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ABSTRACT
Background: In the oral and maxillofacial surgery, fixation plates are commonly used for the 
stabilization of bone fragments. Additive manufacturing has enabled us to design and create 
personalized fixation devices that would ideally fit any given fracture.
Aim: The aim of the present preliminary study was to assess the susceptibility of 3D-printed 
titanium fixation plates to biofilm formation.
Methods: Plates were manufactured using selective laser melting (SLM) from Ti-6Al- 
4 V. Reference strains of Streptococcus mutans, Staphyloccocus epidermidis, Staphylococcus 
aureus, Lactobacillus rhamnosus, and Candida albicans, were tested to evaluate the material’s 
susceptibility to biofilm formation over 48 hours. Biofilm formations were quantified by 
a colorimetric method and colony-forming units (CFU) quantification. Scanning electron 
microscopy (SEM) visualized the structure of the biofilm.
Results: Surface analysis revealed the average roughness of 102.75 nm and irregular topo
graphy of the tested plates. They were susceptible to biofilm formation by all tested strains. 
The average CFUs were as follows: S. mutans (11.91 x 107) > S.epidermidis (4.45 x 107) > 
S. aureus (2.3 x 107) > C.albicans (1.22 x 107) > L. rhamnosus (0.78 x 107).
Conclusions: The present preliminary study showed that rough surfaces of additively man
ufactured titanium plates are susceptible to microbial adhesion. The research should be 
continued in order to compare additively manufactured plates with other commercially 
available osteotomy plates. Therefore, we suggest caution when using this type of material.
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Introduction

In recent years, 3D printing has been fast- 
developing technology, allowing for the imple
mentation of the most intricate designs. Also, in 
clinical medicine, additive manufacturing techni
ques utilizing metal powders, such as titanium, 
have enabled for the production of individual 
implants, scaffolds, or osteotomy plates used in 
traumatology, orthopedics and reconstructive sur
gery [1–4]. Methods of producing porous metals 
for medical devices using 3D printing, i.e. rapid 
prototyping (RP), require different degrees of pre
cision, which depend on the type and form of the 
material, different production costs, and working 
in different environments (gas or vacuum). They 
include selective laser sintering (SLS), inject three- 
dimensional printing (3DP), electron beam melt
ing (EBM), selective laser melting (SLM), and 
laser engineered net shaping (LENS). Among 
these methods, only SLS, SLM, and EBM use 
powder-bed fusion (PBF) technology, which 
allows for manufacturing of a metal structure 
from the powder material [5,6].

Based on to-date experience with this technology, 
we know that 3D-printed rationally designed devices 
meet physical, mechanical, and biological standards. 
It has been observed that these features do not result 
not so much from the production technology but the 
biological properties of the used materials. However, 
long-term biological requirements, especially biocom
patibility and resistance to bacterial contamination, 
may be problematic. Titanium is considered to be the 
most biocompatible material thanks to its high corro
sion resistance [7–9]. On the other hand, it has been 
reported that its particles may diffuse to the sur
rounding tissues causing allergic reactions, cytotoxi
city, or pro-inflammatory responses [7–14]. 
Therefore, studies involving titanium alloys must be 
conducted with high accuracy.

Based on in vitro and in vivo studies, it has been 
established that roughness and pore size of biomaterial 
scaffolds play a critical role in bone formation: ade
quately selected parameters result in greater bone 
ingrowth [15–17]. Pore sizes of 300 µm to 800 µm 
and roughness from 1 µm to 2 µm (Sa value) are 
recommended due to the formation of capillaries and 
enhanced bone formation [15–17]. However, these 
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features have some disadvantages: high porosity results 
in diminished mechanical properties like an elastic 
module, and highly roughened spatial surfaces can 
enhance bacterial adhesion [15–17]. Bacterial contam
ination and bacterial biofilm may act in two ways 
depending on their composition. The first is causing 
inflammation of the peri-implant tissue (implant- 
associated infection – IAI) that may develop into 
a generalized infection. In regards to complications 
with fixation plates and other titanium devices like 
orthopedic implants, S. aureus and S. epidermidis are 
the key players. It has been reported that 
Staphylococcus aureus and Staphylococcus epidermidis 
are significantly involved in infections related to med
ical titanium implants as they have the ability to attach 
to most types of titanium surfaces [18–26]. The second 
aspect of bacterial contamination is its influence on the 
rate of degradation of the titanium surfaces of implants 
by destroying their TiO2 anti-corrosive coating through 
the secretion of substances such as lactic acid or hydro
gen peroxide [7,27,28]. It is, therefore, vital for the 
long-term sustainability of additively manufactured 
titanium devices to protect the surface against bacterial 
contamination. Among other species present in the 
oral cavity, Streptococcus mutans and Lactobacillus 
rhamnosus are especially important due to their ability 
to release lactic acid, decrease the pH, and survive in 
acidic environments, thereby becoming dominant cor
rosive microorganisms [29–36]. In addition to bacteria, 
it is worth mentioning Candida albicans, because of its 
symbiotic relations with S. mutans under biofilm for
mation. This leads to increased glucan production, 
enhanced adherence, and increased biofilm complexity 
amplifying their harmful effect and hinders the effec
tiveness of antimicrobial substances [29,33–36]. 
Therefore, these five species of microorganisms have 
been chosen in this study of biofilm formation on the 
3D-printed raw fixation plates.

We have to understand how different types of 
bacteria react on such surfaces depending on the 
type of implant used and its location in the body. 
There have been numerous attempts to use printed 
implants to treat mandibular fractures [37–43] along 

with some biocompatibility tests [43–45]. Still, there 
has been little research investigating the susceptibility 
of such materials to biofilm formation, and they are 
limited to a few bacterial species like S. aureus [46,47] 
and Pseudomonas aeruginosa [48].

This preliminary study aimed to assess the attach
ment and biofilm growth model of the chosen bacteria, 
and fungus on 3D-printed rough titanium fixation 
plates using microbiological and scanning electron 
microscopic (SEM) methods. It is a preliminary study 
that would lead to the development of a suitable 
3D-printed material, meeting high requirements 
for biomaterials which could be used in persona
lized mandible surgery.

Material and methods

Materials model preparation and general 
characteristics

Fracture fixation plates were designed and additively 
manufactured using a selective laser melting (SLM) 
3D printer from Ti-6Al-4 V. The surface area of the 
plates was tested with 3D ATOS III Triple Scanner 
(GOM) and it amounted to 183.55 ± 5.5 mm.

A FlexAFM atomic force microscope with an 
Easyscan 2 controller (Nanosurf, Switzerland) in non
contact mode was used to investigate the morphology 
on smaller length scales. For AFM measurements, 
SICONA-10 cantrivalers (AppNano, USA) were used. 
The measurements were corrected for typical artifacts 
like line displacement of the plane inclination and 
were illustrated by using the Gwyddion software pack
age. The study was carried out with three different 
samples produced following the same procedure with 
five randomly selected locations on the surface of the 
fixation plates for the scan area of 5 µm × 5 µm, with 
a resolution of 512 by 512 points. The amplitude and 
slope parameters were calculated automatically using 
the EasyScan 2.0 software with the following formulas:

Microbiological tests

Bacterial strains
Susceptibility of the material to biofilm formation 
was tested by using reference strains capable of form
ing biofilm: S. mutans ATCC25175, S. epidermidis 
ATCC35984; S. aureus ATCC29213, L. rhamnosus 

ATCC53103, and C. albicans ATCC10231. 
S. epidermidis and S. aureus were cultured in the 
Brain Heart Infusion medium (BHI medium; Oxoid, 
Thermo Scientific), S. mutans in BHI medium sup
plemented with 1% sucrose [49], L. rhamnosus in the 
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de Man, Rogosa and Sharpe medium (MRS medium; 
Oxoid, Thermo Scientific) in an atmosphere of 5% 
CO2 with CO2 GenCompact (Oxoid, Thermo 
Scientific), and C. albicans on the Sabouraud 
Dextrose Medium with 1% glucose (Oxoid, Thermo 
Scientific).

Biofilm formation

All microorganisms were cultured in the appropriate 
solid medium (S. epidermidis, S. aureus, and 
S. mutans on the BHI agar, L. rhamnosus on the 
MRS agar, and C. albicans on the Sabouraud agar) 
overnight at 37°C to obtain single colonies. Next, 
a single colony was suspended in 10 ml of medium 
(S. epidermidis, S. aureus S. mutans in the BHI broth, 
L. rhamnosus in the MRS broth, C. albicans in the 
Sabouraud broth), and adjusted to the OD600 

= 0.035 ± 0.005 (NanoPhotometer NP60; Implen, 
Germany). One ml of suspension was then trans
ferred to the well of a flat-bottomed polystyrene 
plate with the sterile, autoclaved biomaterial as the 
substrate for the biofilm development. Cultures were 
incubated for 48 h at 37°C with gentle shaking at 
50 rpm (ES20 Biosan, Latvia). After incubation, bio
materials were carefully transferred to new wells of 
a flat-bottomed polystyrene plate and gently washed 
twice with 1 ml of phosphate-buffered saline (PBS; 
Chempur, Poland) to remove non-adherent cells. All 
the tested strains had been previously tested for the 
ability to create biofilm on the surface of polystyrene 
plates.

The assessment of metabolic activity in biofilms: 
TCC–based assay
Biofilm formation was quantified by a modified colori
metric method using 2,3,5-triphenyl tetrazolium chlor
ide (TTC) as an indicator of viable bacteria [50–52]. The 
TCC test relies on the reduction of the colorless and 
water-soluble TCC to an insoluble red compound – 
formazon. This reduction occurs as a consequence of 
hydrogen ions donated to the TCC upon dehydrogen
ase activity in metabolically active cells. In the proce
dure, after biofilm formation, the biomaterial was 
carefully washed as described earlier and transferred 
to new wells of polystyrene plates filled with 1 ml of 
fresh medium and 20 μl of 1% TTC (Oxoid, Thermo 
Scientific) was added. The sample was incubated for 
1.5 h at 37°C with shaking at 120 rpm. Then, the TCC 
solution was removed, and the sample was rinsed twice 
in PBS and transferred to new wells filled with 1 ml of 
96% methanol (POCH). Finally, the samples were left 
on a shaker at 120 rpm for 15 min at room temperature. 
After the dissolution of the formazan crystals, the absor
bance was measured on a spectrophotometer BioMate 3 
(ThermoElectroCorporation) at the wavelength of 
470 nm. Negative controls were biomaterial samples 

incubated in sterile media according to individual bac
terial species. To assess biofilm formation for each 
tested strain and negative control, the arithmetic mean 
of absorbance and standard deviation were used.

CFU – based assay
A number of biofilm-forming bacteria were quantified 
through the extraction of cells from the biomaterial by 
mild detergent-saponin [50]. Biomaterial samples, coated 
with a 48-h biofilm after rinsing, were transferred to 1 ml 
of a 0.5% saponin solution (Pol-Aura, Poland) and incu
bated at 37°C for 30 min. Then, the samples were shaken 
at 120 rpm for 1 h to detach the bacterial cells mechani
cally from the biomaterial surface mechanically. The 
resulting bacterial suspensions were serially ten-fold 
diluted. One hundred µl of each of the dilutions was 
inoculated onto the appropriate agar medium and incu
bated at 37°C for 24 hours. Obtained colonies were 
counted, and the number of colony-forming units 
(CFU/ml) was calculated. Experiments were performed 
in triplicate to calculate the average value.

SEM analysis
The microscopic analysis SEM/EDS of the brand new 
and microbiologically tested models of raw plates was 
performed using the scanning electron field-emission 
microscope JEOL JSM 7600 F equipped with an X-ray 
analyzer INCA OXFORD. The microscopic observa
tion of the biological layer required the use of an 
additional sample preparation procedure [53] which 
included immersing samples in a 3% solution of 
glutaraldehyde (25% in H2O, Grade I) in a phosphate 
buffer (0.05 mmol/l, pH 7.2 at 25°C, Sigma Aldrich, 
Ireland) and rinsing three times for 15 min in a phos
phate buffer solution (0.01 M PBS; pH 7.4) at room 
temperature. The solution of glutaraldehyde in phos
phate buffer was used for the fixation of the biological 
layer on raw plates. Glutaraldehyde influences the 
production of crosslinks between different chemical 
groups of the specimen and the creation of methylene 
bridges. As a result, the structure of this product was 
more bounded and stiffened [54]. Then, the samples 
were dehydrated in acetone solutions with increasing 
concentrations (% v/v 10, 20, 30, 40, 50, 60, 70, 80, 
90) for 10 min. The final dewatering was carried out 
in 100% acetone, twice for 30 min. These operations 
occurred at room temperature. Further, samples were 
dried at critical CO2 points using the critical point 
dryer CPD E3000 (Quorum Technologies Ltd). Each 
chemical was purchased from Sigma Aldrich, Ireland.

Statistical analyses

A graphic image comparing the activity of the tested 
strains in biofilm formation was obtained using the 
GraphPad PRISM version 5.01. The comparison of 
the differences in the results obtained with the use of 
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the quantitative and qualitative methods was assessed 
applying the Spearman correlation coefficient.

Results

Printing parameters of the fracture fixation plates are 
presented in Table 1. The material composition of the 
microstructural analysis is shown in Table 2.

The surface topography analysis by using the 
atomic force microscope revealed an average rough
ness of 102.75 ± 6.03 nm (Table 3) of the printed 
plates and irregular topography (Figure 1).

S. mutans and S. epidermidis strains showed a very 
strong metabolic activity in biofilms compared to the 
other strains tested. S. aureus strain showed lower 
activity in relation to S. mutans and S. epidermidis. 
C. albicans and L. rhamnosus strains showed clearly 
lower activity in the biofilm compared to the other 
tested strains.

A saponin test was used to assess the number of 
biofilm-forming cells on the surface of a raw 3D- 
printed plate. Saponin activity, combined with 
intense shaking led to the complete removal of bio
film-forming cells from the surfaces of the plates. 
This method allowed us to assess the average cell 
number of individual strains of microorganisms 
forming biofilm on the surface of the tested plates 
(Table 4). Disclosed variations in the cell number of 
each strains of microorganisms may be presented as 
follows: the average CFU of strains from S. mutans 
(11.91 x 107) > S. epidermidis (4.45 x 107) > S. aureus 
(2.3 x 107) > C.albicans (1.22 x 107) > L. rhamnosus 
(0.78 x 107).

Comparison of the results of two methods showed 
the highest correlation coefficient for L. rhamnosus 
(0.7897). The results of biofilm formation evaluation 
for C. albicans (0.7599), S. epidermidis (0.7009) and 
S. aureus (0.6825) were characterized by high correla
tion coefficients. The lowest Spearman’s correlation 
coefficient (0.5042) was obtained for the results of 
biofilm assessment with S. mutants.

The results of the microbiological tests were con
firmed by visualization of bacterial cells using SEM 
microscopy. The analysis showed both the surface 
shape of the 3D-printed plates and the specific manner 
of growth for each of the tested species after 48 hours of 
culture. S. mutans formed dense biofilms covering most 
of the titanium plate surface (Figure 3). S. epidermidis 
also created conglomerates on the plate surface, mostly 
covering the depressions (Figure 4). Smaller 

conglomerates and sparse cells were revealed in the 
biofilm of S. aureus (Figure 5). SEM images show 
L. rhamnosus cells forming a characteristic biofilm net
work. Newly formed cells lengthened the network by 
locating in the wells/depressions of the plate (Figure 6). 
Extensive and highly structured biofilm with the fila
mentation was observed in the case of C. albicans 
growth (Figure 7).

Discussion

In oral and maxillofacial surgery, fixation plates are 
commonly used for the stabilization of bone frag
ments in trauma management. Currently, implants 
made of titanium or its alloys are most often used 
in routine treatment. 3D printing has enabled the 
preparation of fracture fixation material customized 
specifically for each patient. Medical applications for 
3D printing have evolved considerably and are 
expected to revolutionize part of the health care in 
the nearest future [37]. Regardless of the great 
advancement in biomaterial technology, introduction 
of such biomaterials into a living organism, like any 
other implant, may result in implant-related infec
tions [55]. Biomaterial contamination during surgery 
may lead to the initial adhesion of the microorgan
isms. Unfortunately, the metallic surface of the 
implant absorbs proteins such as fibronectin, which 
facilitates microbial adhesion and biofilm formation. 
Biofilm formation is a dynamic process that is influ
enced by a number of factors, e.g. the type of surface 
to which microbes adhere or the specific properties of 
these microorganisms [56]. Commonly Identified 
microorganisms causing infections associated with 
fracture-fixation devices are mainly S. aureus, 

Table 1. The collective representation of the results of chemical composition microstructure analysis.
Ti [%] Al. [%] V [%]

min max average min max average min max average

87.30 90.28 89.02 6.83 7.81 7.29 2.63 4.90 3.69

Ti- titanium; A- aluminum; V–vanadium. 

Table 2. General printing parameters.

Parameter Norm
Range (after heat 

treatment)

Standard accuracy [mm] - ± 0.2% (± 0.2)
Layer thickness [mm] - 0.03 ÷ 0.6 (used 0.034)
Maximum dimension of 

the part [mm]
- 245 x 245 × 270 mm

Ultimate tensile strength DIN EN ISO 
6892–1:2009

1029 ± 80 MPa

Ultimate elongation [%] 14 ± 0.4%
Young’s modulus [GPa] DIN EN ISO 

6892–1:2009
104 ÷ 124

Impact strength [J] - 7 ÷ 15
Hardness [HV5] DIN EN ISO 

6507–1
320 ± 15

Relative density [%] - > 99.5
Density [g/cm3] - 4.41
Max. operating 

temperature [°C]
- 350
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coagulase-negative staphylococci such as 
S. epidermidis, Gram-negative bacilli, anaerobes, 
enterococci and streptococci [57]. According to 
Campoccia et al., two species, S. aureus and 
S. epidermidis account for around two-thirds of 

implant infections [58], and approximately 20% of 
all orthopedic device-related infections, increasing 
up to 50% in late-developing infections [59]. 
Infections that occur in the mandible, also have 
a direct relationship with the biofilm created by 
microorganisms of the oral cavity, like S. mutans 
and lactobacilli.

Due to the limited data on the susceptibility of the 
3D-printed plates to the adhesion and biofilm forma
tion, our model study aimed to assess the adhesion 
and growth of S. aureus, S. epidermidis, S. mutans, 
L. rhamnosus and C. albicans biofilm on a 3D-printed 
Ti-6Al-4 V raw plate. In the present study, a 48-h 
biofilm formation was assessed by microbiological 
methods. The results have shown that the ability to 
attach and develop biofilms is strain-dependent. The 
strain of S. mutans showed stronger ability than other 
strains (namely those of S. epidermidis, S. aureus, 
C. albicans, and L. rhamnosus) to adhere to the 
rough surface of the titanium plate used in the model.

Factors which influence bacterial adherence and 
biofilm formation on biomaterials include their che
mical structure and surface roughness. The irregular 
rough surface of biomaterials, especially their micro 
and macro-structures improve osseointegration 
which is a desirable process in implantology. Surface 
roughness and topography have a significant correla
tion with bone regeneration and mechanical reten
tion in the human maxilla and mandible [60] but 
they also facilitate initial microbial adhesion and the 
formation of biofilms [61].

Obtained results are in accordance with pre
viously reported findings on the area roughness of 
parts produced using the metal-based 3-D printing 
process [62,63], and have vertical faces with a typical 
roughness 50% greater than the horizontal faces 
[64]. The average roughness (Sa) and the root 
mean square (Sq) parameters seem to be signifi
cantly lower than described in the literature [65], 
due to the lower pore area (5 x 5 um) which was 
chosen to give a more detailed description of the 
interactions between the surface and the bacteria. 
The presence of any surface irregularities, depres
sions, or hollows promotes bacterial retention. In 
vitro studies have shown that the colonization of 
the implant surface by microorganisms begins just 
in the hollows that are a good niches for bacterial 
cells [66]. Scanning electron microscopy in our stu
dies also revealed that bacterial biofilms tended to 
form in crevices.

Table 3. The mean values of surface roughness parameters, measured for three samples at five different places.
Area [pm2] Sa [nm] Sq [nm] Sy [nm] Sp [nm] Sv [nm] Sm [pm]

25.20 102.75 ± 6.03 134.92 ± 6.80 1187.40 ± 88.16 602.35 ± 29.08 −585.06 ± 31.04 −0.0031 ± 0.0001

Sa – the difference in height of each point compared to the arithmetical mean of the surface; Sq – the root mean square value of the ordinate values 
within the defined area. It is equivalent to the standard deviation of heights; Sp – the height of the highest peak within the defined area; Sv – the 
absolute value of the height of the largest pit (valley) within the defined area; Sm – the mean spacing between peaks. 

Figure 1. The topography of the surface of the fixation 
plates.

Figure 2. Mean values and standard deviation of the assess
ment of metabolic activity in biofilms using TTC assay. This 
test demonstrated that after 48 h of incubation, all tested 
microorganisms present on the surface of the fixation plates 
showed metabolic activity in biofilms, but in a differentiated 
manner (Figure 2).
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Mello et al. conducted biofilm studies on the Ti- 
6Al-4 V alloy produced by means of powder metal
lurgy (pores measured 300 μm of diameter and 
resulted in a porosity of 40%), and obtained results 
comparable to ours [67]. The strongest biofilm 
formation was observed for S. aureus 
(5.43 × 3.38 × 108 ± 0.68 × 108), followed by 

S. mutans (6 × 107 ± 1.58 × 107) and C. albicans 
(106 ± 1.16 × 106); however, S. mutans was grown 
in BHI medium without the addition of sucrose, 
which certainly contributed to a weaker biofilm 
growth. In our approach adherence of S. mutans 
was tested by sucrose-dependent mechanisms, 
since the sucrose-independent mechanism is not 

Table 4. Average values of the number of cells recovered from the biofilm formed on the surface of the fixation plate model.
Strains from S. aureus S. epidermidis S. mutans L. rhamnosus C. albicans

Mean number of microbial cells CFU/plate 
(CFU/sample)

2.3 x 107 4.45 x 107 11.9 x 107 0.78 x 107 1.32 x 107

Figure 3. (a), (b). Scanning electron microscopic image showing massive colonization by S. mutans.

Figure 4. (a), (b). Scanning electron microscopic image showing biofilm of S. epidermidis.

Figure 5. (a), (b). Scanning electron microscopic image showing biofilm of S. aureus.
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relevant in the virulence of this bacterium [68]. 
When testing adhesion on various alloys used as 
biomaterials C. albicans creates a much weaker 
biofilm compared to staphylococci and strepto
cocci [69]. This may be due to a much larger 
yeast cell size and more difficult initial adhesion 
compared to cocci, which more easily penetrate 
into the cavities of the porous materials. Wu 
et al. reported that a species of Streptococcus pre
ferred concave features such as valleys, depressions 
and pits, all of which function to enhance the 
bacteria-surface area contact [70]. Additionally, 
Yoda et al. demonstrated that even quite a low 
surface roughness ranging from 7.1 to 16.5 nm 
Ra for Ti-6Al-4 V can influence bacterial adhesion 
and biofilm formation of S. epidermidis [71].

Lactobacilli are not often used to test biofilm 
formation on medical biomaterials although they 
constitute a part of the oral microbiota [72], are 
early colonizers in oral biofilms [73], and can be 
isolated form infected craniomaxillofacial osteo
synthesis plates [74]. The present study showed 
the ability of L. rhamnosus to adhere and form 
biofilm on the tested fixation plates. Production 
of organic acids by lactic acid bacteria can addi
tionally contribute to the corrosion of the 
biomaterial.

C. albicans is a common fungal species present 
in the oral cavity, which may colonize tissues but 
also prosthetic surfaces and implants [56,75,76]. 
Infection induces inflammatory reactions, and 
also contributes to the formation of multispecies 
biofilms consisting mainly of various species of 
streptococci [77]. The quantitative culture meth
ods revealed the lowest values for C. albicans 
among all the tested strains, but in the scanning 
electron microscope the rough surfaces of fixation 
plates were covered with extensive and highly 
structured biofilm. This indicates that 3D- 
printed biomaterials are susceptible also to fungal 
adhesion.

The irregular rough surface of the fixation plates 
with its micro and macro-structures certainly facili
tated adhesion and the formation of biofilms of all 
the tested microorganisms. Data regarding the rela
tionship of the surface roughness and the ability to 
form biofilm are not uniform. Surfaces with Sa 
greater than 0.2 μm (200 nm) have been reported to 
facilitate biofilm growth [78]. Quirynen et al. 
reported that in vivo surface roughness below 
0.2 μm did not affect bacterial adhesion [15]. Park 
et al. found decreased adhesion of streptococci and 
other species at surface roughness values of around 
0.15 µm [73]. The results of in vitro studies 

Figure 6. (a), (b). Scanning electron microscopic image showing biofilm of L. rhamnosus.

Figure 7. (a), (b). Scanning electron microscopic image showing biofilm of C. albicans.
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conducted by Yoda et al. suggested that even a quite 
a low surface roughness ranging from 7.1 to 16.5 nm 
Ra for Ti-6Al-4 V can influence bacterial adhesion 
[61]. Plates tested in the present study had a lower 
mean Sa of 0.102 μm; however, all used strains were 
able to form biofilms. These discrepancies may result 
from the fact that clinically different prostheses or 
implant devices are manufactured in different man
ners. Thus, other parameters and factors need to be 
considered, like wettability, free surface energy, and 
surface chemical composition. Features of addictive 
manufactured implants depend on many factors like 
the size of powder particles, printing parameters, 
material, etc. leading to various results.

One of the attempts to reduce the susceptibility 
of 3D-printed material to biofilm formation can 
be post-processing, e.g. polishing. Xie et al. 
showed that discs cut from Ti6Al4V implant man
ufactured by using selective laser melting (SLM), 
had higher bacterial adhesion than polished ones 
[79]. It has also been suggested that metallic 
implants produced by laser powder-bed fusion 
should be polished or coated [46,47] since coating 
medical devices with different kinds of active 
agents may be equally successful [80–82]. 
Rodrigez-Lopez et al. reported that thin polymer 
multilayers composed of chitosan and hyaluronic 
acid which release a β-amino acid-based peptido
mimetic of antimicrobial peptides (AMPs) may 
prevent C. albicans and S. aureus biofilm forma
tion [81].

Nonetheless the research should be continued and 
involve cell culturing and in vivo studies, as only such 
complex approaches will allow us to fully understand 
the problem of medical devices’ susceptibility to 
infection and may lead to other results than in vitro 
studies. For example, Metsemakers et al. conducted 
in vivo studies in rabbits, in which they compared 
S. aureus growth on fracture fixation plates with 
different surface topographies. The results did not 
show any significant differences between titanium 
and steel implants with conventional or modified 
surface in relation to their susceptibility to infection 
[82]. This means that in vivo studies are necessary to 
validate in vitro studies as they may show different 
results.

Conclusions

Titanium and its alloys are a type of biomaterials that 
have been increasingly used in many medical devices 
due to its biocompatibility, mechanical and anti- 
corrosive properties. Additive 3D printing technolo
gies create an opportunity to quickly acquire and 
optimally match medical tools to the patient’s 
needs. In these studies, we have shown that the raw, 
rough surface of the fixation plate obtained by 3D 

technology promotes adhesion and biofilm formation 
by various microbiota. It has been shown that the 
ability to adhere and form biofilm can vary between 
strains of S. aureus and S. epidermidis, which are 
potential surgical contaminating pathogens, and of 
S. mutans, L. rhamnosus, and C. albicans, which are 
parts of the oral microbiota. These preliminary stu
dies underscore the importance of the surface prop
erties of raw 3D-printed plates, which can promote 
bacterial adhesion and biofilm formation. Further 
studies comparing a raw, rough surface with 
a polished or modified surface may reveal more rela
tionships between the surface character of the 3D- 
printed plate and the ability of bacteria to form 
biofilm.
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