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The stochastic resonance (SR) is a phenomenon in which adding a moderate amount of
noise can improve the signal-to-noise ratio and performance of non-linear systems. SR
occurs in all sensory modalities including the visual system in which noise can enhance
contrast detection sensitivity and the perception of ambiguous figures embedded in
static scenes. Here, we explored how adding background white pixel-noise to a random
dot motion (RDM) stimulus produced changes in visual motion discrimination in healthy
human adults. We found that, although the average reaction times (RTs) remained
constant, an intermediate level of noise improved the subjects’ ability to discriminate
motion direction in the RDM task. The psychophysical responses followed an inverted
U-like function of the input noise, whereas the incorrect responses with short RTs did
not exhibit such modulation by external noise. Moreover, by applying stimulus and noisy
signals to different eyes, we found that the SR phenomenon occurred presumably in the
primary visual cortex, where these two signals first converge. Our results suggest that a
SR-like phenomenon mediates the improvement of visual motion perception in the RDM
task.
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INTRODUCTION

Visual motion perception is crucial for survival because it allows a rapid estimation of the speed
and direction of relevant moving objects in visual scenes. A widely used method to measure
visual motion perception in monkeys and humans is to combine a random dot motion (RDM)
stimulus (Newsome and Pare, 1988) with a psychophysical test based on two response options
(Ward et al., 2002; Gold and Shadlen, 2007). In such a task, the subjects visualize an array of dots
some of which move coherently in one direction, whereas the rest moves in random directions.
The subjects must carefully observe the moving dots, choose between two main possible directions
of motion and report their choice with a motor response such as doing a saccade or pressing
a button with their index finger. There is ample experimental evidence that suggests that such
ongoing projection of the dots moving together in the same direction (i.e., the coherence of
motion) provides cumulative evidence over time to inform the decision (Shadlen and Newsome,
2001; Gold and Shadlen, 2007). Indeed, many decision theories suggest that animals make their
choices by accumulating sufficient stimulus information until they emit their responses (Smith and
Ratcliff, 2004; Gold and Shadlen, 2007; Treviño et al., 2013). The build-up of such discriminative
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information is sensitive to relevant parameters such as the
intensity and quality of the stimulus, prior response probabilities,
and reward probabilities (Smith and Ratcliff, 2004; Treviño et al.,
2013; Treviño, 2014; Herrera and Treviño, 2015). However,
additional, relevant, and not yet explored variables could also
interact and influence behavioral output in the RDM task. For
instance, an external noise source could have a strong impact on
the choice performance of the subjects by degrading the quality
of discriminative information, a perturbation which could be
exploited to investigate the core mechanisms involved in optimal
decision making.

Intuitively, one would expect that excessive random noise
would interfere with the build-up of discriminative information
leading to worse detection performance, degraded estimation
accuracy, and reduced generalization capacity (Moss et al., 2004).
What would be the effect of using smaller noise sources? Recent
studies have revealed that low amplitude noise can play a
‘constructive’ role in the detection of weak signals through a
mechanism called stochastic resonance (SR; Moss et al., 2004;
McDonnell and Abbott, 2009; McDonnell and Ward, 2011). SR
refers to a phenomenon where adding an optimal level of white
noise can increase the signal-to-noise ratio (SNR) in non-linear
systems, thereby improving the detection of weak stimuli (Ward
et al., 2002; Moss et al., 2004; McDonnell and Abbott, 2009;
McDonnell and Ward, 2011). Although, originally described in a
climate change study (Benzi et al., 1981), the SR phenomenon has
also been reported in sensory, motor, and sensorimotor systems
in humans (Simonotto et al., 1997; Leopold et al., 2002; Moss
et al., 2004; Sasaki et al., 2006; Martinez et al., 2007; McDonnell
and Ward, 2011; Medina et al., 2012; Mendez-Balbuena et al.,
2012). A general property of SR is that the response of the
system under investigation vs. the input noise renders an inverted
U-shaped SNR curve with a peak response increment at an
intermediate noise level. It is precisely at this ‘optimal’ noise
value at which SR increases the system’s sensitivity to detect
information-carrying signals. SR is a phenomenon that also has
been studied in models of single neurons (Bulsara et al., 1991;
Wiesenfeld et al., 1994; Lee and Kim, 1999) and in models
of small-world neural networks (Perc, 2007; Ozer et al., 2009;
Wang et al., 2009; Yilmaz et al., 2013) due to the fact that it’s
influenced by the network topology. The study of SR in neural
networks could be of particular importance for the interpretation
and discussion of psychophysical experiments involving the
application of external noise.

Stochastic resonance has been shown to enhance human visual
perception during the addition of pixel-noise to static scenes
(Simonotto et al., 1997; Moss et al., 2004). Indeed, visual noise
can increase visual contrast detection sensitivity around the
threshold level, and thereby improve relevant processes such
as pattern recognition and the perception of ambiguous and
3-D figures (Leopold et al., 2002; Sasaki et al., 2006). However,
despite all these evidence showing the contribution of SR in
visual processing, the relationship between external visual noise
and visual motion discrimination is still unexplored. Here,
we investigated how adding a dynamic source of background
pixel-noise influenced the ability of subjects to perceive motion
direction in the RDM task. We found an improvement in the

steady-state discrimination of the direction of low-coherence
movement by the addition of white background noise with
low luminance. Indicative of an SR-like phenomenon, the
psychophysical responses of the subjects followed an inverted
U-like function of the luminance of the input noise. Notably, this
response pattern was absent in error trials with small reaction
times (RTs), suggesting that the SR-phenomenon operated at a
perceptual level. We confirmed that the SR occurred both in
experiments in which the volunteers controlled their decision
time autonomously and also when the experimenter fixed
the stimulus presentation times. The overall repeatability and
stability of our results suggest that the SR might play a major
role in the way the human visual system processes dynamic
sensory stimuli. The SR phenomenon could be employed to
refine the processing of dynamic visual stimuli enhancing human
performance in non-invasive ways.

MATERIALS AND METHODS

Participants
We performed the experiments with 149 healthy subjects (62 men
and 87 women). Their mean age was 23 ± 1 years (a minimum
of 17, a maximum of 63, mode of 19). Most participants were
right-handed (>88%), with normal or corrected vision, and
with no record of auditory, tactile, visual and motor disorders;
also without detectable neurological disorders or history of
drug abuse. The participants had different educational degrees
(elementary school, n = 7; secondary school, n = 5; high-
school, n = 64; college degree, n = 46; master’s degree, n = 16;
doctorate degree, n = 7; post-doctorate, n = 4). We performed
the experiments with the informed consent of each participant
and with the approval of the ethics committee of the Instituto
de Neurociencias, Universidad de Guadalajara. Our procedures
conformed to the Declaration of Helsinki (1964) established by
the World Medical Association. All subjects were naïve to the
tasks described in the following section.

Motion Discrimination Task
For motion psychophysics, we employed a two-alternative,
forced-choice, RDM direction discrimination task (Newsome
and Pare, 1988; Newsome et al., 1989; Shadlen and Newsome,
2001; Gold and Shadlen, 2003). We programmed the RDM task
using the psych-toolbox (Brainard, 1997; Pelli, 1997) for Matlab
(TheMathWorks, Inc.; Natick, MA, USA) running on Windows
7 (Microsoft) installed on two standard desktop machines (Dell
Precision T3610 Tower Workstation; AMD FirePro W7000). All
subjects received written instructions of the task and performed
a brief training phase which consisted of obtaining 20 correct
consecutive trials. During the training phase, we used auditory
tones with pure frequencies to indicate right and wrong choices.
We performed all experiments in a silent room.

Each subject performed two blocks of 1000 trials each with
a 20 min break between blocks. Figure 1A illustrates the basic
paradigm for measuring direction-discrimination consisting on
a stimulus of moving dots projected on a black screen on
a computer monitor (1024 × 768 pixels @ 60 Hz; viewing
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FIGURE 1 | Steady-state psychometric curves for the random dot motion (RDM) task. (A) Cartoon of the RDM task with an array of 90 moving white dots
presented at the center of a black computer screen. The dots appear in black for visualization purposes only. A percentage of the dots moves in the same horizontal
direction (i.e., the percentage of coherence) whereas the rest moves with random directions. The (left of right) direction of the coherent movement varies
pseudo-randomly over consecutive trials. We manipulated the difficulty of the task by varying the proportion of coherently moving dots and their luminance (i.e.,
stimulus luminance). (B) Group-averaged psychometric curves (20 repetitions per condition) depicting the %Correct choices as a function of motion coherence
(x-axis), with increasing levels of stimulus luminance represented in color (from blue to red: 0, 8, 12, 17, 25, 50, 100%; category intervals based on a logarithmic
scale). The curves saturate with stimulus luminance > 12%. For trials with 0% coherence, the y-axis label represents the % left choices. (C) Group-averaged
reaction times (RTs) from the choices shown in (B). Inset: color code for stimulus luminance (same code for previous panel). (D) Plot of the average RT (correct
choices in green; incorrect choices in red) vs. %correct choices (i.e., the probability of making a correct choice) for single-subjects solving the task with different
combinations of coherence and stimulus luminance. Responses are faster in easy and difficult conditions but slower in intermediate conditions. (E) Correct choices
using a stimulus intensity of 100% (red dots) or by taking the average of all stimulus luminances (black dots) remain stable throughout the duration of the
experiments (10 blocks of 200 trials each). Number of subjects in parenthesis.

distance: 60 cm; we inverted the polarity of black and white
colors in Figure 1 to facilitate visualization). The RDM display
was black and consisted of a total of 90 white dots (dot size:
2 × 2 pixels = 0.08◦) contained within an imaginary square of
13.68◦ per side placed at the center of the screen, and covering a
projection area of 187 deg2. The dots moved at 7◦ s−1, a certain
percentage of them with a coherent direction to either the left
or right while the remainder moved with random directions.
We initialized the dots with coherent or randomized directions.
The dots had limited lifetimes because when they reached the
edges of the projection area, they were randomly repositioned
along the dimension (x- or y-axis) that was exceeded (yet
keeping their trajectories constant). We changed the direction of
coherent movement pseudo-randomly on every trial (Treviño,
2014; Herrera and Treviño, 2015). We controlled the strength
of motion in the RDM task by changing the relative proportion
of dots moving coherently from 0 to 50%. In some trials,
we included the presence of additive background white noise
(intensities following a uniform distribution, noise size: 1 × 1
pixel = 0.04◦), which was refreshed every frame, and had a
user-controlled mean luminance (in %). We manipulated the
detectability and interference of the RDM stimulus by varying
the luminance of the moving dots from 0 to 100% (Pilly and
Seitz, 2009; Carandini and Heeger, 2012), and the luminance
of the background noise between 0 and 50%, respectively. We

optimized our method to sample coherence and luminance by
using category intervals based on a logarithmic scale (Gold and
Shadlen, 2003; Kiani and Shadlen, 2009).

We used a ‘double receptor design’ in the set of experiments
illustrated in Figure 4A. We employed two identical displays
separated by a black divider that blocked the line of vision
between the eyes (Carmel et al., 2010). With this approach,
we explored how the background noise influenced the RDM
stimulus at the peripheral visual system (Mori and Kai, 2002;
Kitajo et al., 2003).

Analysis of Discrimination Performance
We recorded the choices and RTs of the subjects on every trial.
To indicate their choices, they had to press the ‘M’ button on
the keyboard with their right index finger or the ‘C’ button with
their left index finger when they perceived the movement to the
right or left, respectively (maximum allowed RT of 4 s). We
report the %correct responses as the percentage of trials with a
particular combination of coherence, dot and noise luminances
for which a subject identified the direction of movement in the
task. We calculated a %correct choice index (%CCI) by dividing
the %correct responses in the presence of noise by the %correct
responses with zero noise (ZN; paired trials, see below). We
interleaved all ‘noise trials’ with trials with ZN and permuted
their temporal order so that the subjects could not predict the
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testing conditions (Pelli, 1985). This arrangement ensured that
the estimation of the %CCI index was insensitive to potential
variations in attention during the task because, if existent, those
variations would be distributed homogeneously into trials with
and without the presence of background noise, from which we
extracted the index itself. We varied coherence of the dots, and
the luminance of dots and background noise across trials in a
pseudo-randomized fashion.

We fitted the %CCI data from individual subjects to two
descriptive models (illustrated in Figure 5). Our exclusive aim
of making such curve adjustments was to extract and compare
individual measures linked to the SR phenomenon across
subjects. The first model corresponded to an adaptation of a
general SNR curve as a function of noise intensity (li), as follows:

SNR = 2.5 log10

(
2wn12

0A
2√

3(g(li − l∗)/10)4

)
exp

(
−12

0
2(g(li − l∗)/10)2

)
(1)

where A represents the amplitude of a periodic signal, wn is the
upper cutoff frequency of the noise, 10 is the difference between
the mean of the subthreshold stimulus and the threshold, g is a
gain variable, and l∗ is a translation constant (Moss et al., 2004).
In the second model, we approximated the SNR function by
adding a logistic curve to a Gaussian distribution, as follows:

SNR =
{

L
1+ ek(ci−c∗)

}
+

{
Amp · exp

(
−(ci − µ)2

2σ2

)}
(2)

Where L is the maximum value of the logistic function, k
is the slope of the curve, c∗ is the x-value of the sigmoid’s
midpoint, Amp is the amplitude of the Gaussian with a 1 mean
and 1 standard deviation. We employed standard non-linear
programming techniques to fit the experimental data to both of
these models (Treviño, 2015).

Statistical Analysis
We report and illustrate all results as averages ± SEM. We
used parametric and non-parametric tests with significance set
at P < 0.05 for statistical comparisons.

RESULTS

Psychometric Curves with the Motion
Task
We established the conditions to quantify motion discrimination
performance in adult humans. We employed a RDM task
originally introduced by Newsome and Pare (1988; see Materials
and Methods). It consisted on projecting 90 white moving dots
on a black screen and requesting the experimental subjects to
report their perceived direction of overall movement when a
fraction of the dots moved coherently to the left or right, while the
remainder of the dots moved in random directions (Figure 1A).
We manipulated the task difficulty by adjusting the percentage of
coherently moving dots (Gold and Shadlen, 2007) and plotted the
averaged psychometric curves as a function of stimulus coherence
(x-axis) and luminance (colored lines in Figures 1B,C; legend

on the inset of Figure 1C). The psychometric curves of the
subjects had an average peak performance of 91.93 ± 2.50%, a
midpoint of 8.65%± 1.05% luminance and a slope of 23.78± 2.52
(%c/%luminance). The peak performance of these response
curves had a marked sensitivity to gradients in the luminance of
the stimulus at or below 12% (blue line in Figure 1B).

We conducted these initial experiments under a ‘free response’
paradigm: we instructed the subjects to discriminate motion
direction as best as they could and allowed them to control
their decision time autonomously (Treviño et al., 2012, 2013;
Treviño, 2014). Under this condition, accuracy rates and RTs
vary as a function of task conditions, leading to predictable
changes in the probabilities of these two output parameters
(Smith and Ratcliff, 2004; Treviño et al., 2013). For example, a
shift from speed to accuracy instructions can result in slower
yet more accurate responses, whereas the opposite instructions
usually decrease the choice accuracy but involve shorter sampling
intervals (‘speed-accuracy tradeoff’). We found that the averaged
RTs exhibited a monotonic decrease linked to an increase in
the stimulus coherence and luminance (Figure 1C). Indeed, the
mean RTs dropped with increasing coherence from 5 to 50%
(RT with 5% coherence: 1.01 ± 0.05 s; RT with 50% coherence:
0.80 ± 0.02 s; Kruskal–Wallis test, F1,12 = 6.20, P < 0.001).
This result reflects that the rate of accumulation of discriminative
information depends on the difficulty of the task (Gold and
Shadlen, 2007; Treviño et al., 2013). Hence, decreasing stimulus
discriminability increased the error rates, delaying and dispersing
the RT distributions (Smith and Ratcliff, 2004).

We wondered how the averaged RTs (extracted from those
randomized trials with identical coherence and luminance levels)
related to the probability of making correct choices under
conditions with variable difficulty. We plotted the averaged RTs
derived from correct (green dots) and incorrect (red dots) choices
as a function of the probability of making a correct choice
(‘%Correct,’ i.e., the number of correct choices divided by the
total number of trials for that combination of stimulus attributes;
Figure 1D). This plot revealed an inverted bell-shaped pattern of
RTs vs. %correct choices, with smaller averaged RTs associated
with ‘easy’ and ‘difficult’ task conditions (Smith and Ratcliff,
2004). The peaks of both of these bell-shaped curves occurred at
71% of correct choices and had a 12–20% increase in the averaged
RTs compared to those obtained when choosing randomly (i.e., at
chance level). We also confirmed that the subjects made all their
choices in steady-state throughout the course of the experiment
(repeated measures ANOVA test, P > 0.5; red dots: stimulus
coherence = 50%, stimulus luminance = 100%; black dots: an
average of all conditions; Figure 1E). Using this task, we were
able to indirectly control the steady-state response accuracy of
the subjects by simply adjusting the coherence levels of the RDM
stimulus.

Additive Background Noise Increases
Visual Motion Perception
To explore how external visual noise interacted with visual
motion perception, we developed the computational tools
that allowed us to combine dynamic background pixel-noise
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(refreshed every frame) with the standard and widely used
RDM task (Newsome and Pare, 1988; Figure 2A; see Materials
and Methods). We asked how adding such noise with different
luminance levels influenced the choice performance of naïve
subjects solving the RDM task. We tested 13 new participants
in conditions where the visual stimulus barely produced a
perception of global motion (coherence= 5%; luminance= 25%;
correct choices: 63.20 ± 2.48%, one way ANOVA test, P = 0.03;
Figure 1B; Newsome et al., 1989). After performing the
experiments, we calculated the group averaged %correct choice
index (%CCI) as a function of the luminance of the additive
background noise. We took the %CCI index as the amount
of %correct choices obtained in the presence of noise divided
by those obtained in its absence. The group averaged %CCI
revealed a bell-shaped distribution with a peak sensitivity of
6.5 ± 1.8% at a moderate noise luminance of 5% (paired t-test,
P < 0.001; Figure 2B; green dot, upper panel). This response
pattern resembled a SR-like phenomenon, and the peak value in
the %CCI function was consistent with previous SR observations
(Zeng et al., 2000; Ward et al., 2002). Regarding the stimulus
presentation sequences, we paired the test trials for each specific
noise luminance condition with trials lacking noise (see Materials
and Methods). This arrangement ensured that the task provided
no temporal information about the stimulus (Pelli, 1985), and
allowed us to estimate the %CCI independently of possible
variations in choice performance due to attentional shifts (or any
other factors; Smith and Ratcliff, 2004; Treviño, 2014). We used
100 repetitions per noise luminance.

Because the performance solving the RDM task was highly
variable across subjects, we quantified the group response
variability by using an index of dispersion known as the Fano
factor (the variance of the %CCI values extracted from single
subjects divided by their mean). The Fano factor is a normalized
measure of the dispersion of a distribution and is useful to
capture the degree of randomness of a given phenomenon, as it
quantifies how clustered or dispersed are a set of observations.
This analysis revealed that the luminance of the visual noise
strongly modulated the Fano factor of the %CCI in the RDM
task. Indeed, the index was close to 1 when using ZN, yet it
dropped and had a local minimum with a background luminance
of 5% (under-dispersed values) and then increased above 1 for
larger background luminance levels (over-dispersed values). The
reduction in the Fano factor was maximum around the same
background luminance noise value that elicited the %CCI peak
(Figure 2B; middle panel). Moreover, as an increase in RTs could
explain the improved choice performance (Smith and Ratcliff,
2004), we compared the averaged RTs from trials performed
under different noise luminances but found no differences across
them (Figure 2B; lower panel; paired t-test, P> 0.05 for all cases).

We next wondered whether this SR-like phenomenon in
motion discrimination operated at a perceptual level. We
reasoned that if a small amount of perceived visual noise is
capable of improving the subjects’ performance in the RDM
task, then this effect should be absent in those trials that led
to incorrect choices. Such lack of effect should be particularly
evident in those error trials with smallest RTs, when the
subjects made their choices at random (Smith and Ratcliff,

2004; Treviño, 2014). We calculated the %incorrect choice index
(%ICI) from error trials produced in the presence and absence
of background noise, but only from those that had RTs below
the median. Confirming our hypothesis, we found that the %ICI
extracted from these error trials was insensitive to the external
noise (gray squares in Figure 2B, upper panel). Notably, the
frequency distributions of RTs for correct and incorrect choices
had similar shapes (Figures 2C,D). Therefore, we can discard
possible misrepresentations of the averaged RTs due to their
skewed distributions because (i) the number of trials involved
in calculating the %errors in the presence and absence of noise
was practically identical, and (ii) both distributions exhibited
similarly skewed distributions before the computation of %CCI
and %ICI indexes (Whelan, 2008). Altogether, these results
demonstrate that an intermediate amount of background noise
can increase the %CCI but not the %ICI in the RDM task via a
SR-like phenomenon.

Noise Improves Motion Discrimination in
Two Other Task Variants
We explored whether the SR phenomenon was reproducible
across two new variants of the RDM task. The first variant
consisted in fixing the stimulus viewing interval to 1 s (i.e., the
test trials involved a whole second of stimulus projection, w.
coherence = 5% and luminance = 25%). With this setting, we
sought to narrow down the variance in the RT distributions, and
thereby reduce the possibility that RTs and %CCI were correlated.
We conducted experiments in new subjects and obtained a
similar bell-shaped %CCI curve with a maximum increase of
5.5 ± 1.5% at a noise luminance of 5% (n = 13 subjects;
paired t-test, P < 0.001; Figure 3A). Next, we explored whether
and how the noise affected the RTs from subjects. Many data
distributions can lead to similar appearances when represented
with bar-plots, which further invalidates their usage for small
datasets. We therefore decided to illustrate the choice and RT
data by using scatter plots with the reference (i.e., ZN), on the
left, and noise condition, on the right, connected with lines
representing each subject (Figures 3B,D). In these plots, we can
visualize the variability in the performance with the ZN condition
across subjects (i.e., each dot represents information from a single
subject). Using a paired t-test, we confirmed the lack of change
in the RT distributions for all levels of noise luminance tested
(P > 0.05 for all cases; Figure 3B). Therefore, the improvement
in the %CCI of the RDM task produced by adding background
noise cannot be explained by increased sampling intervals.

For the second variant of the task, we first tested four
additional stimulus coherence values (two above, and two below
5% coherence) and four additional stimulus luminance levels
(two above, and two below 25% luminance). We found that
switching the stimulus coherence from 5 to 8% boosted the
%CCI by about 4.5 ± 0.3% (Kruskal–Wallis test F4,494 = 392.38,
P < 0.001; 25 subjects bootstrapped to 100 cases; not illustrated)
whereas using a 50% stimulus luminance increased the %CCI by
2.9± 0.3% (against a stimulus luminance of 25%; Kruskal–Wallis
test F4,494 = 253.56, P < 0.001; 25 subjects bootstrapped to 100
cases; not illustrated). Taking this information into account, we
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FIGURE 2 | Background noise enhances motion detection in the RDM task. (A) Cartoon of the RDM task with different background noise average luminance
levels [zero noise (ZN): 0% luminance; optimal noise (ON): 5% luminance; high noise (HN): 25% luminance]. The noise source was dynamic; it was refreshed every
frame and was added as a background behind the RDM dots. (B) Group-averaged %correct choice index (upper panel; %CCI = %correct choices with noise/%
correct choices without noise; paired trials, see Materials and Methods) against the luminance of background noise (coherence of 5%; stimulus luminance of 25%).
No modulation in %incorrect choice index (%ICI) for incorrect choices that had RTs lower than the median RT (i.e., median split; gray squares in B). The Fano factor
of the %CCI data presents a local minimum with optimal background noise (green dot; middle panel). The increase in %CCI around 5% of noise luminance (green
dot in the upper panel) cannot be explained by changes in the averaged RTs of the choices made in the presence (gray circles) vs. the absence (empty circles) of
background noise (middle panel). The skeweed RT distributions for correct (C) and incorrect (D) choices had similar shapes, means and medians. Number of
subjects in parenthesis.

FIGURE 3 | Optimal background noise increases the %CCI in the RDM task with fixed sensory sampling periods. (A) Group average %CCI (upper panel)
and Fano factor (lower panel) vs. background noise luminance using a fixed sampling period of 1 s. (C) Experimental results obtained with ‘optimized’ RDM
conditions (i.e., 8% motion coherence; 50% stimulus luminance). Dot plots in (B,D) illustrate the comparison for %correct choices (left column) and RTs (right
column) made in the absence (left) or presence of noise (right side of each panel) per subject (i.e., the dots connected by lines represent individuals). Asterisks depict
significant differences assessed with a paired t-test. Number of subjects in parenthesis.
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conducted a new round of experiments on 19 naïve subjects and
characterized their %CCI curves when solving the RDM task with
8% of motion coherence and a stimulus luminance of 50% (i.e.,
‘optimized’ stimulus parameters; Figure 3C). The corresponding
averaged %CCI curve had a peak of 7.4 ± 1.2% at a noise
luminance of 5%, but a decrease of 4.9 ± 2.6% with 25% noise
luminance (paired t-test, P < 0.0001). There was no change in
averaged RTs for all levels of noise luminance tested (paired t-test,
P > 0.05; Figure 3D). Remarkably, the %CCI peaks for open RT
(Figure 2B), fixed RT (Figure 3A) and ‘optimized conditions’
(Figure 3C) were quite similar to each other (Kruskal–Wallis
F2,41 = 1.33, P= 0.51). These results demonstrate that the SR-like
phenomenon in the RDM task is reproducible across different
experimental settings. It is likely that the %CCI peaks were
already saturated at 5% luminance noise in the three conditions
tested.

The Enhancement in Motion
Discrimination by Noise Occurs Centrally
In the previous experiments, we presented noise and stimulus
signals identically to both eyes. This arrangement is commonly
referred to as a ‘single receptor design.’ Under these conditions,
the noise and signal interact in the retina and throughout the
entire peripheral visual system. A possible explanation for the SR
improvement in visual motion discrimination is that the noise
enhances the peripheral receptors sensitivity (Mendez-Balbuena
et al., 2012), increasing the amplitude of the signal which then
percolates to the entire visual system (Moss et al., 2004; Flores
et al., 2016), and improves sensorimotor integration (Rodriguez
et al., 1999). An alternative, however, could be that this form
of SR takes place at a non-retinal location. Interestingly, studies
on humans have shown that some forms of visual perceptual
learning can be detected by the confluence of inputs from
separate eyes (Ball and Sekuler, 1987; Gilbert et al., 2001). These
empirical observations motivated us to explore the anatomical
locus of the SR-like phenomenon in the RDM task. We first
implemented the conditions to conduct an experiment with a
so-called ‘double receptor design’ (Mori and Kai, 2002; Kitajo
et al., 2003). We modified the montage of the first RDM
apparatus by using two monitors, separated by a black divider
centered at the midline of the viewing field. We applied the
noisy signal to one eye, and the stimulus signal to the other
eye, excluding the possibility of peripheral SR elicited in the eyes
or retinas (‘optimized’ stimulus parameters: coherence = 5%;
luminance = 25%; Figure 4A; see Materials and Methods). This
approximation guaranteed that if the choices of the volunteers
still exhibited SR under these conditions, then it would be
centrally produced, in relays located after the optic chiasm,
presumably in the primary visual cortex where the noise and
stimulus signals first converge (Mori and Kai, 2002).

We performed experiments in 28 new subjects some of which
received the visual stimulus to their left eye (n= 16) while others
received it on their right eye (n = 12). We found similar %CCI
peaks when providing the RDM stimulus to either the left (gray
circles) or right (black circles) eye, indicating that the side of the
eye that received stimulation did not affect the SR phenomenon

FIGURE 4 | The discrimination-enhanced-by-noise effect in the RDM
task occurs centrally. (A) Diagram depicting the montage of the apparatus
for conducting the ‘double-receptor design’ experiments (see Materials and
Methods) with two monitors separated by a black divider centered at the
midline of the viewing field of the subjects (85◦ from the midline; RDM and
noise displays projected on the sides of the midline divider). Here, we applied
the noisy signal to one eye and the stimulus signal to the other eye (w.
coherence = 5%; luminance = 25%). (B) Average %CCI curves as a function
of noise luminance for subjects receiving the RDM stimulus signal to either the
left (n = 16) or right (n = 12) eyes, whereas the visual noise was applied to the
opposite eye. (C) Average of %CCI curve for both eyes reveals that the SR
occurred in the RDM task at a stage where binocular inputs interacted.

(Figure 4B). We averaged the %CCI curves associated with the
RDM projected to both eyes to obtain a global signature of the SR
phenomenon using the double receptor design (Figure 4C). The
resulting averaged %CCI curve had a peak of 5.3± 1.6% at a noise
luminance of 5% (paired t-test, P < 0.0001) but an %CCI ≈1
when using 25% noise luminance. We quantified the amount
of ‘inter-ocular SR’ by taking the ratio of the peak from the
averaged %CCI curve obtained with the double receptor design
(Figure 4C) to the one we observed with the single receptor
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FIGURE 5 | Heterogeneity in SR properties across subjects. (A,D) Synthetic %CCI curves as a function of background noise created with either model 1 or
model 2, respectively (see Materials and Methods). (B,E) Fits of models 1 and 2 to the %CCI data from the same nine sample subjects (shaded panels). (C,F)
Cumulative probability distributions for the fitted parameters to data from different subjects (see Materials and Methods). Low correlations between these
parameters: 0.11 for model 1 (C) and 0.06 for model 2 (F).

design (Figure 3C). The amount of ‘inter-ocular SR’ was 70%,
indicating that this phenomenon had monocular and binocular
components, yet the latter was considerably larger (Ball and
Sekuler, 1987). Therefore, the SR-like phenomenon in the RDM
task mainly occurred at (or after) a stage in the visual system
where binocular inputs interact (i.e., a stage higher than layer IV
of the primary visual cortex Schoups and Orban, 1996).

Variable Noise Sensitivity across
Subjects
Our results demonstrate that the peak amplitude of the averaged
SR curves depends on both the coherence of the RDM stimulus
and the luminance of the background noise. Does the %CCI
data from subjects contain individual differences in their
corresponding measures for noise luminance and %CCI peaks?
We compared our experimental results with the theory of SR
by using an equation that describes the SR phenomenon itself.
We did these adjustments exclusively to extract and compare
SR-dependent measures across subjects. Thus, we adapted a
model proposed by Moss et al. (2004; model 1; see Materials
and Methods) and made non-linear fits to the %CCI data from
45 subjects that were involved in the experiments described
and illustrated in Figures 2 and 3. We show the non-linear

fits to nine sample cases in Figure 5B (shaded panels). From
these analyses, we took the optimized parameters from each
subject and constructed the cumulative probability distributions
for the obtained fits for wnA2 (proportional to the peak of the
%CCI curve) and 10 (proportional to the luminance at which
the %CCI curve peaked; see Materials and Methods for more
details). These two parameters spanned over a broad range of
values and displayed a variance of normalized indexes of 5.6
and 4.9%, respectively, revealing strong differences in the SR-like
phenomenon across subjects. We included a second descriptive
model to extract direct measures for the peak amplitude and
noise luminance linked to the %CCI peak from each subject
(see Materials and Methods). We made a non-linear fit (black
trace) that involved the sum of a Gaussian distribution (blue
trace) with a logistic function (red trace; Figure 5D). From these
fits, we extracted the luminance peaks and %CCI amplitudes for
all the subjects. In Figure 5E, we illustrate the non-linear fits
to data from nine sample subjects (shaded panels; same data
as in Figure 5B). Although, these fits produced smaller errors
(Kruskal–Wallis F2,86 = 66.75, P < 0.001), they still presented
a broad range of peak values and optimal noise luminance,
confirming the strong diversity in the underlying %CCI curves
(variance of normalized indexes of 4.9 and 2.5%, respectively;
Figure 5F). Notably, the %CCI peak amplitudes (Figure 5F,
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upper panel) and mean noise luminances at peak (Figure 5F,
lower panel) were poorly correlated (R2

= 0.06, n = 45). These
results indicate that the %CCI curves exhibited different profiles,
with strong diversity among individuals. The existence of small
peak %CCI amplitudes reveals that at least some subjects did not
display strong SR-like effects.

Finally, we tested the contribution of 19 individual
characteristics such as age, sex, and years of education
(among other factors; see Table 1) on the estimated peak
amplitude and noise luminance at peak %CCI derived from
the second predictive model (see Materials and Methods). We
asked whether any of these characteristics from the subjects
could predict properties from their %CCI curves. We indexed
and grouped these properties by using a median split of the
amplitude at luminance (Table 1A) or the noise luminance at
peak (Table 1B) extracted from each subject and made statistical
comparisons between ‘lower’ and ‘higher’ performers (Treviño,
2014). We found no differences between groups indicating that
none of the individual factors that we characterized predicted the
SR-like phenomenon in the RDM task (Table 1).

DISCUSSION

We adapted a RDM task (Newsome and Pare, 1988; Gold and
Shadlen, 2007) where the subjects had to choose between two
known opposite directions of motion (Kiani and Shadlen, 2009).

Choice performance in this task improves with viewing duration,
implying that information for each option accumulates over time
(Gold and Shadlen, 2007; but see Zariwala et al., 2013). The rate
of this accumulation process depended on both the coherence
and luminance levels of the moving dots (Gold and Shadlen,
2007). Hence, when plotted as a function of %correct choices,
the RTs followed an inverted bell-shaped pattern with smaller
RTs for ‘easy’ and ‘difficult’ tasks, revealing the so-called ‘speed-
accuracy tradeoff.’ This response pattern is probably one of the
most frequently replicated findings in experimental psychology
(Smith and Ratcliff, 2004).

Once we ensured the steady-state of our psychophysical
measurements, we asked how adding background pixel-noise
with different luminance levels influenced the perception of
coherent motion in the RDM task. In linear systems, the addition
of noise to either the system or the input stimulus degrades
signal quality (Lugo et al., 2008). In non-linear systems, however,
the addition of an intermediate level of noise can enhance
signal detection and transmission (Harper, 1979). Here, we
found that adding background pixel-noise with 5% luminance
increased the %correct choice index (%CCI, see Materials and
Methods) of the RDM task by 7% when conducted under low
coherence conditions (5–8%). In one set of experiments, we
allowed the subjects to control their viewing and response times
autonomously. However, it is well-known that the shape of the
RT distribution and response accuracy co-vary as a function of
the experimental condition (Smith and Ratcliff, 2004). We thus

TABLE 1 | Contribution of individual characteristics to the SR-like phenomenon.

(A) Peak SNR amplitude (B) Noise lum. at peak

‘Lower’ ‘Higher’ ‘Lower’ ‘Higher’

Mean ± SEM Mean ± SEM F P Me an ± SEM Mean ± SEM F P

Age (years) 23.83 ± 1.00 22.41 ± 1.03 1.06 0.30 24.22 ± 1.00 22.00 ± 1.03 2.97 0.08

Sex 1.61 ± 0.11 1.50 ± 0.11 0.53 0.47 1.61 ± 0.11 1.50 ± 0.11 0.53 0.47

Height 166.65 ± 1.64 168.91 ± 1.68 0.83 0.36 166.30 ± 1.87 169.27 ± 1.92 1.17 0.28

Weight 65.35 ± 1.89 67.50 ± 1.93 0.18 0.67 64.30 ± 1.72 68.59 ± 1.76 1.14 0.28

Laterality 1.22 ± 0.11 1.05 ± 0.11 1.89 0.17 1.17 ± 0.10 1.09 ± 0.11 0.21 0.65

Glasses 0.52 ± 0.11 0.41 ± 0.11 0.56 0.45 0.52 ± 0.11 0.41 ± 0.11 0.56 0.45

Hours of sleep 6.26 ± 0.35 5.55 ± 0.36 3.10 0.08 5.93 ± 0.35 5.89 ± 0.36 0.00 0.95

Hours awake 5.00 ± 0.67 5.18 ± 0.68 0.17 0.68 4.41 ± 0.52 5.80 ± 0.54 2.23 0.14

Food 2.52 ± 0.20 2.55 ± 0.21 0.01 0.94 2.30 ± 0.21 2.77 ± 0.21 2.28 0.13

Portions 2.09 ± 0.21 1.86 ± 0.22 0.42 0.52 2.17 ± 0.21 1.77 ± 0.21 1.88 0.17

Time since last meal 6.04 ± 0.90 4.59 ± 0.92 1.20 0.27 6.46 ± 0.91 4.16 ± 0.94 3.12 0.08

Drink 0.39 ± 0.11 0.55 ± 0.11 1.05 0.31 0.39 ± 0.11 0.55 ± 0.11 1.05 0.31

Type of drink 0.65 ± 0.25 1.36 ± 0.25 1.62 0.20 0.78 ± 0.31 1.23 ± 0.32 1.35 0.25

Quantity of drink 0.52 ± 0.16 0.68 ± 0.16 0.64 0.42 0.48 ± 0.14 0.73 ± 0.15 1.11 0.29

Career 2.43 ± 0.13 2.18 ± 0.13 1.33 0.25 2.30 ± 0.15 2.32 ± 0.15 0.00 1.00

Degree 3.48 ± 0.16 3.55 ± 0.16 0.04 0.84 3.57 ± 0.16 3.45 ± 0.16 0.79 0.37

Grades 87.52 ± 1.26 80.77 ± 1.29 0.00 0.99 87.39 ± 1.22 80.91 ± 1.25 0.00 1.00

Work 0.48 ± 0.11 0.36 ± 0.11 0.59 0.44 0.48 ± 0.11 0.36 ± 0.11 0.59 0.44

Video games 0.22 ± 0.09 0.23 ± 0.09 0.01 0.94 0.13 ± 0.07 0.32 ± 0.08 2.24 0.13

We tested the influence of some individual characteristics (arraged in rows) on the the peak %CCI amplitude (A) or the noise luminance at peak (B) which values were
extracted from the data fits to the second predictive SR model (see Materials and Methods). No differences between ‘lower’ and ‘higher’ performers identified by a median
split of each dataset indicating that none of these individual factors predicted the SR-like phenomenon in the RDM task.
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conducted a second round of experiments in which we fixed
the stimulus presentation intervals to 1 s. For both conditions,
we found that the %CCI curves followed an inverted U-like
pattern as a function of background noise levels. The %CCI
was first enhanced by the noise, up to a maximum, and then
lessened. The %CCI enhancement was insufficient in the case
of little noise, whereas too high noise degraded discrimination
(Moss et al., 2004; Jung and Marchesoni, 2011). It was an optimal
amount of noise with 5% luminance which maximized the %CCI
curves (Zeng et al., 2000; Sasaki et al., 2006) suggesting the
occurrence of a SR-like phenomenon. To our knowledge, this is
the first study that shows the beneficial effect of white noise at the
discrimination level in a visual task (rather than at the detection
level).

We also compared the RTs from trials performed under
different noise luminance conditions, but found no differences
across them. This implies that the increase in motion
discrimination performance produced by visual noise cannot
be explained by augmented RTs. Interestingly, the averaged
%CCI curve extracted from error trials that had a RT below
the median was insensitive to visual noise. Thus, the SR-like
effect in the RDM task is a visual perceptual phenomenon. An
alternative explanation for the observed peaks in the %CCI
curves is that small amounts of noise could also reduce the
observer’s uncertainty to solve the task (Pelli, 1985; Blackwell,
1998). In the uncertainty model, an observer monitors many
channels of information from which only a subset is relevant
for the discrimination task. Thus, noise could directly increase
the activity of the relevant channels, or reduce the irrelevant
ones, resulting in a decrease in the uncertainty of some
relevant aspect of the signal (Pelli, 1985). It’s important to
keep in mind that in SR, subthreshold summation can take
place only when the noise overlaps with spectral bands of the
signal, whereas uncertainty reduction can occur without this
requirement.

A common view is that choosing the right option in the
RDM task involves some form of statistical inference (Gold and
Shadlen, 2007). This leads to a quantitative link between the
time-course of a behavioral decision, the growth of stimulus
information and the correct choice probability (Smith and
Ratcliff, 2004). Our results suggest that visual noise can play
a constructive role at the discrimination stage. Therefore, the
presence of small amounts of background noise in the visual
system might increase the performance in motion discrimination
and thereby influence choice behavior (Ward et al., 2002).

Stochastic resonance exists across a wide variety of
experimental conditions. It has been found to improve sensory
detection in audition (Zeng et al., 2000), vision (Simonotto et al.,
1997), and touch (Wells et al., 2005). The SR phenomenon is
present when applying signal and noise to the same (Riani and
Simonotto, 1994; Collins et al., 1996; Levin and Miller, 1996;
Sasaki et al., 2006) or to different sensory modalities (Martinez
et al., 2007). Although light activates visual photoreceptors, the
direction-selective neurons involved in visual motion perception
in the RDM task belong to higher visual system circuitry and
locate in the middle temporal area (MT; Maunsell and Van Essen,
1983). Newsome et al. (1989) demonstrated the functional role

of these neurons from the dorsal pathway in an interesting study
in which chemical lesions of this region in monkeys impaired
their behavioral performance on the direction discrimination
task (Newsome and Pare, 1988). Consistently with this finding,
it was later shown that electrical micro-stimulation of direction-
selective neurons in the MT of the cerebral cortex of monkeys
and humans influenced their perceptual judgment of motion
direction (Salzman et al., 1992). Our results reveal that external
visual noise can also improve motion perception in the same
visual task. Also, a recent study shows that the application of
transcranial random noise electrical stimulation (tRNS) of the
occipital region in humans enhances visual perception of static
visual stimuli (van der Groen and Wenderoth, 2016). What
are the exact cellular and circuit-level mechanisms involved
in the SR-mediated improvement of discrimination tasks? At
the cellular level, SR has been observed in diverse models of
spiking neurons (Bulsara et al., 1991; Ward et al., 2002). Due
to the non-linearity in the firing threshold of the neural cells,
applying intermediate noise levels to a sub-threshold input
signal will increase, through a SR phenomenon, the number
of spikes produced by the cell (Zeng et al., 2000; Moss et al.,
2004; Martinez et al., 2007). Currently, we are investigating the
cellular mechanisms involved in SR by using optogenetic noise
photo-stimulation (Manjarrez et al., 2015). Indeed, with the
optogenetic tools, we can specifically increase the noise sources
into pyramidal cells in the binocular region of the mouse visual
cortex. This approximation might provide valuable new insights
into the underlying circuit level mechanisms involved in SR and
decision-making.

Although, we found that the effects of background noise in the
RDM task were highly reproducible and robust, there were strong
individual differences in the %CCI curves implying that some
levels of noise were beneficial for some subjects but detrimental
for others. What could predict these differences across subjects?
One plausible explanation is that electrochemical noise generated
internally in the brain (internal noise), combines with the noise
added by the experimenter (external noise) to determine the net
amount of noise mixed with the input signal (Mori and Kai,
2002; Ward et al., 2002). The variability in %CCI curves could
derive from individual differences in attention (Prince, 2008),
cognition (Braver and Barch, 2002), or other motivational factors
(Wise, 2004; Grace et al., 2007). Thus, although we partially
controlled the external noise sources, the internal noise was not
under any control and probably varied across trials, subjects and
replications (Ward et al., 2002). An interesting possibility would
be that the internal noise level determined how the external visual
noise enhanced the discriminability of the weak RDM signal
(Aihara et al., 2008).

Derived from the analysis we did on the %CCI curves from
individuals, we also found that the peak amplitudes and the
noise luminance at which those curves reached their peaks
were not correlated with each other. Contrast modulation of
psychophysical responses is mediated by a complex cascade of
cellular and synaptic interactions that starts with retinal ganglion
cells (Enroth-Cugell and Robson, 1966; Baden et al., 2016), and
percolates to thalamic (Derrington and Lennie, 1984) and visual
cortical (Movshon et al., 1978; Albrecht and Hamilton, 1982;
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Glickfeld et al., 2013) circuits. Neurons from all these circuits
operate as high-pass filters for contrast and encode a broad range
of ‘classical’ features such as spatial frequency and orientation
(Albrecht and Hamilton, 1982). Yet, interestingly, these encoded
properties are unaffected by changes in contrast (Carandini and
Ferster, 2000). Maybe this could explain why the noise luminance
poorly predicted the peak of the %CCI curves in the RDM task.

In our main experiments, we adopted a ‘single receptor
design’ by delivering signal and noise simultaneously to both
eyes. We exploited the fact that the eyes are cross-wired to
the visual cortex, so we bypassed the peripheral sites and
tested for the phenomenon directly in the human visual cortex.
Using a ‘double receptor design,’ we delivered the signal and
noise separately to each eye, forcing these two elements to
converge first at central synapses in the brain (Mori and Kai,
2002). We reasoned that if the visual noise affected neurons
located in monocular regions, then the noise-enhancing effects
should be absent when presenting the RDM stimulus to the
pathway responding to the other eye. That would be consistent
with a SR-like phenomenon acting at or before area 17,
where the binocular cells first appear (Ball and Sekuler, 1987).
However, our results revealed a non-retinotopic phenomenon
in higher brain areas that engage in sensory processing from
both eyes (Rodriguez et al., 1999). Indeed, the subjects showed
considerable ‘inter-ocular SR’ and therefore, a significant portion
of the SR phenomenon was localized either at or after the
primary visual cortex layer IV (Schoups and Orban, 1996).
We propose that it was mainly in cortical circuits where noise
and signal had the relevant interactions that produced the
SR-like phenomenon in the RDM task (Kitajo et al., 2003).
Although the exact mechanisms for binocular interaction remain
unclear, these results might contribute to understanding how
the brain combines information from both eyes (Kitajo et al.,
2003).

Noise can improve the SNR in physical and biological systems.
The existence of SR phenomena in neural systems raises great
interest because it can increase the detectability of relevant
stimuli. Some authors suggest that the central nervous system
might utilize noise, and even tune their endogenous noise levels,
to enhance sensory information (Moss et al., 2004). We observed
SR-like behavior in a discrimination task both at the individual
and group levels under different experimental conditions. The
repeatability and stability of our results suggest that SR might

play a major role in the way the human visual system processes
sensory stimuli. Moreover, it could be potentially used to
refine the perceptual processing of suboptimal stimuli and
maybe also to repair some discrimination deficiencies (Collins
et al., 1996). Because multiple brain disorders and pathologies
consist of a reduced firing rate of sensory neurons, the SR
could be employed to develop methods for enhancing human
discriminative performance in non-invasive ways (Collins et al.,
1996). The fact that SR occurs at a macroscopic scale in
human behavior opens the way to many applicative consequences
involving the enhancement of natural and artificial sensation
(Medina et al., 2012).
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