallest degree node or
a uniformly selected node, the leading scalings resemble each other,
but both scalings are considerably larger than that corresponding to
the first case when a hub is the target.

We also compare the obtained results of MFPT for uncorrelated
scale-free networks with those corresponding to TURW. We show
that when the target is fixed at a hub node, the MFPT for MERW is
much less than that for TURW. On the contrary, when the target is
placed at a smallest degree node or a randomly chosen node, the
MFPT for MERW is larger than that associated with TURW.
Therefore, in comparison with TURW, the special diffusion process
of MERW has a stronger influence on the efficiency for searching a
target in heterogeneous networks, making the process considerably
more efficient for finding hub node but less efficient for locating a
node with small degree or a randomly chosen node.

Results
Explicit expressions of MFPT for MERW. Throughout the paper,
the random walk processes considered are defined in a connected
undirected graph G with N nodes and E edges. The connectivity of
nodes is described by the adjacency matrix A, in which the entry aij 5
1 if nodes i and j are adjacent, and aij 5 0 otherwise. Then, the degree

of a node i is ki~
XN

j~1
aij. Let l1,l2, � � � ,lN be the N eigenvalues of

A, rearranged as l1wl2§ � � �§lN , and let m1, m2, � � � , mN be their
corresponding mutually orthogonal eigenvectors of unit length,
where mi~ mi1,mi2, � � � ,miNð Þ>. Then, matrix A can be decomposed
as the following spectral form:

A~Udiag l1,l2, � � � ,lN½ �U>, ð1Þ

where U~ m1,m2, � � � ,mNð Þ is an orthogonal matrix, obeying

UU>~U>U~I, ð2Þ

where I is the identity matrix.
Using above notations, we can introduce the MERW that is char-

acterized by a unique stochastic matrix P, the ijth entry of which is
given by

pij~
aij

l1

m1j

m1i
, ð3Þ

where l1 is the principal eigenvalue of matrix A, and m1i is the ith
entry of the principal eigenvector m1 corresponding to l1. This guar-
antees that MERW maximizes the entropy of a set of trajectories with
a given length and end-points and leads to the maximal entropy rate
of such processes5. The stationary distribution of MERW is11

p~ p1,p2, � � � pNð Þ>~ m2
11,m2

12, � � � ,m2
1N

� �>
: ð4Þ

The MERW is biased, which is different from TURW, where the
transition probability pij 5 aij/ki from a node i to one of its neighbor-
ing nodes j is identical.

The main quantity we are interested in the paper is MFPT. Notice
that MERW in an arbitrary connected binary network can be repre-
sented as generic random walk in a corresponding weighted net-

work45. The ijth element of the generalized adjacency matrix
(weight matrix) W for the weighted network is defined by wij 5

aijm1im1j, which specifies the weight of the edge connecting nodes i
and j. In this weighted network, the strength46 of a node i is given by

si~
XN

j~1
wij~l1m2

1i, and the total strength of all nodes is

s~
XN

i~1
si~l1. For generic random walks in this weighted net-

work, the transition probability is defined as

pij~
wij

si
~

aijm1im1j

l1m2
1i

~
aijm1j

l1m1i
, ð5Þ

which is equal to transition probability, given by equation (3), for
MERW in the original graph. The equivalence between the two ran-
dom walks allows to determine the MFPT for MERW in a graph by
evaluating the corresponding quantity for generic random walks in a
related weighted network.

For MERW in a network, let Tij denote the FPT from node i to
node j. Without loss of generality, let j be the target node, and let Tj be
the MFPT to node j. Then, by definition, the MFPT Tj is given by

Tj~
1

N{1

XN

i~1

Tij: ð6Þ

Based on the equivalence between MERW and corresponding gen-
eric random walks, we derive an exact expression (see Methods) for
Tij in terms of the eigenvalues and eigenvectors for adjacency matrix
A:

Tij~
1

m2
1j

XN

k~2

l1

l1{lk
m2

kj{mkimkj

m1j

m1i

� �
: ð7Þ

Plugging equation (7) into equation (6), we arrive at an expression of
MFPT Tj for MERW in a general graph with the deep trap fixed at an
arbitrary node j, given by

Tj~
1

m2
1j N{1ð Þ

XN

k~2

l1

l1{lk
Nm2

kj{mkjm1j

XN

i~1

mki

m1i

 !
: ð8Þ

Equation (8) provides a universal formula of MFPT to any node for
MERW in an arbitrary network. Although it involves computing
eigenvalues and eigenvectors of adjacency matrix, which puts heavy
demands on time and computation resources for large networks, it
can be utilized to check the results for MFPT obtained by other
approaches, at least for small networks. Besides, equation (8) can
also be used to compute the exact average ÆT æ of Tj over all N targets:

Th i~ 1
N

XN

j~1

Tj

~
1

N N{1ð Þ
XN

j~1

1
m2

1j

XN

k~2

l1

l1{lk
Nm2

kj{mkjm1j

XN

i~1

mki

m1i

 !
,

ð9Þ

which is exactly the MFPT when the target is uniformly distributed.
A drawback for equation (8) is that by using this spectral technique

it seems very difficult, even impossible, to obtain the leading behavior
of MFPT Tj characterizing the random-walk dynamic process. Thus,
it is important to seek alternative techniques of evaluating MFPT Tj

even for particular networks, which are not computationally
demanding but are valid to estimate the scaling of MFPT.
Fortunately, for uncorrelated networks, we can derive an expression
of MFPT for MERW at the mean-field level, as well as its dominant
scaling for scale-free networks. The details will be given below.

Theoretical prediction of MFPT for MERW in uncorrelated
networks. We now consider the MFPT for MERW in uncorrelated
networks, where the degree-degree correlations between adjacent
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nodes are absent. In a recent work47, we have shown that, for generic
random walks in uncorrelated weighted networks, the MFPT to node
j can be represented in terms of the strengths of the nodes as

Tj~
s
sj
: ð10Þ

Plugging sj~l1m2
1j and s 5 l1 into equation (10) gives the MFPT to

node j for MERW:

Tj~
l1

l1m2
1j

~
1

m2
1j
: ð11Þ

Thus, in order to obtain Tj, it is sufficient to determine m1j. Although
the evaluation of eigenvectors of a general matrix is very hard, for
uncorrelated networks we can approximate m2

1j at the mean-field
level (see Methods) as follows:

m2
1j<

k2
jPN

i~1 k2
i

: ð12Þ

Substituting equation (12) into equation (11), we reach a theoretical
approximation of MFPT for MERW to node j:

Tj~

PN
i~1 k2

i

k2
j

: ð13Þ

In Fig. 1, we report both the exact numerical results and theoretical
approximate results of MFPT for MERW taking place in Erdös-
Rényi (ER) network48 and Barabási-Albert (BA) network49, with
both results being generated by equations (8) and (13),
respectively. Figure 1 shows that the theoretical predictions agree
well with the numerical results. From Fig. 1, we can also find that
for nodes sharing identical degree, MFPT for MERW distributes in a
broader range in BA network than in ER network. This difference lies
in the structure of the networks. Since BA networks is heterogeneous,
the component of leading eigenvector localizes at hub nodes and
their neighbors5. For nodes having the same degree but different
neighbors, their MFPT differ widely. For example, for two leaf
nodes in treelike BA network that are linked to a hub node and a
small-degree node farther from the hub, respectively, the MFPT to
the leaf connected to a hub is much less than the MFPT to the other
leaf. While for ER network, it is almost homogeneous, so the

disparity for MFPT to different nodes with identical degree is
relatively indiscernible.

In order to better understand the behavior of MFPT in inhomo-
geneous networks, in the sequel, grounded on the theoretical
approximation in equation (13), we will analytically evaluate the
leading scaling of MFPT for MERW in uncorrelated scale-free net-
works, aiming to unveil the effects of target location on the MFPT for
MERW, as well as the difference between MERW and TURW in
terms of the MFPT.

Leading scalings of MFPT for MERW in uncorrelated scale-free
networks. Extensive empirical studies50 have shown that most real-
world networks exhibit the striking scale-free property49,
characterized by a power-law degree distribution P(k) , k2c with
c . 2. In this section, we will study the leading scalings of MFPT for
MERW in uncorrelated scale-free networks. We will examine the
dominant scalings of MFPT for three representative target
problems, with the target being a hub with the highest degree, a
node with the lowest degree, or a node selected uniformly. Our
goals are twofold. One is to uncover of the influence of target
location or degree on the behavior of MFPT. The other is to find
the scaling difference of MFPT between MERW and TURW.

Scaling of MFPT to a hub node. Let kmax denote the degree of a hub
node, and TH the MFPT to this hub node. Then, by equation (13),

TH~

PN
i~1 k2

i

k2
max

: ð14Þ

The numerator in equation (14) can be evaluated as

XN

i~1

k2
i <

ðkmax

kmin

N P kð Þk2dk

*

N k3{c
max , 2vcv3,

N ln kmax, c~3,

N, cw3:

8>><
>>:

ð15Þ

Note that in a scale-free network with N nodes and power-law degree
distribution P(k) , k2c, the largest connectivity kmax can be esti-
mated as51

kmax*N1= c{1ð Þ: ð16Þ

Combining equations (14–16), we can obtain the leading scaling of
TH:

TH*

N0, 2vcv3,

ln N, c~3,

N c{3ð Þ= c{1ð Þ, cw3:

8><
>: ð17Þ

Thus, the extent of inhomogeneity, characterized by the degree expo-
nent c, of scale-free networks strongly affects on the MFPT TH to a
hub node for MERW. For 2 , c , 3, TH is approximately equal to a
constant; for c 5 3, TH grows logarithmically with the network size N;
while for c . 3, TH grows sublinearly with N.

We have checked our approximate results for TH against numer-
ical values obtained according to equation (8) for uncorrelated scale-
free networks with various values of c, namely, c 5 2.5, c 5 3 and c 5

3.5. The considered network with c 5 3 is the BA model; while the
networks with c 5 2.5 and c 5 3.5 are generalizations of the BA
model52. The comparison for theoretical and numerical results is
shown in Fig. 2, which indicates that for different values of c and
network size N, the analytical predictions from equation (17) agree
with those numerical results given by equation (8). It should be
mentioned that for c 5 2.5, the prediction is only valid for large
networks, since in the process generating scale-free networks with

Figure 1 | MFPT to a given node for MERW in ER network (a) and BA
network (b). Black circles represent the numerical results obtained by

equation (8), and each red triangle stands for the average of numerical

values for Tj over all nodes having the same degree kj. Straight lines are the

theoretical approximation generated according to equation (13).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5365 | DOI: 10.1038/srep05365 3



2 , c , 3, multiple and self-connections are forbidden, which could
introduce degree correlations in resultant networks53,54, leading to a
deviation of numerical values from theoretical prediction.

We next show that the behavior of MFPT for MERW in scale-free
networks is quite different from that for TURW in the same net-
works. Similar to MFPT in weighted networks, the MFPT to a hub
node for TURW in uncorrelated scale-free networks can be esti-
mated by

TH~

PN
i~1 ki

kmax
, ð18Þ

where the numerator
XN

i~1
ki can be approximated as

XN

i~1

ki<
ðkmax

kmin

N P kð Þkdk*N: ð19Þ

Considering equation (16), the leading scaling of TH for TURW is

TH*N c{2ð Þ= c{1ð Þ, ð20Þ

which scales sublinearly with the network size N but decreases with c,
a result consistent with that previously obtained55 using a different
approach. In Fig. 2, we also plot the approximation for TH in equa-
tion (20) against their corresponding numerical values for TURW
generated by the method in39, both of which agree well with each
other.

Equations (17) and (20) show that the MFPT to a hub for MERW
and TURW in uncorrelated scale-free networks display rich but
distinct behavior. For both MERW and TURW, the MFPT depends
on the exponent c: lower c corresponds to smaller MFPT. Moreover,
in the whole range of c, the MFPT for MERW is smaller than its
counterpart for TURW. The root of the difference of MFPT between
TURW and MERW is attributed to their local transition probabil-
ities. For TURW, the transition probability pij from a node i to a
neighboring node j is identical, while for MERW, the transition
probability is pij 5 m1j/(l1m1i) < kj/(l1ki), proportional to the degree
of the neighboring node j. Thus, a walker visits a hub node more
quickly in MERW than in TURW.

Scaling of MFPT to a node with the smallest degree. We now study the
MFPT in uncorrelated scale-free networks when the target is a node
with the smallest degree. According to equation (13), the MFPT to a
smallest node can be represented as

TS~

PN
i~1 k2

i

k2
min

, ð21Þ

where kmin denotes the degree of a node with the least degree. For
sparse scale-free networks, their average node degree is a small con-
stant50. Hence the minimal degree kmin can be regarded as a smaller
constant. Then, recalling equations (15) and (16), the dominant
scaling of TS can be approximated by

TS*
N2= c{1ð Þ, 2vcv3,

N ln N, c~3,

N, cw3,

8><
>: ð22Þ

which is supported by extensive numerical simulations, see Fig. 3.
Equation (22) indicates that the MFPT TS for MERW in uncorre-

lated scale-free networks also exhibits rich behavior relying on the
degree exponent c. When 2 , c , 3, TS varies superlinearly with the
network size N; when c 5 3, TS scales with N as N ln N; when c . 3, TS

behaves linearly with N.
Although for both cases that the target is either at a hub node or at

a smallest node, the MFPT is influenced by the degree parameter c,
the dependence relation of MFPT on c is quite distinct, as can be seen
from equations (17) and (22). Furthermore, in the whole range of
2 , c , ‘, TH is much smaller than TS. As a result, for MERW in
uncorrelated scale-free networks, generating all paths with identical
probability is disadvantageous for the walker to explore nodes with
small degree.

In addition, the MFPT TS for MERW is also different from that of
TURW, where the MFPT TS to a node with the smallest degree can be
estimated as

TS~

PN
i~1 ki

kmin
<
XN

i~1

ki*N, ð23Þ

where equation (19) is used. This analytical solution is conformed by
numerical results shown Fig. 3.

Equations (23) implies that for TURW, the MFPT TS scales line-
arly with network size N, independent of c, which is totally different
from the behavior of MFPT, provided by equation (22), correspond-
ing to MERW. From equations (22) and (23), we can observe that for
2 , c # 3, the MFPT TS for MERW is larger than that for TURW;
and that for c . 3, although the leading scaling of MFPT TS grows
linearly with network N for both MERW and TURW, the values of TS

Figure 2 | MFPT to a hub node as a function of the network size N. The
filled symbols are the data of numerical results. The lines correspond to

theoretical predictions provided by equations (17) or (20).

Figure 3 | MFPT to the node with the least links. The filled symbols stand

for the numerical data, each being an average of MFPT over all nodes

having the smallest degree; while the lines refer to the theoretical

approximations provided by equations (22) or (23).
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for MERW is greater than those corresponding to TURW, which can
be seen from Fig. 3. Thus, for the case of target node located at a node
with the smallest degree, performing MERW is substantially slowly
to arrive at the destination than performing TURW, which is in stark
contrast with the the case when the target node is a hub node, for
which, performing MERW is more efficient than TURW to find the
target. This phenomenon can also be accounted for by local trans-
ition probability from a node to one of its neighboring nodes with
small degree, which is relatively smaller for MERW than for TURW.

Scaling of MFPT to a uniformly chosen node. The above studied MFPT
to a particular target node in a network is often not looked upon as a
general dynamical property of the network36,37. Instead, the average of
MFPT over all targets reflects some global characteristics such as the
efficiency of searching process. Thus, it is of significance to compute the
target averaged MFPT. Next, we address random walks in an uncorre-
lated scale-free network with the target being a uniformly selected node
in the network. In such situation, the MFPT ÆT æ is defined as the
average of FPTs over all pairs of nodes in the network, which involves
a double average: The former is over all the source nodes to a given
target node, the latter is the average of the first one. That is,

Th i~ 1
N

XN

j~1

Tj: ð24Þ

Next, we determine ÆT æ for MERW and TURW, respectively.
For MERW, plugging equation (13) into equation (24) gives

Th i~ 1
N

XN

j~1

1
k2

j

XN

i~1

k2
i , ð25Þ

where the term
XN

j~1
k{2

j can be estimated by

XN

j~1

1
k2

j
<
ðkmax

kmin

N P kð Þk{2dk*N: ð26Þ

Considering equations (15), (16) and (26), the quantity ÆTæ follows

Th i*
N2= c{1ð Þ, 2vcv3,

N ln N, c~3,

N, cw3,

8><
>: ð27Þ

which is consistent with the numerical results, see Fig. 4.
By comparing equation (22) and (27), we observe that for MERW

the MFPT ÆT æ exhibits similar behavior as that of TS. This phenom-
enon can be heuristically understood from the structure of scale-free
networks, where the fraction of nodes with small degrees is very high.
Moreover, the MFPT to a small-degree node is much larger than that
of large-degree node. Thus, ÆT æ and TS resemble in the leading beha-
vior, which means that the dominant scaling of TS to a small-degree
node is representative of MERW in scale-free networks.

We proceed to uncover the difference for ÆT æ between MERW and
TURW. For TURW, the quantity ÆT æ can be approximated by

Th i~ 1
N

XN

j~1

1
kj

XN

i~1

ki, ð28Þ

where the term
XN

j~1
k{1

j can be estimated as

XN

j~1

k{1
j <

ðkmax

kmin

N P kð Þk{1dk*N: ð29Þ

Recalling equation (19), we have

Th i*N, ð30Þ

a scaling similar to that of TS for TURW. In Fig. 4, we plot the
numerical results of ÆTæ versus theoretical prediction in equation
(30) for TURW in scale-free networks with different c, which are
consistent with each other.

On the other hand, for uncorrelated networks, the relationXN

j~1
1
�

Tj~1 holds. Then, according to inequality of arithmetic

and geometric means, we can deduce a lower bound of ÆTæ for uncor-
related networks:

Th i~ 1
N

XN

j~1

Tj§
NPN

j~1 1
�

Tj

~N, ð31Þ

which provides a minimal scaling for ÆTæ in uncorrelated networks.
Equations (27) and (30) show that although the scaling of ÆTæ for

MERW and TURW behaves differently, the optimal linear scaling for
ÆTæ can be achieved both for TURW in scale-free networks with
arbitrary 2 , c , ‘ and for MERW in scale-free networks with c
. 3. In the end, we stress that although in the case of c . 3, for both
MERW and TURW, ÆTæ can reach the minimal scaling, the cofactor
of the dominating scaling for ÆTæ is larger for MERW than for
TURW, which can be seen in Fig. 4. Therefore, in the whole range
of 2 , c , ‘, the value of ÆTæ is higher for MERW than that for
TURW.

Discussion
In summary, we have presented a comprehensive and systematical
analysis of MFPT for MERW in complex networks. We have pro-
vided an explicit expression of MFPT for MERW in a general net-
work with a target node being located at an arbitrary node, which is
provided in terms of eigenvalues and eigenvectors of the adjacency
matrix for the network. Moreover, for MERW in an uncorrelated
network, we have given an alternative theoretical prediction for
MFPT at the mean-field level, which is devoid of calculating the
eigenvalues and eigenvectors but gives good approximation for
MFPT that are confirmed by extensive numerical results.

Applying the mean-field approximation formula, we have further
addressed the leading behavior of MFPT for MERW in uncorrelated
scale-free networks with a given target and various degree exponent
c, focusing on three representative cases with the target being a hub
node, or a node with the least links, or a node chosen uniformly. For
all the three cases, the MFPT is dependent on the degree of the target,
as well as the degree exponent c. We have also performed a compar-

Figure 4 | MFPT to a target node uniformly selected from the whole
network. The filled symbols are the numerical results generated by

equation (9); while the lines correspond to the theoretical predictions

given by equations (27) or (30).
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ison of the obtained results for MERW with those corresponding to
TURW. For the case that the target is located at a hub node, a walker
performing MERW arrives at the destination more quickly than
performing TURW. However, for the two cases that target node is
a node with the smallest degree or a node selected uniformly, MERW
is less efficient for finding the target than for TURW.

We have also found that the values of MFPT for MERW in scale-
free networks are distributed over a larger range than their counter-
parts for TURW. Thus, as an indicator of node importance, MFPT
for MERW is better at discriminating influential nodes from com-
mon noncentral nodes. Finally, we note that our approximate ana-
lytical results only hold for uncorrelated networks. Since in real
networks, there exist ubiquitous degree correlations among nodes50,
it would be interesting to extend our methods to correlated networks
in the future.

Methods
Expressing FPT for MERW in a network in terms of the spectra of its adjacency
matrix. It has been reported56 that for generic random walks in a weighted network,
the FPT Tij from node i to node j can be represented by the eigenvalues and
eigenvectors of the following matrix C defined as

C~S{1
2WS

1
2~S

1
2PS{1

2, ð32Þ

where S is the diagonal strength matrix with its ith diagonal entry equal to the strength
si of node i. It is evident that matrix C is real and similar to the transition matrix P and
thus has the same set of eigenvalues as P. Let lP

1 ,lP
2 , � � � ,lP

3 be the N eigenvalues of
matrix C for a network of size N, rearranged as 1~lP

1 wlP
2§ � � �§lP

N , and let
y1,y2, � � � ,yN denote the corresponding normalized and mutually orthogonal
eigenvectors, where yi~ yi1,yi2, � � � ,yiNð Þ> . Then, the FPT for a walker starting
from node i to first arrive at node j can be expressed as56

Tij~
s
sj

XN

k~2

1

1{lP
k

y2
kj{ykiykj

ffiffiffi
sj

si

r� �
: ð33Þ

For the particular weighted network associated with MERW, its weight matrix W
satisfies

W~
1
l1

S
1
2A S

1
2: ð34Þ

Inserting equation (34) into equation (32) leads to

C~
1
l1

A, ð35Þ

which implies that the eigenvalues and eigenvectors of the two matrices C and A,
satisfy the following one-to-one relations:

lP
i ~

li

l1
ð36Þ

and

yi~mi: ð37Þ

Substituting equations (36) and (37) into equation (33) and considering si~l1m2
1i , we

obtain

Tij~
1

m2
1j

XN

k~2

l1

l1{lk
m2

kj{mkimkj

m1j

m1i

� �
, ð38Þ

which provides a close-form expression of the FPT for MERW starting from an
arbitrary node i to another node j.

Approximation of the principal eigenvector. Mean-field theory assumes that nodes
having the same degree share the same structural properties57. Based on this
hypothesis, we use m(k) to denote the value of elements of principal eigenvector
corresponding to nodes with degree k. By definition,

Am1~l1m1: ð39Þ

Applying the coarse-graining idea to degree classes58, equation (39) is equivalent to

�A�m~l1�m, ð40Þ

where �m~ m k1ð Þ,m k2ð Þ, � � � ,m kNð Þð Þ> . The entry �akikj of matrix �A defines the
probability that two nodes of degree ki and kj are adjacent, namely

�akikj ~
kiP kj kij
� �

N P kj
� � , ð41Þ

where P(kjjki) is the conditional probability59 that a node of degree ki is directly
connected to a node with degree kj. Note that �A can be also interpreted as a weight
matrix of a weighted, fully connected graph, which is obtained by annealed network
approach60. Since �m is the eigenvector of �A corresponding to the principle eigenvalue
l1, we can approximate m1 by �m. Next, we evaluate the principle eigenvector �m of �A.

Since in an uncorrelated network, the degrees of the two nodes connecting any edge
are completely independent, the conditional probability can be estimated as

P kj kij
� �

~kjP kj
� ��

dh i, ð42Þ

where Ædæ is the average node degree. Instituting equation (42) into equation (41)
yields

�akikj ~
kikj

N dh i , ð43Þ

which indicates that the matrix �A can be represented as

�A~
1

N dh i kk>, ð44Þ

where k is the degree sequence of the network and can be denoted by a vector as

k~ k1,k2, � � � , kNð Þ>: ð45Þ

For a matrix having the form aai, where a is a nonzero vector, its rank is 1. Therefore,
the rank of �A is 1, and �A has exactly one nonzero eigenvalue

l~tr �Að Þ~ 1
N dh i

XN

i~1

k2
i : ð46Þ

Having obtained the principal eigenvalue l, we continue to determine its corres-
ponding eigenvector �m. Obviously, l and �m satisfy the following relation:

�A�m~l�m, ð47Þ

which can be reexpressed as a system of equations:

k1�m1zk2�m2z � � �zkN �mN~ l
k1

�m1,

k1�m1zk2�m2z � � �zkN �mN~ l
k2

�m2,

..

.

k1�m1zk2�m2z � � �zkN �mN~ l
kN

�mN ,

8>>>>><
>>>>>:

ð48Þ

where �mi is the ith entry of �m. Therefore,

�m1

k1
~

�m2

k2
~ � � �~ �mN

kN
: ð49Þ

Combining with normalized condition
XN

i~1
�m2

i ~1, equation (49) can be solved to

obtain

�m2
j ~

k2
jPN

i~1 k2
i

: ð50Þ

Approximate m1j by �mj leads to

m2
1j<

k2
jPN

i~1 k2
i

: ð51Þ
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31. Cantú, G. A. & Abad, E. Efficiency of trapping processes in regular and disordered
networks. Phys. Rev. E 77, 031121 (2008).

32. Agliari, E. Exact mean first-passage time on the T-graph. Phys. Rev. E 77, 011128
(2008).

33. Kozak, J. J. & Balakrishnan, V. Analytic expression for the mean time to
absorption for a random walker on the Sierpinski gasket. Phys. Rev. E 65, 021105
(2002).

34. Zhang, Z. Z., Qi, Y., Zhou, S. G., Xie, W. L. & Guan, J. H. Exact solution for mean
first-passage time on a pseudofractal scale-free web. Phys. Rev. E 79, 021127
(2009).

35. Agliari, E. & Burioni, R. Random walks on deterministic scale-free networks:
Exact results. Phys. Rev. E 80, 031125 (2009).

36. Tejedor, V., Bénichou, O. & Voituriez, R. Global mean first-passage times of
random walks on complex networks. Phys. Rev. E 80, 065104 (2009).

37. Agliari, E., Burioni, R. & Manzotti, A. Effective target arrangement in a
deterministic scalefree graph. Phys. Rev. E 82, 011118 (2010).

38. Meyer, B., Agliari, E., Bénichou, O. & Voituriez, R. Exact calculations of first-
passage quantities on recursive networks. Phys. Rev. E 85, 026113 (2012).

39. Lin, Y., Julaiti, A. & Zhang, Z. Z. Mean first-passage time for random walks in
general graphs with a deep trap. J. Chem. Phys. 137, 125104 (2012).

40. Hwang, S., Lee, D. S. & Kahng, B. First passage time for random walks in
heterogeneous networks. Phys. Rev. Lett. 109, 088701 (2012).

41. Wu, B. & Zhang, Z. Z. Controlling the efficiency of trapping in treelike fractals.
J. Chem. Phys. 139, 024106 (2013).

42. Yang, Y. H. & Zhang, Z. Z. Random walks in unweighted and weighted modular
scale-free networks with a perfect trap. J. Chem. Phys. 139, 234106 (2013).

43. Fronczak, A. & Fronczak, P. Biased random walks in complex networks: The role
of local navigation rules. Phys. Rev. E 80, 016107 (2009).

44. Bonaventura, M., Nicosia, V. & Latorax, V. Characteristic times of biased random
walks on complex networks. Phys. Rev. E 89, 012803 (2014).

45. Lambiotte, R. et al. Flow graphs: Interweaving dynamics and structure. Phys. Rev.
E 84, 017102 (2011).
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58. Boguñá, M., Castellano, C. & Pastor-Satorras, R. Langevin approach for the
dynamics of the contact process on annealed scale-free networks. Phys. Rev. E 79,
036110 (2009).

59. Pastor-Satorras, R., Vázquez, A. & Vespignani, A. Dynamical and correlation
properties of the Internet. Phys. Rev. Lett. 87, 258701 (2001).

60. Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Critical phenomena in
complex networks. Rev. Mod. Phys. 80, 1275 (2008).

Acknowledgments
This work was supported by the National Natural Science Foundation of China under
Grants No. 11275049 and the National Basic Research Program of China under Grant No.
2010CB731401.

Author contributions
Y.L. and Z.Z.Z. designed the research, performed the research, and wrote the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Lin, Y. & Zhang, Z.Z. Mean first-passage time for maximal-entropy
random walks in complex networks. Sci. Rep. 4, 5365; DOI:10.1038/srep05365 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International License. The images or other third party material in
this article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative
Commons license, users will need to obtain permission from the license holder
in order to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5365 | DOI: 10.1038/srep05365 7

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Title
	Figure 1 MFPT to a given node for MERW in ER network (a) and BA network (b).
	Figure 2 MFPT to a hub node as a function of the network size N. The filled symbols are the data of numerical results.
	Figure 3 MFPT to the node with the least links.
	Figure 4 MFPT to a target node uniformly selected from the whole network.
	References

