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Abstract

Background: Chagas disease is one of the most important public health problems and a leading cause of cardiac failure in
Latin America. The currently available drugs to treat T. cruzi infection (benznidazole and nifurtimox) are effective in humans
when administered during months. AmBisome (liposomal amphotericin B), already shown efficient after administration for
some days in human and experimental infection with Leishmania, has been scarcely studied in T. cruzi infection.

Aims: This work investigates the effect of AmBisome treatment, administered in 6 intraperitoneal injections at various times
during acute and/or chronic phases of mouse T. cruzi infection, comparing survival rates and parasitic loads in several
tissues.

Methodology: Quantitative PCR was used to determine parasitic DNA amounts in tissues. Immunosuppressive treatment
with cyclophosphamide was used to investigate residual infection in tissues.

Findings: Administration of AmBisome during the acute phase of infection prevented mice from fatal issue. Parasitaemias
(microscopic examination) were reduced in acute phase and undetectable in chronic infection. Quantitative PCR analyses
showed significant parasite load reductions in heart, liver, spleen, skeletal muscle and adipose tissues in acute as well as in
chronic infection. An earlier administration of AmBisome (one day after parasite inoculation) had a better effect in reducing
parasite loads in spleen and liver, whereas repetition of treatment in chronic phase enhanced the parasite load reduction in
heart and liver. However, whatever the treatment schedule, cyclophosphamide injections boosted infection to parasite
amounts comparable to those observed in acutely infected and untreated mice.

Conclusions: Though AmBisome treatment fails to completely cure mice from T. cruzi infection, it impedes mortality and
reduces significantly the parasitic loads in most tissues. Such a beneficial effect, obtained by administrating it over a short
time, should stimulate studies on using AmBisome in association with other drugs in order to shorten recovery from T. cruzi
infection.
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Introduction

Chagas disease is a leading cause of cardiac failure and the most

important parasitic disease in terms of morbidity and mortality in

Latin America. Its causal agent, the protozoan parasite Trypano-

soma cruzi, belonging to the family of Trypanosomatidae, currently

infects 8 to 10 million persons. It is usually transmitted by the

faeces of bloodsucking insect vectors (Hemiptera Reduviidae), human-

to-human by infected blood products (and solid organ transplants),

and from mother-to-child [1–3]. Large-scale migration of Latin

Americans over the last few decades has contributed to Chagas

disease becoming a global health issue [4]. There is currently an

increased risk of transmission via infected blood products and/or

congenital transmission in non-endemic countries, particularly in

United States and Europe [5–8]. After an acute phase, generally

asymptomatic though sometimes fatal in children, the infection

evolves to an asymptomatic and silent chronic phase. Decades

after primary infection, 30 to 40% of infected individuals develop a

symptomatic chronic either cardiac (the most frequently encoun-

tered) and/or digestive clinical form of Chagas disease (megacolon

and/or megaoesophagus), responsible for an important morbi-

mortality [1,3].

The currently used trypanocidal drugs, benznidazole and

nifurtimox, were developed empirically in the 1960s and 1970s,

respectively. They are more effective in early acute infection than

in the late well established chronic phase. Though the lack of good

markers complicates the validation of parasitic cure, these drugs

appear preventing progression of cardiac chronic lesions [1,9–11].

However, such drugs have to be taken for 1 to 3 months and can

induce severe side effects conducing to stop the treatment [12].

www.plosntds.org 1 June 2011 | Volume 6 | Issue 6 | e1216

5



Thus, the chemotherapy of Chagas disease remains an unsolved

problem, and alternative or novel drugs are needed. Numbers of

different compounds have been assayed in a variety of ways, even

though none emerged as a new efficient treatment [13,14].

The macrolide polyene amphotericin B is known to bind to

sterols of eukaryotic cell membranes, inducing alterations of cell

permeability and cell death. While amphotericin can bind to the

cholesterol component of mammalian cells, inducing cytotoxic

effects, it has a higher affinity for ergosterol, a component of the

fungal cell membrane, leading to their specific killing. To

minimize the toxic side-effects of amphotericin, a liposomal

formulation of this molecule named AmBisome has been

developed [15], and is a current and potent treatment of invasive

fungal infections with Candida and Aspergillus [16–18]. As

trypanosomatids also present ergosterol as component of their

membranes [19], AmBisome might also be effective against

infections with such parasites. Clinical trials have demonstrated

the high efficacy of AmBisome treatment in human visceral

leishmaniasis, leading to consider it as the first-line treatment for

this disease [20–24]. Although ergosterol is also the predominant

membrane sterol of T. cruzi [25,26], few data are currently

available on the effect of amphotericin on this parasite. Though

several studies showed its in vitro trypanocidal activity [27–33], only

one report described the in vivo effect of four amphotericin B

formulations in mice acutely infected with T. cruzi. This latter

study showed that a single dose of 25 mg/kg of AmBisome

suppresses acute infection (on the basis of blood microscopic

observations), whereas other amphotericin B lipid formulations

increased the survival rate but did not eradicate infection in all

animals [34].

On the basis of these results and aiming to obtain more

information on the efficacy of AmBisome as a potential drug for

Chagas disease, we have investigated thoroughly its effect in both

acute and chronic phases of mouse T. cruzi infection. We have tested

various schemes of treatment and studied by quantitative PCR the

parasitic loads in several organs known to host parasite multiplica-

tion (heart, skeletal muscle, adipose tissue, spleen and liver).

Methods

Mice, infection and treatments
BALB/cJ mice were obtained from Janvier (Le Genest-St-Isle,

France) and were maintained in our animal facilities in compliance

with the guidelines of the ULB (Université Libre de Bruxelles)

Ethic Committee for the use of laboratory animals (protocol 51

approved by CEBEA, Brussels, Belgium). Mice were infected at 6

weeks-old by intra-peritoneal (i.p.) injection of 1,000 blood

trypomastigotes of the Tulahuen strain of T. cruzi (genotype TcVI;

[35]). Blood parasitaemias were regularly determined by micro-

scopic examination of tail vein blood, with a detection limit of

10,000 parasites/mL [36].

Mice were treated with 6 i.p. injections of AmBisome (Gilead,

Paris, France; 25 mg/kg) given on alternate days starting either on

the first day post-inoculation (dpi 1), during the acute parasitemic

phase (dpi 10), the chronic phase (dpi 45) or both phases of

infection. (dpi 10 and dpi 45). The tested dose (25 mg/kg) derived

from the previous report of Yardley et al. [34]. Schedules and doses

of AmBisome treatments, as well as mouse groups, are described in

Table 1. Some chronically-infected mice were submitted to

cyclophosphamide (Endoxan, Baxter, Belgium) immunosuppres-

sive treatment (4 i.p. injections of 200 mg/kg on alternate days) as

previously described [37].

Author Summary

Chagas disease is a leading cause of cardiac failure and the
most important parasitic disease in terms of morbidity and
mortality in Latin America. After an acute parasitaemic
phase, infection naturally evolves to a long chronic phase.
If the currently available trypanocidal drugs, benznidazole
and nifurtimox, are effective in recent infection, they have
to be administered during months and induce side effects.
AmBisome, an already safe patented lipid formulation of
amphotericin B, has been previously shown efficient using
short time administration in treating human and experi-
mental Leishmania (another Trypanosomatidae parasite)
and fungal infections. This report evaluates the effect of
AmBisome in mice infected with T. cruzi. Besides parasi-
tologic evaluation, quantitative PCR was used to evaluate
the parasite loads in tissues. Injections of AmBisome in
acute infection allowed survival of all animals and
drastically reduced the parasite loads in most tissues,
whereas its administration in chronic phase strongly
decreased the parasite loads in heart and liver, without
completely curing the animals. Such results should
encourage investigations on using AmBisome in associa-
tion with standard drugs in order to improve the
treatment of T. cruzi infection.

Table 1. Mouse groups and AmBisome treatment schedules.

Mouse Groupsa n Treatment in acute phase (dpi) Treatment in chronic phase (dpi) Cyclophosphamide administration (dpi)

NT 20 - - -

6 - - 46200 mg/kg/dose (60–66)

TeA 16 6625 mg/kg/dose (1–11) - -

TA 19 6625 mg/kg/dose (10–20) - -

TAC 10 6625 mg/kg/dose (10–20) 6625 mg/kg/dose (45–55) -

4 6625 mg/kg/dose (10–20) 6625 mg/kg/dose (45–55) 46200 mg/kg/dose (60–66)

TC 7 - 6625 mg/kg/dose (45–55) -

6 - 6625 mg/kg/dose (45–55) 46200 mg/kg/dose (60–66)

aMice were either non treated (NT) or treated (T) with AmBisome during the acute (A) and/or chronic (C) phases of infection by intraperitoneal injections (i.p.) on
alternate days. Some mice of indicated groups received cyclophosphamide administred on alternate days from dpi 60. Data in brackets indicate the first and the last
post-inoculation day (dpi) of treatment.

doi:10.1371/journal.pntd.0001216.t001

T. cruzi-Infected Mice Treated with AmBisome
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Blood and organ sampling
On days 21 (acute infection) or 74 post-inoculation (chronic

infection), mice were bled out under gazeous anesthesia via retro-

orbital puncture and blood collected in citrated microtubes. Heart,

liver, spleen, thigh muscle, and white adipose tissue (dorsal

subcutaneous) were harvested after thoroughly flushing the entire

mouse body with PBS [38], in order to avoid contamination of

collected tissues with blood parasites. Blood and tissue samples

were aliquoted and stored at 280uC until DNA extraction.

DNA extraction
Organ pieces (50 mg) were disrupted using Magna Lyser

instrument (Roche Diagnostics, Brussels, Belgium) at 6,500 rpm

for 50 s in Green Beads tubes (Roche Applied Science, Brussels,

Belgium) containing 400 ml of DNA Tissue buffer (Mole Genetics

AS, Lysaker, Norway). Then 800 mg Proteinase K (Roche Applied

Science, Brussels, Belgium) were added to the disrupted samples,

and incubated for 4 h at 56uC. DNA extraction was performed on

200 mL of blood or organ digested samples using GeneMole

apparatus and DNA Blood/Tissue kits (Mole Genetics AS,

Lysaker, Norway), and eluted in 200 mL of GeneMole Elution

buffer, according to the manufacturer recommendations.

Generation of tissue standards for PCR
The standards for the quantitative PCR (qPCR) reactions were

generated from tissue homogenates of non-infected mice (50 mg of

heart, liver, spleen, skeletal muscle, adipose tissue, prepared as

mentioned above), to which 106 T. cruzi culture trypomastigotes

were added, as previously described [39]. DNA (from tissues

spiked with parasites), extracted as mentioned above, was serially

diluted with 25 mg/mL of DNA obtained from tissues without

added parasites. The 10-fold diluted prepared standards contained

DNA from 105 to 1022 parasites equivalents per 50 ng of total

DNA. A standard curve was generated from these standards to

determine the DNA parasitic load in organs of infected mice.

Infected blood standards were prepared by 10-fold serial

dilutions of 500 mL of fresh mouse blood artificially spiked with

108 T. cruzi trypomastigotes, as already described [40]. DNA was

extracted from each dilution as described above and a standard

curve ranging from 26108 to 261021 parasites/mL (correspond-

ing to 26105 to 261024 parasite equivalents per assay) was

generated to determine the parasitic DNA load of infected mouse

blood.

Real-Time quantitative PCR
Real-time PCR was performed using a LightCyclerH 480 system

(Roche Diagnostics Brussels, Belgium) according to the manufac-

turer’s instructions. Reactions were performed in a 25 mL final

volume with either 160 nM T. cruzi 195-bp repeat DNA specific

primers (Invitrogen, Carlsbad, California) TcZ1 59-CGAGCTC-

TTGCCCACACGGGTGCT-39 and TcZ2 59-CCTCCAAGCA-

GCGGATAGTTCAGG-39 [41] or 160 nM GAPDH Forward

59-GACTTCAACAGCAACTCCCAC-39 and GAPDH Reverse

59-TCCACCACCCTGTTGCTGTA-39 (from RTPrimer Data-

base) and Perfecta SYBRGreen SuperMix (Quanta Biosciences,

Gaithersburg USA). Each PCR reaction contained 50 ng genomic

tissue DNA or 1 mL of eluted blood DNA. Amplification protocol

consisted in a denaturation phase at 95uC for 59 (RampRate

4.40uC/s), then 50 cycles of amplification (95uC 39, (RampRate

4.40uC/s), 65uC 19 (RampRate 2.20uC/s)). Fluorescence emission

was measured at the end of the elongation step. A melting curve

phase program was applied with a continuous fluorescence

measurement between 50uC and 95uC (RampRate 2.20uC/s).

The identity of the amplified products was checked by analysis of

the melting curve carried out at the end of amplification. Each

LightCycler run contained 2 negative controls (no DNA added to

the reaction), and each DNA sample was quantified in duplicate.

Duplicate values for each DNA sample were averaged and parasite

equivalent load was calculated automatically by plotting the CP

values against each standard of known concentration and

calculation of the linear regression line of this curve.

Normalization of parasite loads in tissues
To normalize the amount of tissue analyzed in each PCR

reaction, we choose a housekeeping gene (GAPDH) to correct the

intra-sample variations of the initial sample amount, DNA

recovery and/or sample loading. Normalization with an external

standard was possible because the amplification of T. cruzi

genomic and murine GAPDH sequences occurred with the same

efficiency (TcZ: 1.912; GAPDH: 1.930) [39]. For normalization,

the TcZ DNA value in each tissue sample was divided by the value

of the murine GAPDH DNA in the same sample.

Statistical analysis
Results were presented as means 6 SEM. Comparisons of

means between groups were performed using the Mann-Whitney

U-test. To assess differences between survival curves, a long rank

test of Kaplan-Meier was performed. All tests were performed

using Graph Pad software (Prism 5 version 5.02).

Results

Comparison of qPCR estimated- and microscopically
determined-parasitaemias in untreated T. cruzi-infected
mice

Infection of BALB/c mice with the Tulahuen strain of T. cruzi

resulted in an acute parasitaemic phase easily detectable by

standard microscopic examination from 12 to 30 days post-

inoculation (dpi), peaking at 3.861.56106 parasites/mL on dpi 21

(NT group, Fig. 1A). This acute phase led to the death of 30% of

infected animals (Fig. 1B). Afterwards, the infection evolved to a

chronic phase during which blood parasites became undetectable

by standard microscopic examination. However, when such

chronically infected mice received the immunosuppressive cyclo-

phosphamide drug, they displayed a drastic increase of their blood

parasite levels easily detectable by microscopic examination,

reaching 5.463.66106 parasites/mL (on day 14 after the first

cyclophosphamide injection), i.e. levels comparable to those

previously observed in acute phase (Fig. 1A).

Quantitative PCR determination of parasitic DNA and

parasitaemia determined by microscopic observation were statis-

tically correlated (R = 0.953, P = 0.0003) and levels estimated in

the acute phase of infection (on dpi 21) were close to those

determined by microscopic observation. qPCR analysis of blood

samples collected on dpi 74 (chronic phase) allowed the detection

of parasite DNA in all infected mice, corresponding to a mean

level of 3,38061,440 parasite equivalents/mL (NT group, Fig. 2A),

i.e. values under the detection limit of microscopic observation. In

chronically infected mice receiving cyclophosphamide, circulating

parasite DNA levels drastically increased to values corresponding

to 19.4610.76106 parasite equivalents/mL (NT group, Fig. 2A).

qPCR estimation of parasite loads in other tissues of
untreated T. cruzi-infected mice

Levels of parasite DNA in tissues of T. cruzi-infected mice are

shown in Fig. 2. On dpi 21 (acute phase), heart, spleen, skeletal

T. cruzi-Infected Mice Treated with AmBisome
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muscle and adipose tissue displayed mean levels of parasitic DNA

ranging between 6,220 and 108,000 equivalent parasites per 50 ng

of total DNA, while parasite DNA amount was particularly low in

liver (85.9618.6 parasite equivalents per 50 ng of DNA). On dpi

74 (chronic phase), parasite DNA amounts were roughly reduced

by 10-fold in liver, 100 fold in muscle and heart, 1,000 fold in

spleen and 5,000-fold in adipose tissue as compared to acute

phase. In both phases, skeletal muscle depicted the highest parasite

DNA load. Again, cyclophosphamide injections induced an

increase in parasite DNA levels by around 1,000 times in adipose

tissue, 100-fold in hepatic tissue and only 10-fold in cardiac, spleen

and skeletal muscular tissues.

Effect of AmBisome treatment administered in acute
phase on mortality and tissue parasite loads of T. cruzi-
infected mice

As shown in Fig. 1B, administration of AmBisome to acutely

infected mice (TA; dpi 10) prevented mice from fatal issue (P,0.05

as compared with untreated animals) and all treated mice survived

until the end of the experiment (74 dpi). This observation, along

with the fact that cell blood counts remained similar in treated and

untreated animals (data not shown), suggested the absence of

major toxic effects of treatment at the used dose.

As shown in Fig. 1A, microscopic observation of blood samples

showed acutely infected mice treated with AmBisome significantly

reducing their acute phase mean parasitaemias by 5 times, though

blood parasites remained detectable at dpi 21 in all mice (TA:

6.760.86105 parasites/mL; NT: 3.861.56106 parasites/mL;

P = 0.015). qPCR analyses of blood samples of treated mice

showed a similar tendency to reduce by 4 times (not statistically

significant) parasite DNA amounts compared to those observed in

untreated mice (Fig. 2A, Table 2). By contrast, qPCR analyses of

spleen and adipose tissue showed AmBisome treatment reducing

their parasite loads by 449 to 1,361 as compared with NT mice,

whereas such reduction was only by 6 to 51 in the other tissues

(Fig. 2 B–F, Table 2).

We also evaluated the effect of AmBisome given during the

acute phase on tissue parasite loads in chronic phase. If

parasitaemia on dpi 74 remained microscopically undetectable

in AmBisome-treated mice, qPCR, detected similar blood parasite

DNA levels in TA mouse group and in untreated mice (NT,

Fig. 2A, Table 2). By contrast, all other tissues collected on dpi 74

from TA mice exhibited a significant reduction in parasite DNA

amounts compared with NT animals (by 437 in liver and 8 to 176

in the other tissues) (P,0.05, Fig. 2B–F; Table 2).

Effect of AmBisome treatment administered in both
acute and chronic phases, or in chronic phase alone, on
tissue parasite loads of mice infected with T. cruzi

Since AmBisome treatment given during the acute phase of

infection did not eliminate totally the parasites, experiments were

also performed adding a second round of treatment during chronic

phase to mice previously treated during the acute phase (TAC

group). In parallel, other mice received injections of AmBisome

only during the chronic phase of infection (TC). Treatment in

chronic phase consisted on 6 i.p. injections of 25 mg/kg on

alternate days starting on dpi 60.

TC mice showed blood parasite DNA amounts roughly similar

to those of NT animals, (dpi 74, Fig. 2A), whereas they displayed a

significant reduction of parasite DNA loads in all tested tissues

when compared to untreated mice (dpi 74, Fig. 2B–F, P,0.05).

Such reduction was stronger in liver and heart (dpi 74, Fig. 2B–C,

Table 2, P,0.05). When compared to TA group, TC mice did not

display major changes in tissue parasite DNA loads (dpi 74,

Fig. 2B–F, Table 2).

TAC mice also presented similar blood parasite DNA amounts

than NT and TA chronically infected mice (dpi 74, Fig. 2A).

However, this second round of AmBisome allowed a significant

reduction of parasite DNA loads in all other tested tissues when

compared to NT mice (dpi 74, Fig. 2B–F, P,0.05). These parasite

loads remained lower than one parasite equivalent per 50 ng tissue

DNA, except in muscular tissue. This double treatment scheme

significantly improved the effect previously observed in liver from

the TA group (dpi 74, Fig. 2C, P,0.05), as mentioned by the

calculated fold decreases (Table 2).

Effect of AmBisome treatment administered in early
acute phase on tissue parasite loads of mice infected
with T. cruzi

We also investigated whether an earlier administration (starting

on dpi 1) was able to improve the treatment efficiency of

Figure 1. Survival and course of T. cruzi infection in AmBisome -
treated BALB/c mice. BALB/c mice were i.p. inoculated with 1,000
blood trypomastigotes. NT: untreated mice; AmBisome was administred
either in early acute phase (TeA), in acute phase (TA), or in chronic
phase (TC). TAC mice treated by AmBisome during the acute and the
chronic phases of infection. (A) Parasitaemia determined by fresh blood
microscopic examination. AmB: AmBisome administration period, CP:
cyclophosphamide administration period. (B) Survival curve of T. cruzi-
infected mice.
doi:10.1371/journal.pntd.0001216.g001

T. cruzi-Infected Mice Treated with AmBisome
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Figure 2. Tissue parasite amounts in AmBisome-treated mice. NT: untreated mice; AmBisome was administred either in early acute phase
(TeA), in acute phase (TA), or in chronic phase (TC). TAC mice treated by AmBisome during the acute and the chronic phases of infection. Organs were
collected either in acute phase (dpi 21) or in chronic phase (dpi 74) from mice having received or not cyclophosphamide (CP). Both TcZ and GAPDH
sequences were quantified individually for each DNA sample. The amounts of parasite DNA in samples were expressed in parasite equivalents per mL
of blood (A) or per 50 ng DNA for heart (B), liver (C), spleen (D), muscle (E) and adipose tissue (F). * denotes a significant difference with NT acute mice
group, # denotes a significant difference with NT chronic mice group, 1 denotes a significant difference between treatments, *, #, 1 P,0.05; **, ##,
11 P,0.01; ***, ###, 111 P,0.001.
doi:10.1371/journal.pntd.0001216.g002

T. cruzi-Infected Mice Treated with AmBisome
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AmBisome. All treated mice (TeA) survived and displayed reduced

parasitaemias (microscopic determination) compared to NT group

(dpi 21, TeA: 4.8860.826105; P,0.05). Comparison of qPCR

analyses performed in TeA and NT mice (on dpi 21) showed such

early treatment lowering parasite loads in all tissues (Table 2;

P,0.01 except for blood), the more potent effect being observed in

spleen. Interestingly, early treatment starting on dpi 1 had more

pronounced effect than that starting on dpi 10 in reducing parasite

loads in spleen and liver (by 6 to 8 fold; P,0.01), similar effect on

muscle. However, in adipose tissue the reducing effect of the early

AmBisome treatment (TeA) was less pronounced than in TA mice

(P,0.01). The potential long term effect of such early treatment

was also investigated by determining the tissue parasite loads on

dpi 74. Excepted for adipose tissue, the latter were decreased by 7

to 113 fold as compared to NT group, as indicated by the

calculated fold decreases (Table 2).

Effect of cyclophosphamide administration in T. cruzi-
infected mice treated with AmBisome

As reported in Fig. 1A–2A, a drastic increase of blood parasite

levels was observed 14 days after the first cyclophosphamide

injection (7 days after the 4th injection) in all TC and TAC

AmBisome-treated mice, both by microscopical and qPCR

analyses, reaching parasite amounts comparable to that observed

in acutely infected NT mice. We also observed that cyclophos-

phamide injections similarly boosted parasite DNA levels in tissues

of all of these mice, as in NT mice (Fig. 2B–F). Such drastic

reactivation of parasite multiplication clearly showed that animals

were not completely cured from T. cruzi infection.

Cyclophosphamide immunosuppression test was not applied to

TA and TeA mouse groups, since at the end of AmBisome

treatment in acute phase, parasites were still observable in blood

by standard microscopic examination, indicating they were not

completely cured (see above; Fig. 1A).

Discussion

Taken together, these results indicate that AmBisome, at the

used doses (i.p. administration), prevents mice from fatal issue in

the acute phase of infection, contributes to drastically reduce

parasite loads in heart, liver, spleen, skeletal muscle and adipose

tissues in acute, as well as in chronic infection, but fails to

completely cure animals from T. cruzi infection. An earlier

administration of AmBisome (on dpi 1) has a better effect in

reducing parasite loads in spleen and liver in acute phase, whereas

repetition of treatment in chronic phase improves the reduction of

parasite loads in heart and liver.

Survival rate and parasitaemias (microscopic examination)

observed in untreated mice are in agreement with our previous

report using the same mouse and parasite strains [42,43]. Our

qPCR data obtained in tissues/organs from infected mice can be

considered as reliable since possible contaminations by DNA from

blood trypomastigotes have been drastically reduced by flushing

the entire circulatory system of mice. Moreover, such data agree

with those of previous works exploring T. cruzi infection in adipose

or muscular tissues of mice by normalised qPCR [39,44]. The high

amount of parasite DNA observed in skeletal muscle and heart

both in acute and chronic infection can be explained by the known

muscular tropism of the used parasite strain (TcVI genotype; [45]).

The lowest amount detected in liver likely relates to the

involvement of this organ as a major site of immunological

elimination of parasites [46]. The high amount of parasite DNA in

mouse adipose tissue also confirms previous reports [44]. The

more important effect of dpi 10 (TA)- vs. dpi 1-treatment (TeA) in

reducing parasite DNA in adipose tissue might indicate a later

parasite invasion of this tissue compared to others.

The comparisons of tissue parasitic loads through the course of

infection indicate that the AmBisome treatment initiated in acute

phase (TeA and TA) induces a global decrease of parasitic loads in

all studied organs, and that this beneficial effect is long-lasting

since still observed in chronic phase. The treatment given in

chronic phase only (TC) has also a significant beneficial effect in

reducing such organ parasitic loads. However, treatment repeated

in acute and chronic phases (TAC) does not present a significant

advantage over TC treatment. However, considering blood, if a

significant reduction of parasitaemia (microscopic determination)

can be observed after the acute phase treatments (TeA and TA),

the estimations of parasite DNA in chronic phase (qPCR

determination) remain similar in NT and treated mice, whatever

the scheduled treatments. This latter observation might relate to a

release of T. cruzi DNA into blood circulation, subsequent to an

intra-tissue lysis of parasites by AmBisome. Such parasitic DNA

release probably also occurs in acute phase. However, during this

phase, high levels of inflammatory molecules, such as the serum

amyloid P protein (SAP), are abundantly produced in response to

T. cruzi infection [47]. SAP is known to capture DNA and be

rapidly eliminated in liver [48,49], which might contribute to

decrease the detectable circulating DNA levels in acute, but not in

chronic phase. This indicates that qPCR determination of

parasitic DNA in blood does not reflect the actual parasitic load

in other tissues and is not sufficient enough to appreciate the effect

of a treatment.

Our results confirm that AmBisome treatment increases the

survival rate of acutely infected animals, although it does not cure

them, even if multiple injections of drug are used instead of only

one as previously indicated [34], and if treatment is started close to

inoculation date. Indeed, treated mice still displayed low levels of

parasites or parasite DNA in blood and other tissues both in early

(on dpi 21) as well as in late infection (on dpi 74). Our experiments

with the cyclophosphamide immunosuppressive drug confirm the

presence of residual tissue infection in various organs. The lack of

complete curative activity of the drug might be related to a sub-

estimation of its efficacy since it has been administered by i.p.

instead of intravenous route, known to be more effective for

diffusing liposome-encapsulated drugs [18,34]. Amphotericin B is

known to induce an immediate lysis of Trypanosomatidae parasitic

protozoa whatever their strain [50], due to the interaction of its

large macrolactone ring with ergosterol and other 24-alkyl sterols

Table 2. Reductions of DNA parasite loads in organs of
AmBisome-treated mice.

Acute
dpi

Phase
21

Chronic
dpi

Phase
74

Tissues TeA TA TeA TA TC TAC

Heart 14 11 54 176 293 353

Liver 39 6 113 437 660 1835

Spleen 3473 449 7 31 99 45

Muscle 69 51 103 37 19 68

Adipose
Tissue

77 1361 #1 8 104 15

Blood 6 4 #1 #1 #1 #1

For each mouse group, reduction ratios are expressed in fold decrease
compared to the mean of NT group.
doi:10.1371/journal.pntd.0001216.t002
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contained in membranes, triggering the formation of aqueous

pores. Consequently, another possible explanation for the absence

of complete curative effect might relate to the preferential tropism

of the used parasite strain (TcVI) for muscle tissues (see above),

whereas the AmBisome targeting, by its liposomal formulation, is

more directed toward liver, spleen and lungs [51,52]. So, the

present results do not exclude a more pronounced curative effect

using intravenous administration, or in T. cruzi infection with other

parasite strains having different tissue distribution. Moreover, a

beneficial effect of AmBisome treatment might be also expected in

T. cruzi congenital infection, in which parasites are preferentially

targeted to the liver by the fetal circulation [2,53], since our results

show the early treatment being able to reduce drastically parasite

loads in liver and spleen, in addition to allowing survival of all

infected animals.

Another information derived from the present study is the

significant reduction of DNA parasite load observed in tissues

(notably in cardiac tissue) of mice treated during the chronic phase

of infection. This phase is frequently encountered in human T.

cruzi infection and cumulative data indicate that treatment of such

infected subjects with the standard benznidazole drug significantly

reduce the progression of cardiac Chagas disease and increase the

frequency of negative seroconversion [11]. This could stimulate

studies on using association of drugs including AmBisome

(requiring only some injections) in T. cruzi- infected patients, in

order to improve and/or accelerate such beneficial evolution and

definitive cure.
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