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A B S T R A C T   

Background: Bias away from the null in odds ratios (OR), aggravated by low power, is a well-known phenomenon in statistics (sparse data bias). Such bias increases in 
presence of selection of “significant” results on the basis of null hypothesis testing (effect size magnification, ESM). 
Objectives: We seek to illustrate these issues and adjust for suspected sparse data bias in the context of a reported more than doubling of the odds of new onset type 2 
diabetes in presence of occupational trichlorfon insecticide exposure reported in the Agricultural Health Study. 
Methods: We performed ESM analysis on the crude ORs extracted from the contingency table in the published report, which is done by simulating selected OR given a 
posited true OR. Next, we applied easily accessible methods that adjust for sparse data bias to the extracted contingency tables, including data augmentation, 
bootstrap, Firth’s regression, and Bayesian methods with weakly informative priors. 
Results: During the ESM analysis, we observed that there was a reasonable chance that a “statistically significant” OR of around 2.5–2.6 would be observed for true OR 
of 1.2. Adjustment for sparse data bias revealed that Bayesian methods outperformed alternative approaches in terms of yielding more precise inference, while not 
making unjustified distributional assumptions about estimates of OR. The OR in the original paper of about 2.5–2.6 was reduced on average to OR of 1.9 to 2.2, with 
95% (Bayesian) credible intervals that included the null. 
Discussion: It is reasonable to adjust ORs for sparse data bias when the reported association has societal importance, because policy must be informed by the least 
biased estimates of the effect. We think that such adjustment would lead to a more appropriate evaluation of the extent of evidence on the contribution of occu-
pational exposure to trichlorfon pesticide to risk of new onset diabetes.   

Introduction 

Bias away from the null in odds ratios (OR) obtained by maximum 
likelihood (ML) methods in logistic regression is a well-known phe-
nomenon in statistics [1]. However, its significance has not penetrated 
epidemiologic practice despite valiant efforts that date back at least 
decades, [2] with accessible overviews produced by Cole et al. [3] and 
Greenland et al. [2]. Greenland et al. [2] advocate a Bayesian approach 
via data augmentation within standard statistical software [4,5], but 
other implementations are now easily accessible [6]. The data 
augmentation and semi-Bayesian approaches are favored over Firth’s 
regression that implies an unrealistic prior. [7] Bootstrap is also an 
option, although the recommended quadratic bootstrap is not trivial to 
implement in standard software [8]. 

Sparse data bias is another phenomenon which is similarly not often 
recognized by epidemiologists. It will further exacerbate the bias away 
from the null in OR obtained by ML methods since regression estimates 
may not be well-behaved when the number of events is small [2]. Sparse 
data bias in OR is proportional to the observed effect size estimate and a 

measure of information contained in the data that is related to sample 
size. [9] Berkson [1] observed that the ML estimate exhibited more 
pronounced bias with deviation from prevalence of events away from 
50%, implying that it is worse for both “rare” and “common” exposures 
and that ML methods will further exacerbate sparse data bias. “Rare” 
and “common” exposures also happen to be conditions where statistical 
power degrades. It is essential to note that the sparse data bias is largely 
driven by the combination of covariates (cell of contingency table at its 
simplest) that contains the least data (low counts). Therefore, a study 
with a very large number of subjects and no measurement errors or other 
biases can still be biased by sparse data away from the null (for addi-
tional details, see Supplemental Materials 1). 

Finally, sparse data bias can itself aggravate issues associated with 
effect size magnification (ESM). ESM is likewise a known phenomenon 
in statistics [10,11] and occurs when results are deemed important on 
the basis of rejection of a null hypothesis or exceeding a pre-determined 
effect size. In practical terms, ESM means that low-powered studies that 
find evidence of an effect often provide inflated estimates of the size of 
that effect that are (consequently) less able to be replicated. These 
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phenomena have been held responsible for the facetious claims in the 
popular press that “the truth wears off” [12]. Ioannidis [13] summarized 
that “[effect size] inflation is expected when, to claim success (discov-
ery), an association has to pass a certain threshold of statistical signifi-
cance, and the study that leads to the discovery has suboptimal power to 
make the discovery at the requested threshold of statistical signifi-
cance.” To avoid being misled by an artificially inflated effect size in 
early discovery, Ioannidis [13] offers several suggestions including 
“rational down-adjustment of effect sizes” and “analytical methods that 
correct for anticipated inflation”. However, he does not offer any spe-
cific tools for either investigating the extent or magnitude of ESM in 
published (epidemiological) data or for adjusting study results to ac-
count for such effects, choosing to emphasize instead the importance of 
these considerations in the planning stages of studies. Indeed, unless the 
whole sequence of model selection is documented, it is difficult to 
determine when biasing selection decisions occurred. Nonetheless, it is 
possible to consider the need to shrink effect estimates that are sus-
pected of being positively biased regardless of the exact mechanism by 
which this occurred. 

This issue of bias in OR is significant because ORs of 2 or greater with 
95% confidence intervals (CI) that excludes 1 is seen by some courts as 
important for arguing general causation, [14] i.e., has immediate real- 
world consequence for some litigants, and has been an element of 
causal arguments within epidemiology [15]. As another example, the US 
EPA’s Office of Pesticide Programs uses a “statistically significant” OR of 
2.0 as the demarcation between classifying as study as having “evidence 
of a positive association” (1.30 ≤ OR < 2 and p < 0.05) between 
exposure and health outcome and “evidence of a moderately strong 
positive association” (2.0 ≤ OR < 3.0 and p < 0.05) between exposure 
and health outcome (e.g. see statements to this effect on page 11 of 
[16]). Different authors proposed other rules of thumbs for judging and 
characterizing effect sizes [17–19]. If the elevation of an OR can be 
ascribed to such sparse data bias, it is imperative to consider and ideally 
account for this to guard against ensuing “false positives”. 

It is important to note that low power can cause sparse data bias even 
in absence of added selection on the basis of null hypothesis tests and 
thresholds for effect sizes (i.e., ESM). That is, each can act separately and 
independently to introduce an artificial inflation of observed effect sizes, 
with these phenomena, introducing a systematic, insidious, and often 
unrecognized bias away from the null. In fact, this bias away from the 
null from sparse data bias and ESM can be sufficient to entirely counter 
and reverse what some epidemiologists claim as bias to the null under 
conditions of non-differential misclassification. Apparent low power 
leading to false positives can also be the consequence of other unmod-
elled problems in statistical analysis, like exposure misclassification 
[20]. 

As a motivating example for this paper, we draw on a report of more 
than doubling of the odds (p < 0.05) of new onset type 2 diabetes 
attributed to exposure to insecticide trichlorfon by Montgomery et al. 
[21], which, despite being based on a large cohort (>30,000 subjects), is 
driven by 7 “highly” exposed cases. Given the likely low power of the 
study due to the very small number of exposed cases, we suspect that this 
effect size estimate is inflated relative to the true value and would not 
replicate in any future similar study or subsequent analysis. Curiously, 
Montgomery et al. [21] reported a largely null association of diabetes 
with active form of trichlorfon, dichlorvos: an adjusted OR of 1.26 (95% 
CI 0.91, 1.73) based on 44 cases in the highest exposure category vs. 
never-exposed, p-trend 0.15. Juntarawijit and Juntarawijit [22] con-
ducted a case-control study of diabetes using exposure assessment 
method “derived” from that of Montgomery et al. [21]. Based on 10 
ever-exposed cases, they reported for dichlorvos an adjusted OR of 1.03 
(95% CI: 0.41, 2.62) [22]. Thus, the initial characterization of the 
finding by the authors as a “strong” [21] positive result for trichlorfon is 
not internally consistent and was not replicated in a study with similar 
number of exposed cases. There appear to be no other reports evaluating 
the association of either dichlorvos or trichlorfon with type 2 diabetes in 

humans. We further note that a more than doubling (here, OR of 
2.5–2.6) of the OR for diabetes as a result of exposure to trichlorfon 
would be quite dramatic given that family history is known to play a 
sizable role in the onset of diabetes and this is observed to have a similar 
magnitude of effect as reported here. For example, a EU-wide prospec-
tive cohort found that a family history of type 2 diabetes was associated 
with on average doubling to tripling of incidence of the condition [23]. 
It would be unusual for a typical environmental exposure to have an 
effect size on diabetes that is of similar magnitude to that of family 
history and genetics. 

More generally, we wish to illustrate how summary results as are 
typically presented in published studies can be used by the reader to (a) 
assess and evaluate effect size magnification and (b) adjust such results 
for sparse data bias, assuming that the two phenomena have low power 
in common. Further, we also compare performance of these adjustment 
methods for the motivating example of reported associations [21]. We 
do not purport to develop new methods but, as a secondary aim, 
consider the wisdom of default priors on odds ratios that have been 
proposed by others in [2,6,7]. 

Methods 

We extracted 2-by-2 tables from Table 3 of Montgomery et al. [21] 
for trichlorfon. We considered the original (study authors’) classification 
into “high” exposure group (7 exposed cases) as well as ever exposed 
group that we created (12 exposed cases). We limited our attention to 
subjects who had complete information to mimic the main analysis, 
thereby losing one exposed case and focusing our illustrative analysis on 
the crude odds ratio for categories of “high” vs. never- and “ever” vs. 
never-exposure (see Supplemental Materials 1, Table S1). As described 
below, we then evaluated, in turn, the extent to which effect size 
magnification might account for these results and how these results 
might be adjusted, post-hoc, for sparse data bias. 

Effect size magnification (ESM) analysis 

As a first step in any evaluation of a 2-by-2 epidemiological table, an 
ESM analysis can be useful to determine the extent to which OR for 
“discovered” associations may be inflated due to low power. The con-
cepts behind ESM analyses are more thoroughly explained elsewhere 
[13,24–29]. Briefly, the analysis begins by assuming a true OR for an 
association and estimates the proportion of exposed individuals among 
n0 in a non-diseased group (Po). The expected proportion of exposed 
individuals among n1 cases (P1) is then estimated based on the assumed 
true OR and Po. Exposed non-diseased subjects are simulated using Bin 
(Po, n0) and exposed diseased are independently sampled from Bin(P1, 
n1). For each of these simulated studies, the simulated OR* is then 
computed via ML method. When looking at only those OR* that pass the 
threshold of the lower 95% CI exceeding the null (equivalent to one- 
sided test with p = 0.025), their median is compared to the true OR, 
yielding the ratio termed the magnification factor. Our choice of 
threshold of selection is motivated by the context of pesticide risk 
assessment and likely other environmental xenobiotics, where effect 
estimates suggesting a protective effect (e.g., statistically significant OR 
< 1) are dismissed as statistical anomalies, while only apparently 
elevated effect estimates are considered for interpretation as potentially 
causal. All calculations were implemented in Stata (College Station, TX) 
using its -emagnification- command and – for comparison purposes – in 
SAS (Cary, NC) and are shared as Supplemental Materials 1. 

Adjustment of OR for sparse data bias 

We assumed both no measurement error in any of the variable 
(which is unrealistic for exposure at the very least [30,31] but we will 
tackle this elsewhere) and no important confounding that would make 
confounder adjusted and unadjusted analysis materially different. 
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When sparse data bias (e.g., as might be potentially identified in 
ESM) results in a likely problematic interpretation of a published OR, a 
variety of methods are available for adjusting the ML estimates of an OR 
produced by logistic regression. These include bootstrap of ML estimates 
(we used 10,000 replicates with basic method for CI), profile likelihood 
for CI, Firth’s logistic regression, Bayesian estimates with null-centered 
priors that shrink the OR, and data augmentation to penalize extreme 
estimates. For this latter method, we implemented data augmentation as 
described by Greenland et al. [2] that is equivalent to a prior on OR to 
fall between 1/40 to 40 with 95% certainty; both ML and profile like-
lihood CIs were generated. 

All these analyses can be implemented in standard statistical soft-
ware, with the exception of Bayesian methods, which are easy to 
conduct for 2-by-2 contingency tables in any environment amendable to 
Monte Carlo sampling (e.g. see section 5.1 of Gustafson [32], where 
implementation is adopted by assuming no exposure misclassification). 
In implementing this Bayesian approach, we took advantage of the fact 
that odds of probability π following a Beta-Prime distribution parame-
terized by shapes (α,β), which is a conjugate distribution of π ~ Beta(α,β) 
[33]. This allowed us to directly sample from posterior odds from Beta- 
Prime distributions for cases and controls. We also implemented 
Bayesian logistic regression with default normal prior on log(OR) sug-
gested by Hamra et al. [6], which presumes that a priori we believe that 
true OR lies with 95% certainty between 1/10 and 10 (Bayesian-H); it 
has an advantage of easy implementation in SAS (Cary, NC). 

Only the matter of priors requires further explicit elaboration. In 
what we call Bayesian methods A and B, we induced a prior on the OR by 
positing identical and independent priors on prevalence of exposure in 
cases and non-cases via Beta distributions. In the Bayesian-A method, we 
set prior prevalences to be on average close to that of the prevalence of 
exposure in cases, and in Bayesian-B method – that of the prevalence of 
exposure in controls. For example, if we wanted a prior on prevalence 
centered on 1%, we use Beta(s × 1, s × 99), where s is a scaling constant 
described further below. Then, the posterior of odds becomes Beta- 
Prime(s × 1 + a, s × 99 + b) for observed prevalences of exposure of a/ 
(a + b). This proved to be suitable for Bayesian-A for both high vs. never- 
exposed and ever vs. never- analyses because the expected exposure 
prevalence of cases was about 1% in both scenarios. For Bayesian-B, 
exposure prevalences in controls differed between the two exposure 
contrasts (0.5% vs 0.3%) and Beta-priors on prevalence were suitably 
adjusted. For high vs. never-exposed comparison in Bayesian-B, the 
prior prevalence had 95% certainty interval of about 0.03% to 0.8% 
with median and mean 0.3%, apparently covering the full range of 
possibilities in the cohort (note that the apparent prevalence of exposure 
in the exposed is 0.7%). The priors on OR induced in this manner have 
means of 1 (null) and the scaling constant s was used to tune the prior on 
prevalence to induce 95% certainty interval of priors on OR to match 
that of Hamra et al., [6] (this tuning could have been done for any other 
target prior precisions). 

Most of the sparse data calculations were implemented in R [34] and 
are shared as Supplemental Materials 2 and 3, except for Bayesian-H 
that was implemented in SAS (Cary, NC), see Supplemental Material 4. 

Results 

Effect size magnification analysis 

From the data reported in the Montgomery et al. [21], crude ORs of 
2.62 (95% CI: 1.20, 5.70) and 2.48 (95%CI: 1.37, 4.49) can be calculated 
for the high vs. ever- and ever vs. never-exposed comparisons, respec-
tively. (The corresponding adjusted OR for the high vs. never-exposed 
comparison reported in [21] is 2.47, 95%CI 1.10, 5.56). 

Table 1 provides evidence that for the high vs. never-exposed com-
parison for any true OR substantively <3, there is a high potential for the 
discovered OR of 2.62 to be due to effect size inflation. For example, 
with a true OR of 1.1 and the observed background exposure prevalence 

of 0.28%, the expected median “statistically significant” OR will be 2.59, 
representing an inflation of 136%. At that assumed true odds ratio of 1.1, 
the observed crude OR of 2.62 is well within the middle 80% of the 
expected range of 2.3 to 3.4. Thus, such an estimated OR would not at all 
be unexpected due to ESM if the true OR was only 1.1. It is noteworthy 
that even when the assumed true OR of 3 for this high vs. ever com-
parison, power is still only at 75%, below the nominally desired 80%, 
with the median “selected” OR inflated to 3.3. 

Similarly, Table 1 illustrates the potential for ESM for an ever vs. 
never-exposed comparison which we created by combining the study’s 5 
“low”- and 7 “high”- exposed cases. The background exposure preva-
lence for this comparison was 0.50%. We estimated that the median 
inflation can vary from a substantial 1.93-fold for a true OR of 1.1 to a 
trivial 1.02-fold for a true OR of 3.0. This means that the study’s re-
ported OR of 2.47 for the association between trichlorfon exposure and 
incident diabetes [21] could arise with non-ignorable probability from a 
true OR of as little as 1.1 due to ESM alone, if there were no other sources 
of error or bias (which almost never can be ruled out with certainty in 
occupational epidemiology). Only when we assume true OR of 3 for this 
comparison, did the power exceed the nominally desired 80%, and the 
median “selected” OR was not importantly inflated. 

The above analyses are dependent at least in part on the observed 
background exposure prevalence among the non-diseased. Hence, it is 
important to examine impact of uncertainty in the assumption of prev-
alence of exposure in non-cases. This sensitivity analysis is detailed in 
Figs. S1 and S2 in Supplementary Materials 1 where it is shown that its 
impact does not materially affect our conclusions. 

Finally, we note our observation that distribution of plausible log 
(OR)s under the null, given the data structure of the ESM analysis we 
undertook, is multimodal and poorly approximated by Gaussian distri-
bution, signaling that any inference that relies on assumption of 
asymptotic normality of log(OR) is questionable in the studied circum-
stances of very low exposure prevalence (see Fig. S3 in Supplementary 
Materials 1). 

Sparse data bias adjustment 

Table 2 contains the results of the adjustment for sparse data bias. 
There is evidence that ML estimate of OR is affected by sparse data bias 
because OR point estimates are reduced, and the 95% CI shifted to lower 
range when ML estimates are bootstrapped and when data is augmented 
to penalize extreme estimates. This is more evident for the sparser 
“high” vs. never exposed comparison in data augmentation, where point 

Table 1 
Simulations for effect sizes passing the chosen threshold of statistical signifi-
cance (the lower 95% confidence limit above 1) for Montgomery et al. [21]; 
simulation size 10,000.  

True 
Odds 
Ratio 

Observed odds ratios among “selected” results 

“High” vs. Never Exposed Ever vs. Never Exposed 

P0 = 0.28% P0 = 0.50% 

Median 
(p10-p90#) 

Median 
Fold 
Inflation 

Power 
(%) 

Median 
(p10-p90#) 

Median 
Fold 
Inflation 

Power 
(%) 

1.0 2.59 
(2.31–3.24) 

1.59 3.2 2.16 
(1.99–2.56) 

1.16 2.9 

1.1 2.59 
(2.31–3.35) 

2.36 5.4 2.13 
(1.96–2.55) 

1.93 5.6 

1.2 2.59 
(2.31–3.21) 

2.16 7.8 2.16 
(1.97–2.62) 

1.78 8.8 

1.5 2.67 
(2.31–3.45) 

1.78 17 2.24 
(1.97–2.83) 

1.49 23 

2.0 2.85 
(2.34–3.86) 

1.42 36 2.42 
(2.02–3.18) 

1.21 53 

3.0 3.31 
(2.47–4.77) 

1.10 75 3.05 
(2.24–4.16) 

1.02 92  
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estimates declined from 2.62 to 2.45 and the lower 95% limit reduced 
from 1.20 to 1.04 (profile likelihood). Profile likelihood and bootstrap 
showed similar trends on average, but bootstrap had 95% lower confi-
dence limit below 1, signaling a more skewness with heavier tails than 
that allowed under the assumptions of normality of log(OR). Specif-
ically, for the ever vs. never-exposed comparison, bootstrap sample had 
skew = − 0.7 and kurtosis = 4; the situation is far worse for the high vs. 
never-exposed comparison (see footnote to Table 2). The Firth’s logistic 
regression appeared ineffective in adjusting for bias in this case, as it 
yielded here higher estimates of OR than ML, data augmentation, and 
bootstrap. All Bayesian methods displayed similar performance, pushing 
the OR towards lower values, except in the case of Bayesian prior 
anchored in exposure prevalence among cases for “high” vs. never 
exposed. The downward adjustment was most pronounced with 
Bayesian-B method that used prevalence of exposure among controls 
(median posterior OR 1.94, 95% credible interval (CrI): 0.88 to 3.70) 
and the default prior of Hamra et al., [6] (median posterior OR 2.24, 
95%CrI: 0.99 to 4.60). There is a pronounced skewness without heavy 
tails in deviation from the normality of posterior of OR in methods that 
manipulate prior on exposure prevalence (e.g., skew = − 0.2 to − 0.3, 
kurtosis = 3 for Bayesian-A and -B). This, together with observation of 
similar phenomena for bootstrap, signals that the usual assumption of 
normality of log-OR may not be tenable in this analysis. 

It is difficult to be certain which of the adjustments is the most 
credible. The linear bootstrap that we employed seems to have inheri-
ted, unsurprisingly, biases that are a property of ML estimate of the lo-
gistic regression [1], as signaled by heavy tails. The recommended 
quadratic bootstrap [8] is not readily accessible to analysts. Thus, we 
think that data augmentation, Bayesian-B, and Bayesian-H [6] are the 

most plausible candidates for being the most credible. They seem to 
converge on similar conclusions, even though we question whether the 
Greenland et al.’s suggested default prior on OR of data augmentation 
[2] (i.e., of prior OR falling between 1/40 to 40 with 95% certainty) is 
suitable in our application. The Bayesian methods A and B are attractive 
in that they do not force a normality assumption on the log(OR) and do 
not rely on logistic regression (unlike bootstrap). 

Bayesian-B yields more precise estimates than that with default prior 
of Hamra et al. [6]: smaller ratios of 97.5 to 2.5 percentiles of posterior 
ORs. Therefore, we are tempted to favor more precise estimates [35] and 
to bet that the least biased estimate of OR for “high” vs. never-exposed 
comparison is centered between 1.9 and 2.2, with the 95% CrI’s from 
about 0.9 to 4 or 5. However, there is uncertainty due to modeling 
choices. Our conclusion appears to be importantly different from the one 
in the original manuscript that asserted “the pesticide most strongly 
associated with diabetes among applicators was the organophosphate 
insecticide trichlorfon” [21] on the basis of adjusted OR 2.47 (95%CI 
1.10, 5.56). 

Discussion 

Regulatory and other risk assessors should be aware of the bias away 
from the null when reviewing epidemiological results that suggest a 
discovered association (e.g., those that cross a pre-determined statistical 
threshold such at p < 0.05 or exceed a pre-determined OR of interest). 
An ESM analysis can be useful to determine the extent to which the OR 
may be artificially inflated, which is more likely to occur in under-
powered studies. Studies might be underpowered when they are small, 
prone to measurement error, or they are susceptible to sparse data bias. 
Gelman and Carlin [26] specifically recommend that such ESM-like 
calculations (termed “post-hoc design calculations” by them) be done 
when strong statistically significant evidence for non-null effects have 
been found because: 

“a [discovered statistically] significant result is often surprisingly 
likely to be in the wrong direction and to greatly overestimate an 
effect when researchers study small effects using noisy measure-
ments and small sample sizes”. 

Gelman and Carlin [26] continue, stressing that such calculations 
may be even more relevant for findings that are found to be statistically 
significant because the interpretation of such result can change sub-
stantially depending on the researchers’ prior belief in a plausible size 
and direction of the true effect. As described earlier, implementation is 
available in common statistical software to evaluate the potential extent 
of ESM and determine if sparse-data bias corrections or adjustments 
might be advisable. 

We are not aware of any research that suggests that the application of 
the methods to adjust for sparse data bias can lead to negating true as-
sociation, underestimating them. One can be comfortable in this being 
generally the case because methods that we apply (certainly all the 
Bayesian ones), at the mechanistic level of the calculations, aim to 
eliminate extreme values, not to directly penalize inflation of ORs ex-
pected in ML estimates of logistic regression. Please note that prior on 
ORs are all centered on the null; if this was not the case, then there 
would indeed but push towards higher or lower values in the posterior, 
but this is not the case in our application and all such applications of 
Bayesian methods to combat sparse data bias. Thus, even though we are 
motivated by trying to safeguard against overestimating effects sizes, the 
methods equally penalize high and low effect size estimates, without any 
obvious risk of making true associations disappear. 

If it is decided that such adjustments are necessary or advisable, it is 
easy to adjust published ORs for bias arising from sparse data when it is 
manifested in unadjusted analyses when data is captured in the original 
publication by a contingency table. This should both enhance interpre-
tation of individual studies and aid their pooling in meta-analyses of 
studies that are invariably of different size and likely include studies for 

Table 2 
Adjustment for sparse data bias in the association of incident diabetes and 
trichlorfon insecticide reported in Montgomery et al., [21].  

Odds ratio estimation method Estimated odds ratio (OR) and 95% interval 
for different exposure contrasts 

“High” vs. Never 
Exposed (>10 
cumulative days) 
(cumulative days of 
use, 7 exposed cases) 

Ever vs. Never 
Exposed (12 
exposed cases)  

OR 95% (CI/ 
CrI)b 

OR 95% (CI/ 
CrI) b 

Maximum likelihood (ML) a 2.62 c 1.20, 5.70 2.48 1.37, 4.49 
Bootstrap of ML (basic) 2.62 

d 
0.23, 4.42 2.50 0.83, 3.80 

Profile likelihood (PL) 2.62 1.09, 5.31 2.48 1.30, 4.30 
Firth’s 2.79 1.20, 5.54 2.57 1.36, 4.42 
Data augmentation (ML) 2.45 1.13, 5.31 2.38 1.32, 4.31 
(PL) 2.45 1.04, 4.96 2.38 1.26, 4.13 
Bayesian-A e 

(prior on exposure prevalence 
akin to cases) 

2.65 1.22, 5.07 2.33 1.27, 3.93 

Bayesian-B f 

(prior on exposure prevalence 
akin to controls) 

1.94 0.88, 3.70 2.01 1.10, 3.39 

Bayesian-H g 

(not informed by exposure 
prevalence) 

2.24 0.99, 4.60 2.26 1.21, 3.99 

a: The usual default method as deployed by Montgomery et al. [21] 
b: CI = confidence interval, CrI = credible interval. 
c: crude OR while the adjusted OR in Montgomery et al. [21] is 2.5, 95%CI 1.1, 
5.6. uncertainty is in the first decimal place. 
d: median 2.55; inference challenging due to very high skew (− 10) and kurtosis 
(214). 
e: prior OR derived from expected exposure prevalence 1%, akin to that among 
cases. 
f: prior OR derived from expected exposure prevalence 0.5% for ever vs never 
exposed and 0.3% for high vs never exposed, akin to that among controls. 
g: the default prior on OR recommended by Hamra et al. [6] 
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which sparse data bias may be important. 
If observed confounding is negligible, then little information is lost 

from working with contingency tables as opposed to record-level data. 
Extension of our work to account for confounders is possible with a little 
extra effort as shown by Hamra et al. [6] Of course, the extension to 
account for other sources of bias, such as measurement errors, selection 
bias, latent confounding, may be warranted for more reliable inferences; 
methods to do so should be possible which would also benefit from 
combining with quantitative bias analysis [36], by adding an adjustment 
for sparse data bias. For problems that are of considerable importance, 
full Bayesian analysis that accounts for all sources of bias believed to be 
important may be recommended, albeit this would require more than 
application of easily accessible statistical routines. 

Analysis that adjusts for bias would still need to be subjectively 
interpreted in the context of regulatory decisions and care must be taken 
to not apply the same rules of thumb to bias-adjusted results as one 
would apply to results where more bias is suspected as being at play. In a 
sense, the penalty which mentally (perceptually) down-weights the 
importance of studies for suspected bias should not be kept after quan-
titative adjustment for such a bias is performed. For example, a bias- 
adjusted OR of 1.5 in a low-powered study subject to sparse data bias 
can be interpreted as causal with more confidence compared to crude 
OR of 2.0 even if they are estimated with about equal precision. 

Our experience indicates that Bayesian approach with priors that 
account for prevalence of exposure does not manifest any obvious ad-
vantages: while it yields more precise estimates, it is sensitive to the 
choice of prior exposure prevalences even within a narrow range. While 
we are skeptical about default priors on ORs, there is no obvious way to 
pick exposure prevalence that is used to induce a null-centered prior on 
OR. Using the observed exposure prevalence as a guide to set such a 
prior is clearly problematic on the theoretical grounds, because the prior 
must be elucidated before observing the data. It seems less perilous to set 
the prior on ORs for binary exposure directly via the default prior of 
Hamra et al. [6]. And yet if there is prior information on prevalences (as 
is often that case, setting aside worries about exposure misclassification 
[37]), one can perhaps learn more from the data (as indicated by nar-
rower credible intervals with Bayesian-B). Furthermore, it is appealing 
to not make assumption of normality of log(OR) which one is forced to 
make in approach of Hamra et al. [6] when ESM indicates that such an 
assumption is dubious. In such a setting, bootstrap and Bayesian 
methods that postulate an informative prior on prevalence of exposure 
gain appeal. This remains an interesting avenue for research, even if it 
proves to be a matter of little practical consequence. 

It is reasonable to adjust ORs for sparse data bias when the reported 
association has societal significance, because policy must be informed 
by the least biased estimates of the effect. We think that such adjustment 
would lead to a more appropriate evaluation of the extent of evidence on 
the contribution of occupational exposure to trichlorfon pesticide to risk 
of new onset diabetes, which seems to have been originally overstated. 
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