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Background: There remains a lack of accurate and validated outcome-prediction models in total knee
arthroplasty (TKA). While machine learning (ML) is a powerful predictive tool, determining the proper
algorithm to apply across diverse data sets is challenging. AutoPrognosis (AP) is a novel method that uses
automated ML framework to incorporate the best performing stages of prognostic modeling into a single
well-calibrated algorithm. We aimed to compare various ML methods to AP in predictive performance of
complications after TKA.
Methods: Thirty-eight preoperative patient demographics and clinical features from all primary TKAs
performed at California-licensed hospitals between 2015 and 2017 were evaluated as predictors of major
complications after TKA. Traditional logistic regression (LR), various other ML methods (XGBoost,
Gradient Boosting, AdaBoost, and Random Forest), and AP were used for model building to determine
discriminative power (area under receiver operating curve), calibration (Brier score), and feature
importance.
Results: Between 2015 and 2017, there were a total of 156,750 TKAs with 1109 (0.7%) total major com-
plications. AP had the highest discriminative performance with area under receiver operating curve
0.679 compared with LR, XGBoost, Gradient Boosting, AdaBoost, and Random Forest (0.617, 0.601, 0.662,
0.657, and 0.545, respectively). AP (Brier score 0.007) had similar calibration as the other ML methods
(0.006, 0.006, 0.022, 0.007, and 0.008, respectively). The variables that are most important for AP differ
from those that are most important for LR.
Conclusion: Compared to conventional ML algorithms, AP has superior discriminative ability with similar
calibration and suggests nonlinear relationships between variables in outcomes of TKA.
© 2021 The Authors. Published by Elsevier Inc. on behalf of The American Association of Hip and Knee
Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
Introduction clinical decisionwith actionable predictivemodels of complications.
Total knee arthroplasty (TKA) is a safe, cost-effective treatment
for knee osteoarthritis that substantially improves quality of life and
function inmost patients [12,34]. Although the postoperative risk of
mortality and major complications after elective TKA are generally
low, substantial patient disability, dissatisfaction, and economic
burden can result [6,10,21,22]. Recent prognostic research has
focused on improving outcomes and patient satisfaction by guiding
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Studies have identified patient and setting characteristics that are
associated with higher risk [4,8,13,23,38,47], but few studies have
developed and validated models that provide actionable intelli-
gence regarding these risks in TKA. Accurate predictive modeling
has the potential for improving preoperative decision-making,
informed consent, and postoperative outcomes and can be essen-
tial for risk-adjustment of outcome-based performance measures
and reimbursement programs that incentivize better performance
on these outcome metrics [26].

Machine learning (ML) has shown promising results in gener-
ating predictive models that inform TKA treatment decisions and
identify novel predictors of TKA outcomes better than traditional
statistical methods [16,17,19,24,26,29,30,32,33]. However, existing
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Table 1
Complications.

Complications

Acute myocardial infarction: index admission or within 7 d of start of index
admission

Pneumonia: index admission or within 7 d of start of index admission
Sepsis, septicemia, shock: index admission or within 7 d of start of index

admission
Pulmonary embolism: index admission or within 30 d of start of index

admission
Surgical site bleeding: index admission or within 30 d of index admission
Mechanical complications: index admission or within 90 d or start of index

admission
Periprosthetic joint infection/wound infection: index admission or within 90

d of start of index admission
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models vary in performance according to the characteristics of each
specific data set. Currently, application of ML involves manual se-
lection of one ormoreML algorithmswhichmay not be the optimal
choice for that particular data set.

AutoPrognosis (AP) is a novel algorithmic framework tailored
for prognostic research that automatically selects and tunes the
best possible ML algorithms and combines them into a single, well-
calibrated predictive ensemble for any given data set [3]. Using a
Bayesian optimization algorithm to efficiently configure the data
set, AP combines the best-performing pipeline of ML algorithms
into a single, well-calibrated predictive ensemble. This allows AP to
be applied across a diverse group of data sets, circumventing the
need for clinicians to choose the best algorithm. AP has shown
promising results in other areas of medicine, outperforming other
ML and traditional statistical modeling as well as uncovering novel
predictive variables [1e3]. To the best of our knowledge, this is the
first study to apply AP to TKA outcomes.

The aim of this study is to compare the performance of AP to
that of traditional logistic regression (LR) and various other
commonly used ML methods in predicting major complications
after primary TKA. We hypothesized that AP would have the best
predictive performance and be able to identify novel predictive
variables.

Methods

Data source

Data were obtained from California’s Office of Statewide Health
Planning and Development (OSHPD) database, a mandatory state-
wide database containing codes for up to 24 diagnoses and 20
inpatient procedures per hospitalization from all licensed nonfed-
eral hospitals in California. The OSHPD database includes patient
and hospital characteristics including age, gender, race, ethnicity,
insurance type, multiple comorbidities, and hospital volume. Pa-
tients in this database are assigned unique record linkage numbers
that allow patients to be tracked longitudinally for complications
regardless of whether future admissions are at a different hospital
from where the index procedure was performed.

Inclusion and exclusion criteria

The OSHPD database was used to retrospectively select patients
older than 18 years from October 01, 2015, to December 13, 2017,
that underwent elective primary TKA. Using International Classi-
fication of Diseases, Tenth revision, (ICD-10) Procedural codes,
inclusion and exclusion criteria were based on the 2017 Procedure-
Specific Measure Updates and Specifications Report Hospital-Level
Risk-Standardized Complication Measure Version 6.0
measure developed by Centers for Medicare and Medicaid Services
(CMS) International [49]. These criteria exclude patients with
fracture of the pelvis or lower limbs coded in the principal or sec-
ondary discharge diagnosis fields of the index admission; a con-
current partial hip arthroplasty; a concurrent revision, resurfacing,
or implanted device or prosthesis removal procedure; mechanical
complications coded in the principal discharge diagnosis field;
malignant neoplasm of the pelvis, sacrum, coccyx, lower limbs, or
bone or bone marrow; or a disseminated malignant neoplasm
coded in the principal discharge diagnosis field. All inclusion and
exclusion ICD-10 codes are publicly available via CMS.

Outcome and other variables

The primary outcome measure was any major complication af-
ter index TKA (summarized in Table 1) which were also based on
the CMS measures version 6.0 [49] and identified using the
appropriate ICD-10-clincal modification codes. We excluded the
measure for death within 30 days of the index admissions as death
records were not available. The patient features and variables
included in or derived from the OSHPD database are as follows: age,
gender, race, ethnicity, income based on zip code of residence,
teaching status of the hospital, rural location of the hospital, and
total hospital volume of total joint arthroplasty (TJA) (TKA þ total
hip arthroplasty) from October 01, 2015, to December 13, 2017.
Comorbidities were determined using the CMS-Condition Cate-
gories including metastatic cancer or acute leukemia, other major
cancer, diabetes mellitus or diabetes mellitus complications,
malnutrition, respiratory heart, digestive, urinary, other neoplasms,
morbid obesity, bone, join, or muscle infections or necrosis, oste-
oarthritis (OA) of hip or knee (not associatedwith index procedure),
rheumatoid arthritis and inflammatory connective tissue disease,
osteoporosis and other bone or cartilage disorders, dementia or
other specified brain disorders, major psychiatric disorders, hemi-
plegia/paraplegia/paralysis or functional disability, cardiorespira-
tory failure and shock, coronary atherosclerosis or angina, stroke,
vascular or circulatory disease, chronic obstructive pulmonary
disease, pneumonia, pleural effusions/pneumothorax, dialysis sta-
tus, renal failure, decubitus ulcer or chronic skin ulcer, trauma,
vertebral fractures without spinal cord injury, other injuries, skel-
etal deformities, and posttraumatic osteoarthritis (Table 4).
AutoPrognosis

AP is an algorithmic framework for automating the design of the
ML-based clinical prognostic models [3] which eliminates the need
for researchers and clinicians to have the in-depth knowledge ofML
necessary to choose a particular prognostic model. A schematic
illustration of AP is provided in Figure 1. AP uses Bayesian optimi-
zation techniques [46] to efficiently identify the ML pipelines (out
of a huge space of possible pipelines; Table 2) that maximize a
predefined performance metric. In this work, we use area under
receiver operating curve (AUROC) performance, where a pipeline
comprises design choices for classification methods and the cor-
responding hyperparameters. The Bayesian optimization algorithm
used by AP implements a sequential exploration-exploitation
scheme in which balance is achieved between exploring the util-
ity (ie, AUROC) of new pipelines and re-examining the utility of
previously explored ones. The motivation of using Bayesian opti-
mization framework is due to its recent remarkable success in
optimizing black-box functions with costly evaluations as
compared to simpler approaches such as grid and random [46].

We implemented AP using the Python source code (https://
bitbucket.org/mvdschaar/mlforhealthlabpub/src/68e4f7d13e4368e
ba655132a73ff9f278da5d3af/alg/autoprognosis/) of the original

https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/68e4f7d13e4368eba655132a73ff9f278da5d3af/alg/autoprognosis/
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/68e4f7d13e4368eba655132a73ff9f278da5d3af/alg/autoprognosis/
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/68e4f7d13e4368eba655132a73ff9f278da5d3af/alg/autoprognosis/


Figure 1. A schematic depiction of AutoPrognosis. AutoPrognosis is an automated framework that configures an optimally performing ensemble of ML-based prognostic models
(various pipelines) to build a single well-calibrated algorithm for risk prediction.
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paper. To train AP using Bayesian optimization, 5-fold stratified
cross-validation on the training set (80% of the study population)
was used to evaluate the performance of the pipeline (ie, ML
pipeline of classification methods and the corresponding hyper-
parameters) in every iteration and to construct the ensemble
model. Thus, the remaining held-out testing set (20% of the study
population) is left unseen during training AP. We conducted 100
iterations of the Bayesian optimization procedure where the algo-
rithm explores a newML pipeline of classification methods and the
corresponding hyperparameters in each iteration. Then, AP builds a
final ensemble of all the ML pipelines that it explored through
Bayesian optimization in which every pipeline is given a weight
that is proportional to its empirical performance (Table 3).

Statistical analysis

The primary outcome measure was any major complication af-
ter index TKA. We evaluated the discriminative and calibration
performances of the models under consideration via 5-fold strati-
fied cross-validation on the overall cohort. In every cross-validation
fold, the training cohort (80% of the study population) was used to
derive our model (AP) and the ML benchmark models, and then a
held-out testing cohort (20% of the study population) was used for
performance evaluation.

We considered 5 standard ML benchmarks that cover different
classes of ML modeling approaches to compare against AP as fol-
lows: LR (linear classifier), random forest [11] (a tree-based
ensemble classifier), AdaBoost [40], gradient boosting machines
[31] (Gradient Boosting), and XGBoost [14] (boosting ensemble
classifiers). The purpose of including these models individually in
our analysis is to show AP automatically selects and tunes the best
possible model which outperforms these individually tuned ML
models. We implemented LR, Random Forest, AdaBoost, and
Table 2
List of classification methods in AutoPrognosis.

Classification methods

Logistic regression Random forest Gradient boosting

eXtreme Gradient
Boosting (XGBoost)

AdaBoost Bagging

Bernoulli Naïve Bayes Gaussian Naïve Bayes Multinomial Naïve Bayes
Perceptron Decision Trees Support Vector Machine

(SVM)
Latent Dirichlet

Allocation (LDA)
Quadratic Discriminant
Analysis (QDA)

K-Nearest Neighbors
(KNN)

Neural Networks
Gradient Boosting machines using the scikit-learn Python library
[39] and XGBoost using the xgboost Python library [14]. The
hyperparameters of each model were selected via grid search: For
LR, the coefficient for L2 regularization was chosen from a set of
values in a logarithmic scale between 1e-3 and 1e3; for random
forest, AdaBoost, Gradient Boosting, and XGBoost, the number of
trees and the maximum depth of each tree were selected from {50,
100, 200, 300} and {2, 3, 4, 5}, respectively.

For AP and the 5 aforementioned ML models, discrimination
(which assesses how well a model distinguishes patients who
developed postoperative complications and thosewho did not) was
assessed using AUROC. AUROC represents the probability that a
randomly selected patient who experienced an outcome was
assigned a higher risk by the model than a patient who did not
experience the outcome. An AUROC of 0.5 indicates that a prog-
nostic model has no discriminative power, while an AUROC of 1
indicates that a prognostic model provides perfect discrimination.
A value greater than 0.9 is considered to have high discriminative
power, 0.7-0.9 indicates moderate discriminative power, and 0.5-
0.7 indicates low discriminative power [18]. Calibration, which
assesses the agreement between predictions and the observed
outcomes (postoperative complications), was assessed using Brier
scores and corresponding calibration plots. Brier score provides a
measure of the agreement between the observed binary outcome
and the predicted probability of that outcome, which is equivalent
to the mean squared error. Lower brier scores indicate better cali-
bration of the prognostic model. We also performed post-hoc
discriminative power analysis (AUROC) on subgroup cohorts of
patients with diabetes and obesity to assess for improved perfor-
mance given these groups had higher percentage of patients with
at least 1 complication than the overall cohort.

We used the partial dependence function introduced in the
article by Friedman et al. in 2001 [31] to measure the importance of
Table 3
List of the 10 pipelines fitted to the TKA cohort.

Pipeline # Methods Hyperparameters Weight

1 Random Forest (max_depth ¼ 5, n_estimators ¼ 98) 0.199
2 Random Forest (max_depth ¼ 5, n_estimators ¼ 96) 0.191
3 Random Forest (max_depth ¼ 5, n_estimators ¼ 102) 0.170
4 Random Forest (max_depth ¼ 3, n_estimators ¼ 101) 0.155
5 Logistic Regression (l2-penalty, 0.139) 0.091
6 Logistic Regression (l2-penalty, 0.231) 0.075
7 AdaBoost (n_estimators ¼ 150) 0.063
8 XGBoost (max_depth ¼ 5, n_estimators ¼ 153) 0.045
9 Logistic Regression (l2-penalty, 0.029) 0.007
10 Gradient Boosting (max_depth ¼ 5, n_estimators ¼ 96) 0.005



Table 4
Patient demographics and overall complications.

Variable All patients (n ¼ 156,750)

Age range of patients (y) 18-100
Mean age ± SD (y) 68.2 ± 9.2
Median age (y) 68
Males 60464 (38.6%)
Females 96286 (61.4%)
Race
Black 8764 (5.6%)
Native American 580 (0.4%)
Asian or Pacific Islander 8832 (5.6%)
White 116954 (74.6%)
Other 18260 (11.6)
Unknown 3360 (2.1%)

Ethnicity
Hispanic 29480 (18.8%)
Non-Hispanic 125521 (80.1%)
Unknown 1749 (1.1%)

Hospital volume rangea 1-8149
Mean hospital volume ± SDa 1854.6 ± 1568
Insurance
Medicare 93461 (59.6%)
Medical 10264 (6.5%)
Workers compensation 5398 (3.4%)
Other 2016 (1.3%)
Private 45771 (29.2%)

Comorbidities (CMS Clinical Conditions)
Metastatic cancer 164 (0.1%)
Other major cancer 1920 (1.2%)
Neoplasms 1250 (0.8%)
Diabetes mellitus 32991 (21%)
Malnutrition 672 (0.4%)
Morbid obesity 16818 (10.7%)
Rheumatoid arthritis 6713 (4.2%)
Osteoarthritis 2626 (1.7%)
Osteoporosis 14226 (9.1%)
Dementia 1529 (1%)
Major psychiatric disorder 7537 (4.8%)
Paralysis 232 (0.1%)
Coronary artery disease or dangina 13668 (8.7%)
COPD 7890 (5%)
Renal failure 12469 (7.9%)
Decubitus ulcer 89 (5.7 � 10-2%)
Vertebral fracture 36 (2.3 � 10-2%)
Skeletal deformities 27 (1.7 � 10-2%)
Posttraumatic OA 76 (4.8 � 10-2%)

Total complications 1109 (0.7%)
# of Patients having at least 1 complication 989 (0.6%)
AMI 91 (5.8 � 10-2%)
Pneumonia 474 (0.3%)
Sepsis 201 (0.1%)
PE 273 (0.2%)
Surgical site bleeding 13 (6.3 � 10-4%)
Mechanical complications 31 (2.0 � 10-2%)
Infection 26 (1.7 � 10-2%)

AMI, acute myocardial infarction; COPD, chronic obstructive pulmonary disease; PE,
pulmonary embolism; SD, standard deviations.

a Hospital volume is the total number of TJA cases performed between October
01, 2015, to December 13, 2017.
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an individual feature or variable by assessing the average effect in
predicted risks when its value is perturbed (Appendix I). The
continuous variables were standardized to zero mean and unit
variance, and the categorical variables were one-hot encoded.

AUROC and Brier scores were reported as mean values with
standard deviations and 95% confidence intervals for all models.
Feature importance was reported as numerical values.

Results

Demographic characteristics

Between October 01, 2015, to December 13, 2017, there was a
total of 156,750 elective primary TKAs, the majority of which were
females (61.4%). Patient age ranged from 18 to 100 years with a
median age of 68 years. There were a total of 1109 (0.7%) compli-
cations (989 patients had at least 1 complication), with pneumonia
being the most common complication. The overall demographics,
patient features, and complications are summarized in Table 4.

Model performance and calibration

In predicting patients having at least one postoperative
complication, AP had the highest discriminative performance with
AUROC 0.68 ± 0.04 compared with LR, XGBoost, Gradient Boosting,
AdaBoost, and Random Forest (0.63 ± 0.01, 0.60 ± 0.03, 0.66 ± 0.04,
0.66 ± 0.03, 0.55 ± 0.02, respectively; Table 5). The AUROC per-
formance gain of AP was statistically significant compared with LR
(P < .05), XGBoost (P < .01), and Random Forest (P < .001). The gain
over Gradient Boosting and AdaBoost was not statistically signifi-
cant. In regard to calibration performance, AP (Brier score 0.0067 ±
0.0010) was similar to the other ML methods (0.0063 ± 0, 0.0065 ±
0.0020, 0.0072 ± 0.0031, 0.0072 ± 0, 0.0075 ± 0.0002, respectively;
Table 5). Figure 2 outlines the similarity in calibration plots, spe-
cifically of AP and LR as an example.

The diabetes cohort (n¼ 32,991) and obesity cohort (n¼ 16,818)
had higher percentage of patients with at least 1 complication (0.8%
and 1%, respectively) than the overall cohort (0.6%). AP performed
better in the overall cohort (0.679 ± 0.04) than the obesity (0.660 ±
0.02) and diabetes (0.657 ± 0.04) subgroups (Table 5). However,
gain in AUROC from the best performing ML model (Gradient
Boosting) relative to AP was higher in the obesity (0.026) and
diabetes (0.02) cohorts than that in the overall cohort (0.017)
despite being significantly smaller populations.

Feature Importance

The relative importance of each variable (binary, categorical, and
continuous) to the model performance for AP and LR is displayed in
Figure 3. The variables that are most important for AP differ from
those that are most important for LR.

Discussion

Owing to increasing demand and excellent outcomes, the
annual number of primary TKAs is projected to grow 85% to 1.26
million procedures by 2030 [45]. This further amplifies the sub-
stantial cost and morbidity caused by the inevitable associated
increase in postoperative complications and unplanned read-
missions. Accurate statistical prediction tools are thus valuable in
improving preoperative counseling, informed consent, shared
decision-making, postoperative expectations, and risk-adjusted
reimbursement programs.

Substantial effort has gone into developing various prediction
models of outcomes in orthopedic surgery [9,15,25,41]. The
American College of Surgeons National Surgical Quality Improve-
ment Program developed a universal surgical risk calculator using
an extensive database across multiple specialties (only 12% of
which were orthopedic procedures) which has shown to have good
overall accuracy averaged across procedures [5]. However, perfor-
mance studies of this model for orthopedic procedures, including
TJA, are limited to single-site cohorts showing fair to poor results
[15,48].

While TJA-specific preoperative risk prediction models have
been developed, they have shown poor or unknown performance
on internal or external validation [35]. The American Joint
Replacement Registry Risk Calculator which estimates risk for 90-
day mortality and 2-year prosthetic joint infection was developed



Table 5
Discriminative power and calibration.

Methods AUROC overall (n ¼ 156,750) Brier score overall (n ¼ 156,750) AUROC obesity (n ¼ 16,818) AUROC diabetes (n ¼ 32,991)

Logistic Regression 0.629 ± 0.01 (0.604-0.654) 0.006 ± 0 (0.0063-0.0063) 0.619 ± 0.03 (0.602-0.636) 0.583 ± 0.07 (0.526-0.640)
XGBoost 0.601 ± 0.03 (0.578-0.624) 0.006 ± 0.0002 (0.0063-0.0066) 0.567 ± 0.03 (0.540-0.594) 0.590 ± 0.05 (0.549-0.630)
Gradient Boosting 0.662 ± 0.04 (0.625-0.698) 0.022 ± 0.0031 (0.0051-0.0106) 0.634 ± 0.04 (0.601-0.666) 0.637 ± 0.05 (0.594-0.680)
AdaBoost 0.657 ± 0.03 (0.630-0.684) 0.007 ± 0 (0.0072-0.0072) 0.625 ± 0.02 (0.609-0.641) 0.635 ± 0.03 (0.605-0.665)
Random Forest 0.545 ± 0.02 (0.525-0.565) 0.008 ± 0.0002 (0.0073-0.0077) 0.534 ± 0.03 (0.508-0.559) 0.549 ± 0.05 (0.505-0.593)
AutoPrognosis 0.679 ± 0.04 (0.642-0.716) 0.007 ± 0.0010 (0.0058-0.0075) 0.660 ± 0.02 (0.646-0.674) 0.657 ± 0.04 (0.620-0.693)

All values reported as mean ± standard deviation with (95% confidence interval).
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without reporting accuracy metrics [8]. This model was externally
validated using a sample of Medicare eligible patients from Veter-
ans Health Administration and found to have very poor accuracy
(0.62 C-statistic) for 90-day mortality [25]. Recently, Harris et al.
reported fair-to-moderate accuracy for prediction of 30-day mor-
tality and cardiac complications (C statistic 0.73 and 0.75, respec-
tively), whereas prediction of deep vein thrombosis and
reoperation was poor (C statistic 0.59 and 0.6, respectively) after
TKA and total hip arthroplasty with internal and external validation
of their model [24]. While these results are promising, acceptable
prediction accuracy was limited only to a subset of the complica-
tions studied.

The aforementioned risk-prediction tools were developed with
various individual ML learning methods (LR, boosted regression,
least absolute shrinkage, and selection operator). Here we report
the use of a novel ensemble ML algorithm for predicting compli-
cations after TKA using the OSHPD database containing over
150,000 patients. Compared to the aforementioned existing TJA ML
models in the literature which have shown fair to moderate per-
formances (AUROC > 0.7), our AP model in this study had poor
performance (between 0.5 and 0.7) likely due to the low-quality
billing-based data set used. However, with our particular data set,
AP demonstrated superior discriminative power relative to tradi-
tional LR and 4 other standard ML algorithms. Differential perfor-
mance relative to LR of the other 4 ML models highlights the
importance of correct ML method selection and appropriate
adjusting of hyperparameters [3] for a particular data set. With
Figure 2. Calibration plot. Calibration, measure of how close the predicted risk is to the
observed risk, is similar between AutoPrognosis and Logistic Regression.
similar calibration and superior discrimination compared with the
other ML methods, AP demonstrated superior prediction perfor-
mance for patients having at least one complication after TKA in the
OSHPD data set. The complication-prediction calculator built based
off the AP model in our study is available at https://risk-calculator-
tka-comp.herokuapp.com. Users simply plug in available patient
data to obtain percent risk of a major complication.

We also report the relative importance of several features to
performance of the AP algorithm. Some ML methods may allow for
detection of indirect nonlinear relationships and multivariate ef-
fects that others are not able to identify. Therefore, it is important to
recognize that prediction models should not be interpreted as
explanatory models, specifically the magnitude of feature impor-
tance should not be taken to imply causal relationships or lack
thereof. Of the binary features and variables, malnutrition was the
most important. Preoperative hypoalbuminemia (<3.5 grams/
deciliter) is an accepted marker of malnutrition and has been
widely shown to be a strong risk factor for postoperative mortality,
morbidity, readmission, and increased length of stay specifically in
primary TJA [7,20]. Decubitus ulcer had the next highest feature
importance which, to our knowledge, is not widely reported in the
literature as a robust independent risk factor for postoperative
complications after TKA.While the presence of decubitus ulcer may
indicate a lack of baseline mobility and function and lead most
surgeons to not recommend TKA on a particular patient to begin
with, it is still important to note that this (presence of decubitus
ulcer preoperatively) is an important feature in those patients that
have undergone TKA. We identified dementia as the third most
important feature for this algorithm which similar to malnutrition
has been previously shown to have an association with increased
postoperative complications and resource utilization [8,28]. In re-
gard to continuous variables, hospital volume was more important
with both AP and LR than age. Increasing age and lower hospital
volume have both been shown to be associated with higher risk of
surgical site infections, complications, and mortality [8,37,42,44].
We must note that AP is currently unable to generate threshold
predictive values above which the risk for a complication is
significantly increased. This is because the model does not treat
continuous variables (ie, age, hospital volume) as independent risk
factors but rather generates a risk of complication based on the
values of all the explanatory features. Finally, there was a difference
in feature importance of categorical variables of insurance status,
race, and ethnicity when comparing LR and AP. While there is some
overlap of feature importance from AP vs LR, the 2 models differ in
their relative importance of features (Fig. 3). This highlights the
value of AP as it is able to elucidate complex nonlinear relationships
(depending on the combination and relative weighting of pipelines
used).

In addition to the overall cohort, we performed a post-hoc
subgroup analysis on the diabetes and obesity cohorts to assess
AP performance on smaller populations with higher complication
rates. These cohorts were chosen because of their increasing
prevalence in the population and their well-known association

https://risk-calculator-tka-comp.herokuapp.com
https://risk-calculator-tka-comp.herokuapp.com


Figure 3. Feature importance. The 15 most important binary features to AutoPrognosis are shown with their respective LR feature importance (a). Autoprognosis and logistic
regression have differing feature importance for binary (a) variables as well as continuous (b) and categorical (c) variables. This suggests important nonlinear relationships that are
captured by AutoPrognosis that Logistic Regression cannot. COPD, chronic obstructive pulmonary disease; DM, diabetes mellitus; CAD, coronary artery disease.
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with higher risk of postoperative adverse outcomes [36,43]. Inter-
estingly, obesity and diabetes were the 10th and 11th most
important features (respectively) in terms of predictive perfor-
mance on the AP algorithm as compared to fourth and sixth most
important features for the LR algorithm (Fig. 3a). The fact that these
features were relatively less important for AP again demonstrates
that advanced ensemble models may better identify important
feature interactions. While AUROC was lower for the diabetes and
obesity subgroups, the gain (difference in AUROC) between AP and
the next best performing ML method, Gradient Boosting, was
higher in the 2 subgroups than that in the overall cohort. Thus, AP
has an improvement in performance and could be more useful in
populations with a higher incidence of the outcome of interest.

The retrospective nature of this study inherently lends itself to
limitations. Although OSHPD has a large patient sample, patient
data (such as body mass index, hemoglobin A1C, smoking status,
orthopedic complications), surgeon factors (experience,
fellowship-trained, and so forth), and outcomes collected are
limited. The use of ICD diagnosis and procedure codes is less reli-
able than thorough chart review. Code-based searches of databases
are dependent on accurate coding and can lead to exclusion of a
patient of interest or underestimation of outcomes. With this
database, we were unable to assess orthopedic complications,
mortality, patient-reported functional outcomes, and patient
satisfaction. Owing to the low complication rate found in this
cohort, our data may be imbalanced. However, we believe that
predictive models trained with an artificially balanced data set
cannot be directly used in a clinical setting as they will be inher-
ently poorly calibrated. To better address the concern of imbal-
anced data, we evaluated the 5 prognostic models in terms of area
under precision-recall curve (which can be a more sensitive per-
formance metric in the imbalanced setting), which again showed
relatively superior performance of AP (Appendix II). Along the same
lines, owing to the low overall complication rate, secondary anal-
ysis of individual complications and outcomes was beyond the
scope of our model (although we certainly recognize the clinical
importance of such results). It is important to note that surgical
outcome prediction models built on retrospective data only include
those patients that have presumably undergone preoperative risk
stratification by their surgeon and primary care physician intro-
ducing a selection bias from the general population requesting a
consultation for surgical evaluation. While the primary aim of this
study was to show superior performance of AP relative to other ML
models, the overall performance of AP against the existing ML
models in the literature is poor and has low clinical utility. This
could be due to the low granularity of patient features inherent to
billing databases as well as the low rate of complications. We
believe that AP would perform better in a data set with more
outcomes of interest as the data would be more balanced which
would prevent overfitting and increase heterogeneity (helping the
ML model to find differences between patients). An imbalanced
data set can lead to overfitting and, in this case, overcalling
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noncomplication as the model is used for 99.4% noncomplications.
It should be noted that any predictive algorithm is only as reliable
as the data it is built on. Furthermore, systemic biases in clinical
decisions and data collection are amplified by ML, potentially
adversely affecting historically underrepresented groups such as
patients of lower socioeconomic status, ethnic minorities, and
women [27]. Future studies should thus validate or refute the
models in this analysis by using more granular multi-institutional
data or prospective evaluation. The authors wish to reiterate that
this is a proof of principle study aimed at evaluating the efficacy of
AP compared with traditional ML methods. Finally, we must
acknowledge the black box nature of ML algorithms that can lead to
nonphysiologic patient features that effect a very small portion of
the cohort (ie, malnutrition and decubitus ulcer) having high sig-
nificance, which highlights that ML provides predictive modeling at
the expense of statistical inference of clinical outcomes.

Conclusions

Here we report the use of a novel ensemble ML algorithm for
prediction of major complications after primary TKA. AP is unique
in its utility of an automated ML framework to incorporate the best
performing stages of existing ML algorithms into a single well-
calibrated algorithm. Using AP, we developed an algorithm that
was well calibrated while showing superior discrimination
compared with other individual ML methods. While the AP model
in this study was modest in its predictive performance andmay not
dramatically change clinical practice, continuing to apply this
modeling technique to diverse data sets for multiple outcomes can
have promising clinical implications. Ultimately, development of
accurate predictive modeling is helpful for preoperative counseling,
informed consent, shared decision-making, risk adjustment reim-
bursement programs, and guiding surgeon and patient post-
operative expectations. AP is a versatile tool that can be used to
identify important patient features in predicting outcomes across
diverse data sets to ultimately improve patient outcomes.
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Supplementary Table 2
Confusion matrix for AutoPrognosis.

Auto prognosis True condition
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Appendix I
Supplementary Table 1
AUPRC performance (mean and 95% CI).

Models Aurpc

Logistic Regression 0.015 (0.011-0.018)
XGBoost 0.013 (0.010-0.015)
Gradient Boosting 0.020 (0.013-0.027)
AdaBoost 0.022 (0.016-0.028)
Random Forest 0.008 (0.007-0.009)
AutoPrognosis 0.025 (0.018-0.032)

Prediction condition True positive
177

False positive
22,591

False negative
21

True negative
8561

Supplementary Table 3
Confusion matrix for logistic regression.

Logistic regression True condition

Prediction condition True positive
165

False positive
23,357

False negative
33

True negative
7795
We used the partial dependence function introduced in the
study by Friedman et al. in 2001 to measure the importance of an
individual feature by assessing the average effect in predicted risks
when its value is perturbed. More specifically, xc is a chosen target
feature in the set of input features X andX \c be its complement, ie,
X ¼ X \c∪xc, and rðX Þ ¼ rðX \c; xcÞ be the predicted risk by our
trained model. Then, we define the feature importance score for an
individual feature xc by averaging rðX \c; xc ¼ 1Þ � rðX \c; xc ¼ 0Þ for
binary features and rðX \c; xc ¼ maxðxcÞÞ� rðX \c; xc ¼ minðxcÞÞ,
where maxðxcÞ and minðxcÞ are the maximum and minimum of
feature xc for continous variables. For categorical variables, we
define feature importance of category b2f1;/;Bg as rðX \c;xc ¼ bÞ
� rðX \c; xc ¼ modeðxcÞÞ, where modeðxcÞ indicates the most fre-
quency category of feature xc.

Appendix II

Given the low complication rate of our cohort, our data may be
imbalanced which can be a limitation. However, we believe that
models trained with an artificially balanced data set (via over-
sampling samples with complications or via downsampling sam-
ples with no complications) cannot be directly used in the clinical
setting. Although balancing the data set may improve the
discriminative power of trained models, it distorts the true data
distribution. Thus, the models trained on the balanced data set will
provide poor calibration on the held-out testing set, which is
assumed to have the same distribution as that of the unseen pa-
tients once the models are deployed.
We acknowledge that area under receiver operating curve per-
formance may not be the best performance metric for comparing
different prognostic models in an imbalanced setting. To address
this concern, we evaluated the prognostic models considered in
this study in terms of the area under precision-recall curve;
Supplementary Table 1. This can be a more sensitive performance
metric when comparing different models within an imbalanced
data set.

Although the AUPRC performance of AutoPrognosis and that of
other prognostic models considered in this study are all poor,
AutoPrognosis provides relatively superior performance when
compared to the baseline (ie, random guessing based on the
observed frequency of having complications) which is 0.006. This
implies that if we set the threshold value for converting continuous
predictions into binary predictions relatively low (down to the
observed frequency), we can sacrifice the precision of the model
(due to the increased false positives) and instead improve the
sensitivity. For example, when the threshold value is set to 0.006,
AutoPrognosis achieved the sensitivity score of 0.894 while the
logistic regression model achieved the sensitivity score of 833;
please see the confusion matrices (Supplementary Tables 2 and 3)
for more details.
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