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A B S T R A C T   

The socio-economic implications of COVID-19 are devastating. Considerable morbidity is attributed to ‘long- 
COVID’ – an increasingly recognized complication of infection. Its diverse symptoms are reminiscent of vitamin 
B12 deficiency, a condition in which methylation status is compromised. 

We suggest why SARS-CoV-2 infection likely leads to increased methyl-group requirements and other dis-
turbances of one-carbon metabolism. We propose these might explain the varied symptoms of long-COVID. Our 
suggested mechanism might also apply to similar conditions such as myalgic encephalomyelitis/chronic fatigue 
syndrome. 

The hypothesis is evaluable by detailed determination of vitamin B12 and folate status, including serum 
formate as well as homocysteine and methylmalonic acid, and correlation with viral and host RNA methylation 
and symptomatology. If confirmed, methyl-group support should prove beneficial in such individuals.   

Background 

A novel form of coronavirus, “severe acute respiratory syndrome 
coronavirus 2” (SARS-CoV-2) was reported in Wuhan in 2019 [1]. The 
COVID-19 outbreak caused by SARS-CoV-2 was declared a pandemic in 
March 2020. 

Long Covid 

“Long Covid” is a recognized yet unexplained complication of 
COVID-19 [2]. Symptoms are diverse and can last for months following 
resolution of initial infection [3]. They include fatigue, ‘brain fog’, 
myalgia, headache, dizziness, breathlessness, palpitations, anosmia and 
gastrointestinal problems [3–5]. 

There is a remarkable overlap with symptoms described by patients 
with pernicious anaemia (PA), especially those who suffered significant 
delay between presentation and diagnosis [6] (See Table 1). PA is an 
autoimmune disease caused by deficient synthesis of gastric intrinsic 
factor and subsequent malabsorption of vitamin B12. Moreover, myalgic 
encephalomyelitis/chronic fatigue syndrome (ME/CFS) is also a B12- 
responsive syndrome [7]. It is often initiated by infection and probably 
elicits autoimmunity at some stage [8]. Clinical experience of these 
syndromes led us to consider whether a ‘common denominator’ exists 
between vitamin B12 status and SARS-CoV-2 infection and its aftermath 

‘Long-Covid’. 

One-carbon metabolism 

Our hypothesis concerns SARS-CoV-2-induced changes in the host’s 
one-carbon metabolism and methyl-group availability. Of central 
importance is the B12-dependent methionine synthase (MS) reaction 
(See Fig. 1). 

Briefly, adenosylation of methionine by the enzyme methionine 
adenosyltransferase generates S-adenosylmethionine (SAM) - a univer-
sal methyl-donor supplying methyl groups for a multitude of intracel-
lular processes [9]. SAM is converted to S-adenosylhomocysteine (SAH) 
following transfer of its methyl-group by SAM-dependent methyl-
transferases, and thence to homocysteine by SAH hydrolase. The 
‘methionine cycle’ is completed by conversion of homocysteine back to 
methionine by MS (Fig. 1). 

Fig. 2 magnifies the MS reaction: MS-bound methyl-B12 transfers its 
methyl group to homocysteine to generate methionine and a transient 
free cob(I)alamin intermediate. MS-bound methyl-B12 is regenerated 
when cob(I)alamin accepts a methyl group from methyl- 
tetrahydrofolate (methyl-THF), generating free tetrahydrofolate (THF) 
in the process. 
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N6-methyladenosine (m6A) 

Widespread mRNA methylation occurs at the N6 position of adeno-
sine (N6-methyladenosine), abbreviated as m6A. Such post- 
transcriptional methylation of adenosine was first described in the 
1970′s and is now considered a natural epigenetic phenomenon [10,11]. 
It is critical for various physiological and pathological processes 
including transcription, translation and decay of mRNA [12,13]. It is 
probably applicable to all RNA viral infections and even several DNA 
viruses [14,15]. 

Three types of protein determine the prevalence and distribution of 
m6A. Methyl groups are added by methyltransferases (writers) but 
removed by demethylases (erasers). M6A modification of mRNA exerts 
its function by interaction with m6A binding proteins (readers). A 
myriad of m6A readers exist, suggesting that m6A has evolved to permit 
widespread regulatory control of gene expression. 

In mammalian cells, m6A-related methyltransferases predominantly 
comprise a complex of methyltransferase-like protein 3 (METTL3) and 
14 (METTL14) [16,17]. The main demethylase is fat mass and obesity- 
associated protein (FTO) [18]. Importantly, FTO sequentially oxidises 
m6A to adenosine via N6-hydroxymethyladenosine and N6- 
formyladenosine intermediates, releasing the one-carbon unit as form-
aldehyde and formate [19]. In the cytosol formaldehyde is metabolized 

to formate in a glutathione (GSH) dependent process via 
hydroxymethyl-GSH and formyl-GSH (Fig. 3). 

Formate has several intracellular fates - direct export as CO2 or 
formate itself, substrate provision for purine synthesis, or regeneration 
of a methyl-group via synthesis of methionine and SAM. Cellular recy-
cling is dependent on free THF, and additionally B12 in the case of SAM 
synthesis (Figs. 1 and 3). 

The reversibility of mRNA methylation by demethylases suggests it is 
a dynamic process affording additional regulatory control beyond that 
determined simply by the primary sequence or secondary structure of 
mRNA [20]. 

Although m6A is the most prevalent mRNA methyl-modification, 
methyl groups are also required for 5-methylcytidine, N4-acetylcyti-
dine and 2′O-methylation of the ribose moiety of all four ribonucleosides 
[11]. 

SARS-CoV-2 genome 

The genome of SARS-CoV-2 is roughly 30 kB long. It possesses genes 
that code for structural proteins, namely spike, envelope, membrane and 
nucleocapsid [21]. At the 5′ end of the genome is a gene known as orf1ab 
that encodes for polyprotein bearing all the non-structural proteins (nsp) 
[22]. The polyprotein arising from orf1ab may undergo proteolytic 
processing to give rise to 16 proteins namely nsp’s 1–16 [23]. For 
example, the nsp12 protein houses the RNA-dependent RNA poly-
merases (RdRp) that are responsible for duplication of the genome, N7- 
methyltransferase activities are present in the nsp14 protein, and the 
nsp16 protein has SAM dependent O-methyltransferase activity [22]. 

The hypothesis 

We suggest there are several implications of SARS-CoV-2 infection 
regarding both the supply of, and demand for, SAM.  

1. COVID-19 is associated with a ‘cytokine storm’ and significant 
oxidative stress [24]. This has important implications for the MS 
reaction. 

Cob(I)alamin is vulnerable to oxidation by free radicals. MS 

Table 1 
Comparative frequency of symptoms reported by patients with PA (n = 889) [6] 
and 6 months post-hospitalisation with COVID 19 (n = 165) [5].  

Neurological Symptoms Pernicious Anaemia “Long COVID” 

Fatigue 87% 34% 
Memory complaints 78% 31% 
Sleep Disturbance 87% 26% 
Numbness/tingling 66% 18% 
Myalgia Not documented 30% 
Confusion 62% 13% 
Dizziness 59% 12% 
Headaches 52% 10% 
Depression 45% 26% 
Gait disturbance 34% 11% 
Hyposmia 26% 16% 
Urinary dysfunction/UTI 21% 14%  

Fig. 1. One-carbon metabolism.  
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inactivation occurs when free radicals oxidise cob(I)alamin to a cob(II) 
alamin species. Re-activation requires methyl group donation by SAM 
[25] (Fig. 2). The net effect is SAM depletion (and an increase in ho-
mocysteine levels) as a consequence of oxidative stress [26]. De- 
activation and re-activation usually occur every few thousand cycles. 
We suggest this process is augmented with SARS-CoV-2 infection. 
Indeed, it is likely also applicable to other conditions associated with a 
cytokine storm, such as influenza.  

2. Viral replication places significant demands on methyl-groups, and 
one-carbon availability in general. 

SARS-CoV-2 nsp’s 14 and 16 have methyltransferase function and 
play key roles in the m7G cap and 2′-O-methylation modification (see 
below). However, most RNA viruses that replicate in the cytoplasm do 
not encode any enzymes with m6A methyltransferase activity and 
therefore hijack the host m6A machinery to modify the RNA. 

A recent study on SARS-Cov-2 infected Vero-E6 cells (from monkey 
kidney) concluded that the host m6A machinery interacts with viral key 
proteins to facilitate the replication of SARS-CoV-2. Firstly, the hijacked 
METTL3 functions as a methyltransferase, adding the m6A modification 
to viral RNA. Secondly, METTL3 interacts with viral RdRp, which boosts 
the expression of METTL3 (through an unknown mechanism). In sum-
mary, the host m6A modification complex interacts with viral proteins 
to modulate SARS-CoV-2 replication [27]. 

Generally speaking, m6A modification of host mRNAs can either 
enhance viral infections or promote host resistance. For example, m6A 
modification is documented in another member of the coronavirus 
family - porcine epidemic diarrhoea virus (PEDV) [13]. PEDV infection 

triggers an increase in the m6A ratio in host RNA, suggesting that hosts 
may try to restrict viral replication by m6A modification [13]. We 
suggest this defensive response might be compromised in individuals 
with low pre-morbid methyl reserves, resulting in a lower m6A/A ratio 
in patients with long-COVID. 

SAM is also required for methyl groups for viral RNA capping [28]. 
Coronaviruses replicate in the cytoplasm and cannot access the host’s 
nuclear capping machinery; they have evolved their own capping and 
methylation apparatus – nsp’s 14 and 16 [28,29]. In the case of SARS- 
CoV-2, SAM provides the two methyl-groups required for m7G cap 
formation [30]. 

As mentioned in the ‘background information’, the virus nsp12 
protein houses the RdRp activity responsible for replication of the viral 
genome. The nsp12 protein is thus a target to find molecules which can 
inhibit RdRp activity and thus reduce viral titers and limit disease 
severity. A computational model of SARS-CoV-2 nsp12 was used to carry 
out in silico screening to identify such potential inhibitors [31]. Inter-
estingly, methylcobalamin proved to be the best matching molecule, i.e., 
the best overlap was found between the binding sites of the natural 
substrates of nsp12 and methylcobalamin. Methylcobalamin (methyl-
ated vitamin B12) may thus be a potential inhibitor of nsp12 and prevent 
RNA synthesis necessary for viral genome replication. This is, of course, 
supportive to our hypothesis but requires in vivo confirmation.  

3. SARS-Cov-2 disrupts co-ordination between remethylation and 
transsulfuration through SAM 

SAM is an inhibitor of 5,10-methyleneTHF reductase (MTHFR) but 
an activator of cystathionine beta synthase (CBS) (Fig. 1). This affords a 

SAM

SAH

Homocysteine

Methyl-THFTHF

Methionine

CH3

Co III

MS

Co I

MS

Co II

MS

ROS

Fig. 2. In the primary turnover cycle of the MS reaction, homocysteine reacts with the methyl (CH3) group of MS-bound methylcobalamin to produce methionine 
and an unstable intermediate form of vitamin B12, cob(I)alamin (upper bold arrow). This highly reactive species then reacts with methyl-tetrahydrofolate (methyl- 
THF) to generate free THF and regenerate MS-bound methylcobalamin (lower bold arrow). Cobalamin therefore shuttles between methylcobalamin and cob(I)alamin 
states. Cob(I) alamin is occasionally de-activated by reactive oxygen species (ROS) and oxidised to cob(II)alamin (dashed arrows). The return of cob(II)alamin to the 
primary turnover cycle requires a re-activation step in which SAM provides the methyl group (lateral bold arrows). De-activation and re-activation usually occur 
every few thousand cycles. We suggest this process is significantly augmented with SARS-CoV-2 infection. 
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mechanism by which re-methylation and transsulfuration are co- 
ordinated [32 33] (Fig. 1). However, disruption of co-ordination by 
SARS-CoV-2-induced increased methylation demands will lead to falling 
intracellular SAM concentration, reduced CBS activity and diversion of 
homocysteine away from synthesis of reduced GSH – a key intracellular 
antioxidant. Thus, MTHFR activity and methylation via folate/B12 and 
MS will be given priority before transsulfuration and GSH synthesis in 
the scenario of SARS-Cov-2 replication. 

In summary, we suggest that SARS-CoV-2 significantly stresses the 
host’s one-carbon metabolism. It simultaneously increases demand but 
impairs supply of methyl-groups. 

Biochemical implications of clinical importance 

There are several biochemical implications of our hypothesis for the 
host. These include serine depletion, elevated homocysteine and GSH 
depletion. It is possible each makes a distinct contribution to the various 
symptoms of long-COVID. An individual’s ‘baseline’ metabolic and di-
etary status might predict their influence on specific symptoms. With 
this in mind, each predicted biochemical consequence, and its associated 
clinical sequelae, is considered separately below. 

Serine 

The increased demand for singe-carbon units following SARS-CoV-2 
infection should be reflected in declining serine levels, the ultimate 
supplier of one-carbon units for 5-methylTHF (Fig. 1). 

The kidney plays an important role in serine metabolism. It removes 
glycine from the circulation and converts it to serine, which is then 
released into the renal vein. The kidney produces about 4 g of serine per 
day, approximately equivalent to a typical Western diet [34]. Renal 
serine production falls in patients with chronic renal disease and is re-
flected in a decreased plasma serine concentration [35]. Patients with 
underlying kidney problems, and renal transplant patients, are vulner-
able to developing COVID-19, and there is involvement of kidney 
function in this viral infection [36]. 

Given the role of L-serine in myelin synthesis others suggest that 
some patients with peripheral neuropathy have mild serine deficiency 
[37,38]. Serine depletion might contribute to the “pins and needles” 
(paraesthesia) often described by patients with long-COVID. This is also 
a common, yet unexplained, symptom of PA. 

Additional metabolic demands for serine also occur as a consequence 
of a SARS-CoV-2-induced T-cell response. Reducing serum serine and 
glycine levels through dietary intervention dramatically reduces 
pathogen-driven T-cell expansion, indicating a key requirement for 
these amino acids in this response [39]. 

Homocysteine 

Our hypothesis implies an elevated homocysteine concentration in 
patients with long-COVID. As a ‘post-viral fatigue syndrome’, long- 
COVID also resembles ME/CFS, a suspected consequence of various 
viral infections [8,40]. ME/CFS has no definitive laboratory hallmarks 
but evolution of its diagnosis over decades has increased its recognition 
as a serious and crippling disorder. A metabolomic study of ME/CFS 
suggests it is a hypometabolic syndrome [41]. Although blood homo-
cysteine levels are not consistently elevated, patients with ME/CFS have 
very markedly raised homocysteine in cerebrospinal fluid (CSF), with no 
overlap compared with control subjects [42]. Moreover, CSF homocys-
teine levels significantly correlate with objective ratings of ‘fatigue’ 
[42]. 

Elevated homocysteine in blood is common in patients with cogni-
tive impairment and dementia, including Alzheimer’s Disease (AD) 
[43]; the association fulfils Bradford-Hill’s criteria suggesting causality 
[44]. Lowering homocysteine with high dose B vitamins effectively 
slows cognitive decline and brain atrophy [45], and such treatment is 
currently the most promising intervention for AD prevention [46]. We 
suggest that elevated homocysteine contributes to the ‘brain-fog’ 
described by long-COVID patients. There is also some evidence for 
cognitive deficit in post COVID-19 patients relative to controls [47]. 

Thromboembolism is an important part of the pathogenesis of SARS- 
CoV-2 infection [48]. Although not related to long-COVID itself, an 
increased tendency for hypercoagulability and thromboembolism is 
predicted by our hypothesised elevation of serum homocysteine [49]. 

Glutathione 

As discussed previously, GSH is required for cytosolic formaldehyde 
metabolism (Fig. 3). It is also required for intracellular processing of B12 
[50]. However, reduced metabolic flux through the transsulfuration 
pathway due to effects of falling SAM levels on CBS activity predicts a 
decline in GSH (and change in GSH/GSSG ratio) in patients with long- 
COVID. 

Besides being efficient antioxidants, GSH and/or its precursor N- 
acetylcysteine have useful antiviral activity toward a wide range of vi-
ruses, such as influenza, dengue, herpes simplex, rotavirus, and PEDV 
[51]. 

A recent Russian case report described four females with confirmed 
COVID-19, two with mild disease and a normal GSH/GSSG ratio. The 
others, with a more severe form of COVID-19, had a low GSH/GSSG 
ratio, “clearly indicating GSH deficiency and oxidative stress”. One 
remained severely ill at time of publication, GSH treatment being 
reportedly unavailable [52]. In a case report from USA, two patients 
with shortness of breath due to COVID-19 pneumonia were treated with 
GSH and showed a dramatic and rapid response within hours [53]. 

Fig. 3. GSH-dependent metabolism of formaldehyde, and the intracellular fate of formate.  
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Suggestions for research 

Determination should be made of the predicted metabolic effects in 
patients with long-COVID. These include measurement of serum serine 
and evaluation of markers of ‘oxidative stress,’ including the GSH/GSSG 
ratio. Our hypothesis also predicts changes in indices of vitamin B12 and 
folate status. Regarding B12, its reliable evaluation is the subject of 
debate, but its key indicators are determination of total serum B12, holo- 
transcobalamin (holoTC), and the two metabolic markers methyl-
malonic acid and homocysteine [54]. The latter is also elevated in folate 
deficiency; determination of plasma formate may help to distinguish the 
two [55,56]. 

There may also be evidence of inactive B12 ‘analogues’ in these pa-
tients, which may represent endogenous inactive oxidation products 
[57,58]. 

If available, one could also consider determination of the SAM/SAH 
ratio which should be demonstrably altered in these patients [59]. 

Implications for treatment 

If confirmed, treatment should address restoration of methyl-group 
supply, reasonably tailored to an individual’s specific requirements. 
Replacement of vitamin B12 and folate in combination with glutathione 
or a precursor, and possibly serine, would likely form the mainstay of 
therapy. Interestingly, a recent study of ten European countries showed 
that suboptimal B12 consumption correlates with increased COVID-19 
incidence and mortality [60]. 

Attention should also be given to general diet, including daily 
methionine intake. Avoidance of other nutrient deficiencies and effec-
tive nutrition policies may help strengthen population resilience to 
COVID-19 itself [61 62]. For example, 17 patients hospitalized for 
COVID-19 who received daily vitamin D (1,000 IU) magnesium (150 
mg) and vitamin B12 (500mcg) had a significantly improved clinical 
course compared to 26 non-supplemented patients [63]. 

There are precedents for this approach. One study suggested ME/CFS 
is a hypometabolic syndrome that could “..theoretically be supported by 
interventions directed at folate, B12, glycine, and serine pools, and B6 
metabolism” [41], and there are reports of good responses to treatment 
with high-dose B12 – subcutaneous and frequent injections - and folic 
acid in such patients [7]. 

It is also necessary to address chronic ‘oxidative stress’ in long- 
COVID patients. N-acetylcysteine is a precursor to glutathione and has 
the additional benefit of lowering homocysteine levels [64]. 

Conclusion 

We suggest that SARS-CoV-2 induces an increased demand for 
methyl-groups whilst simultaneously impairing their supply due to 
viral-induced oxidative stress. 

The biochemical implications of our hypothesis might explain the 
diverse symptoms experienced by patients with long-COVID and, if 
confirmed, suggests possible approaches to treatment. 

It would be ironic if the socio-economic devastation of COVID-19, by 
intensifying world-wide research in a viral pandemic, leads to valuable 
insights into other conditions such as ME/CFS, as well as providing 
additional clues to the aetiology of memory disorders and dementia, 
including Alzheimer’s disease. 
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