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Protein synthesis is central to life and maintaining a highly accurate and efficient mechanism
is essential. What happens when a translating ribosome stalls on a messenger RNA? Many
highly intricate processes have been documented in the cytosol of numerous species, but
how does organellar protein synthesis resolve this stalling issue? Mammalian mitochondria
synthesize just thirteen highly hydrophobic polypeptides. These proteins are all integral
components of the machinery that couples oxidative phosphorylation. Consequently, it is
essential that stalled mitochondrial ribosomes can be efficiently recycled. To date, there
is no evidence to support any particular molecular mechanism to resolve this problem.
However, here we discuss the observation that there are four predicted members of
the mitochondrial translation release factor family and that only one member, mtRF1a,
is necessary to terminate the translation of all thirteen open reading frames in the
mitochondrion. Could the other members be involved in the process of recycling stalled
mitochondrial ribosomes?
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INTRODUCTION
Maintaining the efficiency and accuracy of protein synthesis is
one of the most important aspects of cell survival. The transla-
tion of mRNAs into polypeptides is a complex multistep process
that involves many proteins and RNA species. Consequently there
are many points at which protein synthesis can be disrupted
with consequent detrimental effects on cell viability (Zaher and
Green, 2009). One step at which this process can fail is when
the ribosome ceases to progress along the open reading frame
within the transcript, termed stalling. The reasons for this are
multiple and varied. Elongation arrest can be an important reg-
ulatory step such as is seen in the binding of signal recognition
particles (SRP) to emergent nascent peptides. Docking of the
SRP to its receptor in the endoplasmic reticulum (ER) mem-
brane facilitates co-translational translocation and the nascent
peptide is immediately inserted into the ER membrane prior to
any folding event (Walter et al., 1981). Structural or sequence ele-
ments within the mRNA may cause pausing, as will the lack of
sufficient charged tRNAs. In bacteria, examples of each of the
events have been shown to trigger degradation of the mRNA on
which the ribosome has paused (reviewed in Deana, 2005). In
certain cases, however, there is potential for translational arrest
to be more harmful, or more specifically that not alleviating
the arrest or the cause of it, can be detrimental. For example,
stalled ribosomes sequester tRNAs within the A, P, and E-sites
thereby limiting their availability, impeding normal translation
(Manley, 1978; Jørgensen and Kurland, 1990). Bacterial ribosomes

can also stall by colliding with the RNA polymerase ahead of
them, which has itself stalled on its template. The phenomenon
of translational arrest caused by ribosome stalling appears to
occur in bacteria and in the cytosol of eukaryotes, and although
under-researched it is also likely to affect mitochondrial pro-
tein synthesis. Because of the detrimental effects that can result
from stalling and the relative frequency of premature termination
events, organisms have developed different strategies to rescue
these ribosomes.

Eubacteria have developed a number of mechanisms (reviewed
in Janssen and Hayes, 2012) but the best characterized is trans-
translation promoted by tmRNA (reviewed in Moore and Sauer,
2007). This system, present in all eubacteria utilizes a molecule
that folds to present two very different domains. The 5′ domain
resembles a tRNA, which is recognized and aminoacylated by
alanyl-tRNA synthetase. Aborted nascent peptides are transferred
from the P-site tRNA to the alanine on this upstream tRNA-like
structure, resulting in an (peptidyl)-alanyl-tmRNA. The down-
stream element of the tmRNA then acts as an mRNA, where
the first triplet, or resume codon, generally encodes an alanine
(Kapoor et al., 2011). Protein synthesis is resumed with the addi-
tion of an approximately 10 amino acid tag, before terminating
in a conventional stop codon. The aberrantly translated peptide
is able to leave the ribosome through the conventional mecha-
nism, thereby rescuing the stalled components. This system is
found in all known bacterial genomes, either a single tmRNA or
as two pieces that bind to resemble tmRNA (Keiler et al., 2000).
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The elegance of this arrangement is that it relieves the stall and
tags the truncated/aberrant protein, effectively targeting it as
a substrate for degradation. Trans-translation also requires the
essential binding partner SmpB, which with tmRNA rescues ribo-
somes stalled on RNA templates that either lack a stop codon or
have stalled during the elongation phase for other reasons. Alter-
native rescue pathways identified in Escherichia coli require the
activity of protein factors ArfA or ArfB (YaeJ) that both utilize
translation termination mechanisms to release arrested ribosomes
(Chadani et al., 2010; Handa et al., 2010b; Abo and Chadani,
2014). The two mechanisms differ. ArfA requires recruitment of
the translation termination factor RF2, whilst YaeJ retains the
GGQ motif characteristic of release factors (RFs) and directly
stimulates the ribosome dependent catalysis of the ester bond
between the peptide and the P-site tRNA (Chadani et al., 2012).
In eukaryotes, no homologs of the tmRNA system have been
found, but a different mechanism has been identified to tackle
the same problem. Characterized in the yeast cytosolic com-
partment, this system employs the protein Dom34, a homolog
of the eukaryotic release factor (eRF1) but lacking the charac-
teristic GGQ motif and codon recognition capability (Lee et al.,
2007; Graille et al., 2008). Dom34 can act in concert with either
a GTPase, Hbs1, or an ATPase, Rli1. In a codon-independent
manner, it releases ribosomes from truncated transcripts or those
that have failed to release the mRNA at the stop codon and have
migrated into the 3′UTR (Guydosh and Green, 2014). Although
mitoribosomes are likely to encounter similar issues that cause
stalls, similar to the eukaryote cytosol no tmRNA species has
been found in mammalian mitochondria. Curiously, a circularly
permuted gene resembling the upstream tRNA-like fragment was
identified in the primitive mitochondrial genome of Reclinomonas
americana (Keiler et al., 2000). However, since no accompany-
ing open reading frame for the tag peptide could be found,
it seems unlikely that any mitochondrial genome has retained
this apparatus. We are left, therefore, with no mechanistic data
on precisely how stalled ribosomal complexes are resolved in
mitochondria.

MITOCHONDRIAL RIBOSOMES, STALLING, AND PREDICTING
POTENTIAL RESCUE MECHANISMS
Our understanding of all the critical recognition elements and
trans-acting proteins responsible for mitochondrial translation
lags behind the characterization in bacteria and the eukaryotic
cytosol. Many of the aspects that are still unknown include the
mechanisms that exert quality control of protein synthesis and
rescue ribosome stalling. Given the presumed α-proteobacterial
origin (Gray et al., 1999) of the organelle, the prediction is often
that processes in mitochondria will strongly resemble those from
their bacteria origins (Smits et al., 2010). The existing models
of translation in mitochondria are, therefore, based on those of
bacteria. However, despite evident similarities between the two
processes, they are not identical and certain unique features of
mitochondrial translation make direct comparison more compli-
cated (reviewed in Christian and Spremulli, 2012).With respect
to the ribosome rescue mechanisms, one important consider-
ation is the structure and composition of the mitoribosome.
Mitochondrial ribosomes are often compared to their prokaryotic

counterparts (Sharma et al., 2003), however, mitoribosomes vary
enormously depending on their organism of origin (Rackham and
Filipovska, 2014). Although all consist of a small and a large sub-
unit there can be variations in their size, RNA to protein ratio, and
composition. Throughout their evolution, mitoribosomes have
acquired many distinct structural characteristics, including the
unusually high protein to rRNA ratio, caused by shortening of
rRNA and recruitment of additional proteins (Sharma et al., 2003).
Although many of the mitoribosome proteins (MRPs) have bac-
terial homologs, almost half of them are specific to mitochondria
(Sharma et al., 2003; Koc et al., 2010). These unique MRPs are
mostly situated on the outer surface of the mitoribosome some
of which compensate for the loss of rRNA domains or miss-
ing bacterial proteins (Sharma et al., 2003). These new protein
also form an extended peptide exit tunnel, the central protuber-
ance and line the mRNA entry site, which differs in structure
from the prokaryotic counterparts (Sharma et al., 2003; Greber
et al., 2013; Kaushal et al., 2014). Recent publications describing
high resolution cryo-electron microscopy (cryo-EM) structures
of both the mammalian 39S large (Greber et al., 2013) and 28S
small mitoribosomal subunits (Kaushal et al., 2014) confirm the
unique aspects of mitoribosome architecture derived from these
mitospecific RPs. Any potential ribosome rescue mechanism in
mitochondria might be predicted to reflect these global changes
to the structural features and composition of the mammalian 55S
particle. However, analysis of mitochondrial proteins that have
bacterial homologs with known function, and comparable struc-
tures may still be the best way to begin the search for potential
mitoribosome rescue factors. Other approaches include looking
for factors that transiently interact with the mitoribosome, or
through bioinformatics analyses. Use of the last two methods have
helped to identify the most likely candidates, namely members of
the mitochondrial RF family (Rorbach et al., 2008; Richter et al.,
2010).

MITOCHONDRIAL RELEASE FACTOR FAMILY
There are two types of release factors: those that are capable of
mRNA sequence recognition (class 1 RFs) and those that are not
(class 2). Class 1 RFs effect translation termination by sampling
the ribosomal A-site and remaining transiently associated when
they recognize a cognate STOP codon. Their function is to release
the completed polypeptide from the ribosome by catalyzing the
cleavage of the ester bond between the P-site tRNA and the ter-
minal amino acid of the nascent peptide. Eubacteria utilize two
different RFs, RF1 and RF2, to recognize the 3 universal STOP
triplets (Oparina, 2005). In contrast, archaebacteria and eukary-
otic cytosol both contain a single, omnipotent class 1 RF (named
aRF1 and eRF1 respectively) that recognizes all three of the canoni-
cal STOP codons, UAA, UAG, and UGA (Ito et al., 2002; Seit-Nebi
et al., 2002). Large scale phylogenetic analysis has examined the
evolution and diversification of RF proteins and identified that
members are present in both plastids and mitochondria (Duarte
et al., 2012).

Human mitochondria use only UAA and UAG as terminating
triplets, as UGA has been recoded to tryptophan. In combination
with the altered characteristics of the mammalian mitoribosome
this might predict the need for a reduced number of RFs. It is
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perhaps a surprise, therefore, that bioinformatics classifies four
proteins as members of the human mitochondrial RF family,
namely mtRF1, mtRF1a, ICT1, and C12orf65. The first to be iden-
tified solely by database searches was mtRF1 (Zhang and Spremulli,
1998). The sequence recognition domains differed from the con-
sensus, supporting the assumption that mtRF1 functioned as a
single RF that recognized the four codons that at the time were
assumed to function as stop codons. This premise was absorbed
into the literature until mtRF1a was identified, with decoding
domains that more closely resembled the consensus, and biochem-
ical characterization confirming its recognition of UAA and UAG
as stop codons (Soleimanpour-Lichaei et al., 2007). The second
confounding assumption that had been accepted in the literature
was that AGA and AGG were also stop codons. Since these followed
the final coding triplet in mitochondrial transcripts MTCO1 and
MTND6 respectively, this was not an unreasonable interpreta-
tion of the human mitochondrial genome (Anderson et al., 1981).
More recent investigations in whole cells have shown that physio-
logically neither of these are stop codons. Although both codons
are unassigned, they function to promote a -1 frameshift, to posi-
tion UAG in the A-site for conventional termination by mtRF1a
(Temperley et al., 2010).

Since mtRF1a is sufficient to terminate translation of all 13
open reading frames, what are the functions of the remain-
ing 3 mitochondrial RF family members? Is there any evidence
that they can still function as RFs? These proteins were grouped
together due to similarities in their sequence and structures that
they share with RFs from bacteria and the eukaryotic cytosol
(Duarte et al., 2012). In particular all four family members dis-
play high conservation of the GGQ domain that is critical for
catalyzing peptidyl-tRNA hydrolysis (PTH; Frolova et al., 1999).
For the RF to trigger ester bond cleavage the GGQ domain must
be positioned in the peptidyl transferase center of the ribosome
(PTC), which occurs when the RF undergoes a major conforma-
tional change from a closed to open conformation (Vestergaard
et al., 2001; Petry et al., 2005; Laurberg et al., 2008). In order
to prevent RFs from displaying PTH activity too early, the con-
formational change that promotes peptidyl-tRNA hydrolysis is
dependent on stop codon recognition (Shaw and Green, 2007;
Laurberg et al., 2008). The required sequence specificity is dic-
tated by another conserved domain, which comprises amino
acid stretches that come together in space. This domain devi-
ates from the consensus in mtRF1, both in amino acid content
and by being extended in length. The hypothesis predicated on
these changes, is that the extra bulk of the sequence recogni-
tion domain can fill the space in the A-site normally occupied
by the mRNA. Three dimensional modeling shows that mtRF1
could occupy this cavity and synchronously extend the GGQ
motif into the PTC to rescue ribosomes that have stalled with
an incomplete peptide anchored to a mis-processed or partially
degraded mRNA lacking a termination codon (Huynen et al.,
2012). In contrast the codon recognition domain is absent in
both ICT1 and C12orf65, the two remaining members of the
mitochondrial RF family. Despite this, the retention of the
GGQ motif in all family members strongly suggests they have
all retained the ribosome dependent ability to release peptides
from a P-site anchored tRNA. That they play an important role in

translation is further substantiated as intra-organellar protein syn-
thesis is impaired when ICT1 or C12orf65 are depleted or mutated
(Antonicka et al., 2010; Richter et al., 2010). These observations
suggest that mtRF1, C12orf65, and ICT1 are likely to function
on stalled ribosomes or large subunits with peptidyl-tRNA still
anchored within, allowing them to be recycled for a new round of
translation.

ICT1 is intriguing as it has been incorporated into the mitoribo-
some as a permanent fixture. This would appear to be dangerous,
as ICT1 displays codon independent PTH activity, which a priori
could cause premature peptide release (Richter et al., 2010). Since
this does not occur physiologically, the associated PTH activity
of ICT1 must be carefully controlled with an as yet undefined
specificity. The current hypothesis is that ICT1 must function in
ribosome rescue but whether this occurs at stalling events within
ORFs or on truncated transcripts is not yet clear. ICT1 does, how-
ever, have a bacterial homolog, YaeJ, which has been shown to be
involved in release of arrested ribosomes (Gagnon et al., 2012).
Below we will compare and contrast and see if there are useful
parallels to be drawn to elucidate the potential role of ICT1 in
mitochondrial ribosome rescue.

YaeJ
ArfB or YaeJ, is conserved among eukaryotes and is present in
many Gram-negative species (Handa et al., 2010b). Its potential
role in ribosome rescue was indicated by its structural similarity
to RF1 and RF2 and the presence of the GGQ motif, character-
istic of ribosome dependent PTH activity (Frolova et al., 1999).
Convincing evidence for its function in ribosome rescue derived
from studies in E. coli where YaeJ overexpression in strains lack-
ing tmRNA and ArfA suppressed the lethal phenotype (Chadani
et al., 2011). Subsequently YaeJ was shown to have direct PTH
activity on stalled ribosomes both in vitro (Handa et al., 2010b)
and in vivo (Handa et al., 2010b; Chadani et al., 2011), which
was lost when the GGQ was mutated to GAQ (Chadani et al.,
2011). This indicated that no auxiliary factors were required, in
contrast to ArfA that needs to co-opt RF2 for activity. As with
ICT1, the protein lacks domains 2 and 4 of a standard RF, thereby
losing codon-recognition consistent with its ability to rescue ribo-
somes stalled on mRNA lacking STOP codons (Chadani et al.,
2011). Structural analysis by the Steitz group has detailed the
critical interactions that drive ribosomal rescue. The N-terminal
globular domain is bound in the A-site and is joined to the C-
terminus via a flexible linker (Gagnon et al., 2012). Although
the C-terminus was thought to be an unstructured, it has a
basic residue-rich tail that was necessary to facilitate interaction
with the ribosome (Handa et al., 2010b; Chadani et al., 2011;
Gagnon et al., 2012; Kogure et al., 2014). Gagnon et al. (2012)
have shown that once positioned within the mRNA entry chan-
nel, it forms an α-helix. Their data suggest that the YaeJ tail
can sample the mRNA channel and thereby determine whether
or not the ribosome has stalled on a non-stop transcript or is
still translating (Gagnon et al., 2012). If the ribosome is stalled
on non-stop mRNA or an endonucleolytically cleaved transcript,
the basic residues of the YaeJ tail could interact with negatively
charged rRNA nucleotides lining the tunnel. Such binding to
the ribosome would cause structural rearrangements within YaeJ,
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similar to those following codon recognition of a standard RF,
placing the GGQ domain within the PTC, facilitating peptidyl-
tRNA hydrolysis (Gagnon et al., 2012). The data is clear that
YaeJ is an important protein in ribosome rescue, but does it
follow that the human mitochondrial ortholog plays a similar
role?

ICT1
First reported, under the name of DS-1, as a transcript down-
regulated during in vitro differentiation of a colon carcinoma
cell line, immature colon carcinoma transcript-1 (ICT1; Van
Belzen et al., 1995, 1998) had no connection to any potential

mitochondrial function. Subsequent research by our group inves-
tigating ribosome recycling in human mitochondria, identified
ICT1 as associated with mtRRF (Rorbach et al., 2008). Sub-
sequently, the available data and bioinformatic analyses classi-
fied ICT1 in the prokaryote/mitochondrial RF family (uniprot
Q14197). At ∼175 amino acids post-maturation ICT1 is smaller
than standard RFs due mainly to the loss of the codon recog-
nition elements. It does, however, retain the GGQ motif that
has been confirmed as functional, as GSQ and AGQ mutations
affect growth and activity (Richter et al., 2010). As mentioned
above, this work confirmed that ICT1 is not just mitochon-
drial but has actually become an integrated component of the

FIGURE 1 | ICT1 as a mitochondrial translation rescue factor and its

possible orthologs. (A) Alignment of human ICT1 (14197) with the Pth4
ortholog from S. pombe (Q9HDZ3) and YaeJ ortholog from E. coli (E2QFB9).
Identity is indicated by (*), high levels of similarity by (:) and lower levels by
(·). The conserved GGQ region is boxed and the YaeJ residues that are
required for PTH activity and are highly conserved between bacterial
species are indicated by arrows. (B) Release activity of recombinant YaeJ
and ICT1. PTH activity was tested on 70S ribosomes primed with either no
RNA or UAA triplet in the A-site. (C) Mitochondrial targetted YaeJ-FLAG
shows interaction with human mitochondrial ribosomal proteins. FLAG tag
mediated immunoprecipitations of ICT1 and mitochondrially targeted YaeJ
were performed on lysates of HEK293 cell lines induced for 3 days. The
elution fractions (10%) were separated by SDS PAGE and analyzed by silver

staining (left panel, FLAG protein indicated by *) or western blot (right
panel). Antibodies against MRPL3, MRPL12, ICT1, DAP3, and MRPS18B
were used to determine the relative levels of coimmunoprecipitated
ribosomal proteins. The presence of FLAG tagged protein in each elution
was confirmed by anti-FLAG antibodies. (D) Mitochondrially-targeted
YaeJ-FLAG does not co-migrate with the 39S LSU. Lysate (700 μg) of
mtYaeJ-FLAG expressing cells was separated on an isokinetic sucrose
gradient. Fractions were analyzed by western blot using antibodies against
the 39S LSU (MRPL3) and the 28S SSU (DAP3). The distribution of
mtYaeJ-FLAG was determined by applying FLAG antibodies. Methods for
panels (B–D) were essentially as described in Richter et al. (2010), except a
YaeJ-FLAG construct was used to generate a HEK293T overexpression line
instead of the ICT1 FLAG.
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large ribosomal subunit. Recent cryo-EM coupled with cross-
linked mass spectroscopy confirmed this observation and posi-
tions ICT1 at the central protruberance, close to MRPL15,
-18, and -49 (Greber et al., 2013). Perhaps not surprisingly,
depletion of ICT1 causes disruption of the mitoribosomal
structure and subsequent de novo synthesis of mitochondri-
ally encoded proteins (Richter et al., 2010). The combination
of these characteristics make ICT1 a codon-independent but
ribosome-dependent and ribosome-integrated peptidyl-tRNA
hydrolase.

Analysis of ICT1 solution structure may provide more insight
into the role of the protein (Handa et al., 2010a). The three dis-
tinct regions are the N-terminal mitochondrial targeting signal,
the structured catalytic domain containing the GGQ motif, and
an unstructured C-terminal extension rich in positively charged
amino acids. The topology of the GGQ domain is β1-β2-α1-β3-
α2, which follows the bacterial RF2 pattern with the exception of
the α1 inserted between β2 and β3 that is not present in the lat-
ter (Handa et al., 2010a). Loss of the codon recognition domain
appears to be replaced by a C-terminal extension, somewhat
reminiscent of YaeJ.

YaeJ vs. ICT1
Comparisons of ICT1 and YaeJ structure and sequence alignment
show both similarities and differences (Figure 1A; Handa et al.,
2010a; Gagnon et al., 2012; Kogure et al., 2014). Identity and sim-
ilarity are strong in the GGQ domains. The N-termini differ as
would be expected, as ICT1 is a mitochondrially destined pro-
tein. Although an inserted region (αi) is common to both the
structure that follows differs, in YaeJ this is a β-strand in con-
trast to a 310 helix in ICT1 (Kogure et al., 2014). The inserted
α-helices share structure but differ in amino acid sequence, they
are a characteristic and conserved feature for these two pro-
teins that distinguish them from class I RFs (Kogure et al., 2014).
An important feature for ribosome binding and activity in YaeJ
was the length and amino acid composition of the linker and
C-terminal region and critical residues for PTH activity are con-
served between ICT1 and YaeJ (Kogure et al., 2014). The conserved
similarities that link these two proteins whilst simultaneously dis-
tinguishing them from other RFs, suggest a conserved function
and mechanism. As with Kogure et al. (2014) we could show
codon-independent release activity by using recombinant YaeJ in
in vitro assays with 70S ribosomes (Figure 1B). We, therefore,
looked to see whether the similarities in these proteins were suf-
ficient for YaeJ to substitute for ICT1 in the mitoribosome. To
test this hypothesis, we generated cell lines that could inducibly
express a mitochondrially targeted YaeJ (reported here) or the
potential yeast mitochondrial RF, Schizosaccharomyces pombe Pth4
(reported in Dujeancourt et al., 2013). Each was generated with
a C-terminal FLAG tag to facilitate efficient immunoprecipita-
tion (IP). The immunoprecipitated protein was specifically and
competitively eluted using FLAG peptide and in ach case demon-
strated an association with the mitoribosome, but neither was
as efficient as ICT1 at immunoprecipitating MRPs (Figure 1C).
Each cell line was induced to express either YaeJ or Pth4 and
the cell lysates were separated by isokinetic sucrose gradient (as
in Richter et al., 2010). In neither case did the expressed protein

migrate in fractions with the mt-LSU polypeptides (Figure1D).
Similar results were derived for mtRRF-FLAG (Rorbach et al.,
2008), supportive of an interaction with mitoribosome mediated
by transient A-site entry, akin to YaeJ interaction with the bacterial
ribosome (Figure 2; Gagnon et al., 2012; Kogure et al., 2014) rather
than mitoribosome integration. This suggests that these proteins
may take part in ribosome rescue but by different mechanisms.
The integration of ICT1 into the mitoribosome and the cryo-EM
data positioning it near the central protuberance would preclude
unrestricted access of the GGQ motif to the PTC (Greber et al.,
2013). This might indicate the pathway in which ICT1 is involved,
as without significant conformational changes in the mitoribo-
some it would not be able to exert PTH activity (Figure 2). Such
structural rearrangements of the 55S might potentially occur to
release tRNA from prematurely discharged peptidyl-tRNA com-
plexes, or if subunit dissociation occurs prior to release of the
peptide. Further data is required to confirm the substrate and
mechanism of ICT1 in the rescue of stalled translation in human
mitochondria.

DISCUSSION
This “perspective” aims to highlight how perplexing post-
transcriptional gene expression in mitochondria can be. Transla-
tion will not be an error free process but the exact nature of those
errors, have yet to be determined. Mitochondrial ribosomes from
different organisms can vary dramatically, and those in mammals
are currently the most significantly different from the norm. This

FIGURE 2 | Schematic of a composite ribosome to show relative

positions occupied by ICT1 andYaeJ. Truncated mRNA lacking an A-site
codon allows ingress of YaeJ such that the C-terminal α-helix aligns within
the mRNA entry channel in the small subunit (SSU). This positions the GGQ
motif at the peptidyl transferase centre (PTC) allowing cleavage of the ester
bond between the P-site tRNA and the truncated polypeptide (as described
in Kogure et al., 2014). The aborted product is then released via the
polypeptide exit site in the large subunit (LSU). ICT1 by contrast is located
at the central protuberance (CP) precluding its interaction with the nascent
peptide without a large scale conformational change of the ribosome (as
described in Greber et al., 2013).
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alone would be enough to stymie progress but the lack of a robust
transfection mechanism and the lack of a robust in vitro transla-
tion system makes study of mammalian mitochondrial translation
processes a technical quagmire.

Lessons that we learnt from bacterial studies are unfortunately
limited, as described above. Despite similarities between YaeJ and
ICT1 and their common divergence from standard RFs, we can-
not assume a similar mechanism using the bacterial paradigm, as
the integration of ICT1 into the mitoribosome excludes a sim-
ilar mechanism of action. Since bacteria have more than one
rescue pathway, it seems probable that mitochondria will too.
Thus far bioinformatics has narrowed the plausible candidates
for mitochondrial rescue factors to members of mitochondrial
RF family. In addition to ICT1, the feature conferring ribosome
dependent PTH activity, the GGQ motif, is present in mtRF1 and
C12orf65, neither of which have characterized functions. The lat-
ter shares sequence similarities with ICT1 (Kogure et al., 2012),
moreover, evidence for its importance comes from clinical data
where patients harboring mutations in C12orf65 manifest clear
defects in mt-protein synthesis (Antonicka et al., 2010; Shimazaki
et al., 2012; Spiegel et al., 2014). However, as discussed above,
sharing similarities is not sufficient to infer function and confirma-
tion of mtRF1 and C12orf65 as mitoribosome rescue factors will
require evidence of their direct involvement in relieving ribosome
stalling. This cannot be accomplished without initially develop-
ing a method to analyse stalled mammalian mitoribosomes. A
promising approach to allow precisely such analyses comes from
recent data using a patient cell line with a mutation in MT-TY, the
gene encoding mitochondrial tRNATrp. Greater accumulation of
mitoribosomes on Trp codons was detected, inferring mitoribo-
some arrest due to the shortage of the aminoacylated wild type
mt-tRNATrp (Rooijers et al., 2013). We are currently analysing
mitoribosome distribution in the absence of the potential res-
cue factors, to confirm whether or not they indeed play a role in
alleviating mitoribosome stalling.
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