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Fibroblasts are important to host defence and immunity, can also as initiators of inflammation as well. As the endogenous
“braking signal”, Lipoxins can regulate anti-inflammation and the resolution of inflammation. We investigated the effect of
lipoxinA4 on the expression of cyclooxygenase-2 in lipopolysaccharide-stimulated lung fibroblasts. We demonstrated that the
expression of cyclooxygenase-2 protein was significantly increased and peaked initially at 6 hours, with a second increase,
with maximal levels occurring 24 hours after lipopolysaccharide challenge. ProstaglandinE2 levels also peaked at 6 hours, and
prostaglandinD2 levels were increased at both 6 and 24 hours. Exogenous lipoxinA4 inhibited the first peak of cyclooxygenase-2
expression as well as the production of prostaglandinE2 induced by lipopolysaccharide in a dose-dependent manner. In contrast,
exogenous lipoxinA4 increased the second peak of cyclooxygenase-2 expression as well as the production of prostaglandinD2

induced by lipopolysaccharide in a dose-dependent manner. LipoxinA4 receptor mRNA expression was markedly stimulated by
lipopolysaccharide but inhibited by lipoxinA4. We present evidence for a novel biphasic role of lipoxinA4 on the expression of
cyclooxygenase-2 in lipopolysaccharide-stimulated lung fibroblasts, whereby LXA4 has an anti-inflammatory and proresolving
activity in lung fibroblasts following LPS stimulation.

1. Introduction

The acute inflammatory reaction in the lung is a complex
response but is usually self-limiting and resolves. Tradi-
tionally, immune effector cells such as lymphocytes and
macrophages have been considered to have a fundamental
role in the development of inflammation. Traditionally,
fibroblasts have only been considered as a structural ele-
ment. Recent studies, however, demonstrate that pulmonary
fibroblasts, far from being merely bystander cells, are impor-
tant to host defence but may also promote lung injury.

Recent evidence has shown that fibroblasts can produce
proinflammatory cytokines and prostaglandins (PGs) and
can act as initiators of inflammation as well as regula-
tors of immunity [1–3]. When activated, fibroblasts are
capable of producing inflammatory mediators, including
interleukin-8 (IL-8), monocyte chemoattractant protein-1,
express cyclooxygenase-2 (COX-2), with the resultant release
of proinflammatory PGs such as protaglandinE2 (PGE2) [3].
Moreover, fibroblasts can be directly activated by exposure
to lipopolysaccharide (LPS) [4]. Gram-negative bacteria
can be responsible for the failure of early treatment and
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significantly increased morbidity and mortality in patients
with pneumonia [5, 6]. LPS, as a major constituent of Gram-
negative bacterial cell walls, is recognized by the innate
immune system of cells, such as resident tissue fibroblasts [7].
Specifically, Toll receptor expression on these fibroblasts may
be able to direct the tissues’ response to injury to promote
inflammation resolution.

Cyclooxygenase is a key enzyme that catalyzes the con-
version of arachidonicacid to prostaglandin [8]. There are
two cyclooxygenase isoforms, COX-1 and COX-2. COX-
1 is produced constitutively in most cell types, whereas
COX-2 is inducible [8]. Prostaglandins are lipid mediators
synthesized from arachidonic acid by the actions of COX
enzymes [9]. They can be secreted by resident fibroblasts,
as well as inflammatory cells, in response to TNF-α, IL-
1β, or LPS [10, 11]. Prostaglandins also contribute to the
signs and symptoms of inflammation [12]. ProstaglandinE2,
the main PG produced during inflammatory response, is
a proinflammatory lipid mediator of inflammation and
participates in initiation of inflammation [13]. Previous
studies suggest PGD2, as a proresolution mediator, also
actively contributes to the resolution of tissue injury and in-
flammation [14].

Lipoxins (LXs) are trihydroxytetraene-containing eico-
sanoids mainly formed through transcellular biosynthesis
involving either 5- and 15-lipoxygenases (LOXs) or 5- and
12-lipoxygenases (LOXs) as well as COX-2 in respiratory
tissues [15, 16]. Lipoxins were the first proresolving medi-
ators to be recognized; they not only have anti-inflammatory
properties, but also promote the resolution of inflammation
[17]. Lipoxins have been described as the endogenous “brak-
ing signal” for inflammation [18–20]. Lipoxins have been
extensively studied in asthma [21, 22], cystic fibrosis [23–
25], and in various infections. These studies have highlighted
LXs as potential novel therapeutic agent for the treatment of
inflammatory disease.

A recent study reported that injured bronchial epithelial
cells upregulated lipoxinA4 (LXA4) receptor (LXA4R) in
a COX-2-dependent manner to promote LXA4-mediated
resolution of airway inflammation [26]. In response to
acid injury, epithelial cells rapidly increased COX-2 and
PGE2 expression [26]. The COX-2 enzyme has also been
implicated as an important mediator of pulmonary fibrosis,
with COX-2−/− mice having increased fibrotic lung responses
[27]. More recently, Medeiros et al. reported that LXA4

also repressed the expression and activity of COX-2 on
endotoxin-induced uveitis (EIU) in rats [28]. Moreover,
LXA4 has also been shown to inhibit connective tissue growth
factor- (CTGF) stimulated proliferation of human lung
fibroblasts [25], and fibroblasts directly simulated by LPS
are capable of producing COX-2 and PGE2[3, 4]. However,
the time course of COX-2 expression in lung fibroblasts
stimulated by LPS and the effect of LXA4 on expression of
COX-2 PGE2 and PGD2 remain unclear.

In this study, we examined the expression of COX-2 and
the production of PGE2 and PGD2 in lung fibroblasts after
LPS challenge. Additionally, we also investigated the effect
of LXA4 on the expression of COX-2 and the production of
PGE2 and PGD2. Finally, we investigated the effect of LXA4

or LPS on LXA4R mRNA expression in lung fibroblasts;
we present evidence for a novel biphasic role of LXA4 on
expression of COX-2 in LPS-stimulated lung fibroblasts.

2. Materials and Methods

2.1. Materials. LipoxinA4, from Cayman Chemical Com-
pany, was stored at −80◦C until being diluted in serum-free
culture medium immediately before use. Lipopolysaccharide
(LPS; E. coil serotype 055 :B5) was purchased from Sigma.
DMEM, FCS, Trypsin EDTA, and enzyme-free cell disso-
ciation buffer were purchased from Gibco. Penicillin and
streptomycin in saline citrate buffer were from Invitrogen.
Hoechst 33258 was obtained from Novus. Anti-CD31, anti-
Vimentin and anti-COX-2 were purchased from Abcam.
Anti-Cytokeratin-8 and anti-F4/80 were purchased from
Santa Cruz.

2.2. Cell Culture. Rat pulmonary fibroblasts were isolated
from Sprague-Dawley rats as previously described [29]. Lung
tissue was cut into <1-mm3 pieces and dissociated in Hanks
buffered saline solution (HBSS) containing 0.25% trypsin at
37◦C for 1.5 min. Trypsin was inhibited by DMEM with 15%
fetal calf serum (FCS) and dissociated tissue centrifuged at
1000 g for 5 minutes at 4◦C. The dissociated tissue pieces
were placed into a culture plate with DMEM containing 15%
FCS and left to allow fibroblast outgrowth. After fibroblasts
had grown out from the tissues, usually 2–3 days, the
remaining tissue was removed by aspiration, and the cells
were allowed to reach confluence. Confluent fibroblasts were
then passaged with a split ratio of 1 : 2 by trypsin treatment
and used for the experiments at passages 3–5. The purity of
fibroblast cultures were consistently over 99% as established
morphologically by their typical spindle shape and charac-
teristics and by expression of the fibroblast marker vimentin
and negative expression of endothelial (CD31), macrophage
(F4/80), and epithelial (cytokeratin-8) cell markers.

For all experiments, cells were subcultured into six-well
plates and maintained until subconfluence (80%), confluent
cells (100%) were serum deprived for 24 hours with low-
serum medium (DMEM supplemented with 0.1% FCS)
prior to the addition of LPS and/or LXA4. The cells were then
incubated with LPS (1 μg/mL) for 6, 12, 24, 48, and 72 hours.
For LXA4 experiments, the cells were incubated in the low-
serum medium containing 1 μg/ml LPS in the presence or
absence of 100, 200, or 400 nmol/mL of LXA4 for 6 or 24
hours.

2.3. Haematoxylin and Eosin (H&E) Staining. Fibrob-
lasts grow in culture on coverslips were fixed with 4%
paraformaldehyde in PBS for 10 min, stained with Haema-
toxylin (BDH, Lutterworth, UK) for 10 minutes, incubated
in Scott’s tap water (tap water with a few drops of 1 M
sodium hydroxide) for 5 min and stained with alcoholic
Eosin solution for 5 min. They were washed by immersion
in tap water for 2 minutes after every step. Cells were
then differentiated by immersion in 0.1% hydrochloric acid-
ethanol each for 30 s and mounted by inversion onto glass
slides dotted with Gel/Mount. Images were taken by an
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inverted microscope (IX70, Olympus America, Inc., Melville,
NY, USA) with a 1.40NA 60 × objective sets. Image size was
2560× 1920.

2.4. Indirect-Immunofluorescence. Fibroblasts were grown
to approximately 70% confluence on poly-D-lysine-
coated glass coverslips in 24-well plates, fixed with 4%
paraformaldehyde in PBS for 10 minutes, rinsed three times
with PBS, and permeabilized by 0.2% Triton X-100/PBS for
2 minutes followed by 0.5% Triton X-100 (Pierce) in PBS for
10 minutes. Nonspecific binding of antibodies was prevented
by the addition of 5% bovine serum albumin in PBS for 30
minutes at 37◦C. The samples were then incubated overnight
at 4◦C with antivimentin (1 : 100), anti-CD31 (1 : 100),
anti-F4/80 (1 : 100) or anti-Cytokeratin-8 (1 : 200) in 2%
BSA/PBS. Following three PBS washes, cells were incubated
for 2 hours with fluorescein-conjugated immunopure
goat anti-mouse IgG (H+L) or goat antirabbit IgG (H+L)
(1 : 200) respectively, in 5% BSA/PBS at room temperature.
After washing three times with PBS, cell nuclei were counter
stained with Hoechst (1 : 1000) for 15 minutes, followed by
three PBS washes. Cells were then mounted by inversion
onto glass slides dotted with Gel/Mount. Images were taken
by an inverted microscope (IX70, Olympus America, Inc.,
Melville, NY) with a 1.40NA 60 × objective and FITC,
rhodamine and Cy5 filter sets. Image size was 2560× 1920.

2.5. PGE2 and PGD2 Protein Expression. Fibroblast super-
natants were collected following treatments, centrifuged
(1500 g, 5 minutes), aliquoted, and stored at −80◦C. PGE2

and PGD2 protein expressionwas measured by ELISA accord-
ing to the manufacturer’s instructions (R&D systems). Assays
were run in triplicate and repeated twice.

2.6. COX-2 Protein Expression. Fibroblasts were lysed and
homogenized in 200 μL of cold lysis buffer (150 mM NaCl,
1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS,
50 mmol/L Tris-HCl (pH 7.2), 0.2 mM sodium vanadate,
1% phenylmethylsulfonyl fluoride, and 0.2% aprotinin).
Samples were incubated on ice for 20 minutes and then
centrifuged at 12,000 rpm for 10 minutes. Protein concen-
trations of the supernatants were determined by using a
BCA protein assay (Pierce). Proteins were separated in 10%
SDS polyacrylamide gels and transferred onto nitrocellulose
membranes. Expression of COX-2 was determined using
primary rabbit anti-COX-2 antibody (1 : 750) and secondary
horseradish peroxidase-conjugated goat antirabbit IgG. Pro-
tein expression of β-actin served as a loading control. The
bound antibody was detected by enhanced chemilumines-
cence on an X-ray film.

2.7. RNA Isolation, Reverse Transcription and PCR. Total
RNA was extracted using TriZol reagent (Life Technologies)
followed by phenol-chloroform extraction and ethanol
precipitation (Fisher Scientific). RNA purity was checked
by spectrophotometry, and RNA integrity was confirmed by
visualization of 28 S and 18 S bands on an agarose gel. 1 μg
of RNA was reverse transcribed using avian myeloblastosis

virus reverse transcriptase (Promega). PCR analysis was
performed with the following sets of primers: for rat LXA4

receptor 5′-TGTTGGGCCCTGGATTTTAGC-3′ (sense)
and 5′-TGTTACCCCAGGATGCGAAGTT-3′ (antisense),
amplifying a 116-bp fragment [30] and for β-actin, used
as an internal control 5′-AACAGTCCGCCTAGAAGCAC-
3′ (sense) and 5′-CGTTGACATCCGTAAAGACC-3′

(antisense), generating a 281-bp fragment. PCR for the
rat LXA4 receptor consisted of 35 repetitive cycles of
predenaturing at 95◦C for 4 minutes, denaturing at 94◦C
for 30 seconds, annealing at 59◦C for 40 seconds, extension
at 72◦C for 40 seconds, and a final extension at 72◦C for 5
minutes. For r-actin an annealing temperature of 56◦C was
used. Amplified cDNA was separated on a 1.6% agarose gel
and visualized using ethidium bromide. Semiquantitative
analysis was performed using UVP-gel densitometry
(SanGabriel, Calif. USA).

3. Results

3.1. Purification and Identification of Primary Lung Fibrob-
lasts. Untreated fibroblast were stained with hematoxylin
and eosin for conventional morphological evaluation
under light microscope (Nikon eclipse 90i, Tokyo, Japan)
(Figure 1(a)) or stained by indirectimmunofluorescence
for Vimentin, CD31, Cytokeratin-8 and F4/80 expressions
(Figure 1(b)). Vimentin was used as marker of fibroblast
cells, CD31 as marker of endothelial cells [31], F4/80 as a
surface marker of macrophages [32, 33], and Cytokeratin-
8, as a marker of epithelial cells [34]. We observed only cells
with fibroblast morphology which stained only for Vimentin,
therefore, only purified fibroblasts were cultured.

3.2. The Effect of LPS on COX-2, PGE2 and PGD2 Expression
in Lung Fibroblasts. To determine the dynamic expression
of COX-2 in rat lung fibroblasts, our isolated fibroblasts
were incubated with LPS (1 μg/mL) for 6, 12, 24, 48, and
72 hours. The expression of COX-2 protein was significantly
increased and peaked initially 6 hours after LPS stimulation,
with maximal levels occurring at 24 hours (Figure 2(a)).
In contrast, PGE2 levels were increased only at 6 hours
(Figure 2(b)), with the precursor of prostaglandin J series,
PGD2 [35], levels increased at both 6 and 24 hours,
(Figure 2(c)).

3.3. The Effect of LXA4 on LPS-Induced Expression of COX-
2 Protein Expression and PGE2, and PGD2 Production at 6
Hours in Primary Lung Fibroblasts. To determine whether
exogenous LXA4 modulates COX-2 expression after LPS
stimulation, we reassessed COX-2 protein at 6 hours with
various concentrations of LXA4 treatment in our isolated
lung fibroblasts. Using LXA4 at 100, 200, or 400 nmol/ml
we observed inhibition of COX-2 protein expression in
a dose-dependent manner (Figure 3(a)). Moreover, after
cells were incubated with LXA4 for 6 hours, PGE2 and
PGD2 protein levels in the supernatant were measured by
ELISA (Figure 3(b) and 3(c), resp.). PGE2 secretion was
inhibited by LXA4 in a dose-dependent manner, decreasing
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Figure 1: Purification and identification of primary lung fibrob-
lasts. (a) Untreated fibroblasts isolated from rat lungs were stained
with hematoxylin and eosin for conventional morphological eval-
uation under light microscope (Nikon eclipse 90i, Tokyo, Japan).
Primary cultures (A1), still contained some non-fibroblasts cells. At
passage 3 (A2), fibroblast purity was consistently over 99% as estab-
lished morphologically by their typical spindle shape and charac-
teristics. (b) Cultures were stained by indirect-immunofluorescence
assay for Vimentin, CD31, cytokeratin-8, or F4/80. Cultures
contained only Vimentin positive cells indicative of fibroblasts.

from 411.734 ± 1.364 pg/mL in 0 nM LXA4 treated cells to
307.075 ± 2.151 pg/mL in 100 nM LXA4-treated fibroblasts
and then further still to 108.089 ± 4.851 pg/mL in 400 nM
LXA4-treated fibroblasts (P < 0.05). In contrast although
PGD2 levels, increased with LXA4 treatement, this was not
observed to be dose dependent.

3.4. The Effect of LXA4 on LPS-Induced Expression of COX-
2 Protein Expression and PGE2 and PGD2 Production at 24
Hours in Primary Lung Fibroblasts. To determine whether
treatment with exogenous LXA4 affected the secondary
increase of COX-2 expression after LPS stimulation, we
also reassessed COX-2 protein at 24 hours after various
concentrations of lipoxinA4 treatment. Using LXA4 at 100,
200, or 400 nmol/mL, we observed an increase in COX-2 pro-
tein expression in a dose-dependent manner (Figure 4(a)).
We also measures secretion of PGE2 and PGD2 following
LPS and LXA4 treatments (Figures 4(b) and 4(c), resp.).

Interestingly, in contrast to our result at 6 hr LPS treatment
although levels of PGE2 increased with LXA4, it was not
dose-dependent. Furthermore, PGD2 secretion following
this treatment regime was enhanced by LXA4 in a dose-
dependent manner, increasing from 367.170±4.773 pg/mL in
0 nM LXA4-treated cells to 417.916± 3.251 pg/mL following
100 nM LXA4-treated fibroblasts and 584.307±15.478 pg/mL
in 400 nM LXA4-treated fibroblasts (P < 0.05).

3.5. LipoxinA4 Receptor is Expressed in Rat Lung Fibrob-
lasts and Upregulated by LPS. LipoxinA4 interactions with
its receptor, LXA4R, play a significant role in regulating
leukocyte functions [36]. Therefore, we tested whether
LXA4R mRNA expression altered following LPS and LXA4

treatment in rat lung fibroblasts by using semiquantitative
RT-PCR. A single band corresponding to LXA4R mRNA
expression was amplified (Figure 5, lane 1), which when
analysed by densitometry was markedly stimulated by LPS
treatment (Figure 5, lane 2). Interestingly, we observed that
cotreatment with LPS and LXA4 reduced expression of
LXA4R back to that seen in untreated controls (Figure 5, lane
3).

4. Discussion

Acute lung injury (ALI)/ARDS is an inflammatory lung
disease with high mortality [36–39]. Treatment of inflam-
matory diseases today is largely based on interrupting the
synthesis or action of mediators that also decrease the
host’s ability to successfully deal with infection, given that
the innate inflammatory response is a beneficial defensive
event [40]. Recently, resolution of acute inflammation was
shown to be an active, rather than a passive process,
and endogenous chemical mediators play key roles in its
programmed resolution and returning to homeostasis [41].
Among them, lipoxins and aspirin-triggered lipoxins evoke
bioactions in a range of physiologic and pathophysiologic
processes and serve as endogenous lipid/chemical mediators
that stop neutrophilic infiltration and initiate resolution
[17]. Development of strategies that promote the resolution
of inflammation is a novel therapeutic measure to attenuate
inflammatory lung injury.

In a previous study, we clearly demonstrated that post-
treatment with lipoxinA4 (LXA4) significantly reduces LPS-
induced ALI in mice [42]. Lipoxin also promotes gradual res-
olution of fibrosis in lung [43]. In addition, LXA4 repressed
the expression and the activity of COX-2 on endotoxin-
induced uveitis in rats [28]. In carrageenin-induced pleurisy
in rats, COX-2 protein expression peaked initially at 2
hours, and at 48 hours, there was a second increase in
COX-2 expression in inflammatory cells separated from the
inflammatory exudates [44]. Taking these data together, our
purpose was to find out whether COX-2 expression in lung
fibroblasts stimulated by LPS also has two peaks and, if so,
how LXA4 affect the expression of COX-2 and the production
of prostaglandins, specifically PGE2 and PGD2.

Our data clearly demonstrated that the expression of
COX-2 protein was significantly increased and peaked
initially 6 hours after LPS stimulation in lung fibroblasts.
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Figure 2: The effect of LPS on COX-2, PGE2, and PGD2 expression in lung fibroblasts. (a) Rat lung fibroblasts were incubated with LPS
(1 μg/mL) for 6, 12, 24, 48, and 72 hours. The expression of COX-2 protein was assessed by western blot and analysed by densitometry
compared to β-actin expression. COX-2 expression peaked initially at 6 hours, and then with maximal levels at 24 hours after-LPS treatment
(∗P < 0.05 versus non-LPS group #P < 0.05 versus 12, 48, 72 hours groups). (b) Supernatants were collected after LPS (1 μg/mL) treatment
for 6, 12, 24, 48 and 72 hours. PGE2 protein was measured by ELISA. Data are expressed as mean ± SE for each group. (∗P < 0.05 versus
non-LPS group; & P < 0.01 versus 12, 24, 48, and 72 hours groups; #P < 0.05 versus 6, 24, 48, and 72 hours groups). (c): Supernatants were
collected after LPS (1 μg/mL) treatment for 6, 12, 24, 48 and 72 hours. PGD2 protein was measured by ELISA. Data are expressed as mean ±
SE for each group. (∗P < 0.05 versus non-LPS group; #P < 0.05 versus 12, 48, 72 hours groups).

This was also associated with maximal PGE2 synthesis,
However, following 24 hours of LPS stimulation, there was
a second increase in COX-2 expression, this time associ-
ated with maximal PGD2 synthesis. Thus, as inflammation
progresses into resolution, PGE2 synthesis declines, giving
way to a prominence of COX-2-derived PGD2, both of
which play important roles in mediating resolution. This
data indicates that COX-2 may be proinflammatory (via
PGE2 expression) during the development of inflamma-
tion, but anti-inflammatory (via PGD2 expression) during
resolution in lung fibroblasts. Recent studies have also
highlighted a role for COX-2-derived PGs serving anti-
inflammatory and anti-fibrotic roles in the resolution of
inflammation [13, 45, 46]. In a model of spontaneously

resolving ALI, selective COX-2 inhibition results in pro-
longed inflammation, in part, by decreasing production of
pro-resolving mediators, including LXA4 and 15-epimer-
LXA4[44, 45]. So, a late, anti-inflammatory effect of COX-
2, instead of the more widely appreciated early, proinflam-
matory action, was crucial to the timely recovery from ALI
[45].

Our results also demonstrated that the expression of
COX-2 as well as PGE2 production by fibroblast cells was
significantly inhibited by LXA4 in a dose-dependent manner
6-hour LPS treatment, suggesting that LXA4has a potential
anti-inflammatory role in lung fibroblasts during the onset of
inflammation. Consistent with our findings, similar results
have shown that LXA4also repressed the expression and
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Figure 3: The effect of LXA4 on LPS-induced expression of COX-2 protein expression and PGE2 and PGD2 production at 6 hours in primary
lung fibroblasts. (a) Rat lung fibroblast cells were treated with LXA4 at 0, 100, 200 or 400 nM in the presence of LPS (1 μg/mL) for 6 hours.
Cells were then harvested, sonicated and COX-2 protein detected by western blot. ∗P < 0.05 versus control group, #P < 0.05 versus (100,
200 or 400 nM) LXA4 groups; & P < 0 .05 versus (200 or 400 nM) LXA4 groups. (b) Supernatants from rat lung fibroblast cells treated
with LXA4 at 0, 100, 200, or 400 nM in the presence of LPS (1 μg/mL) for 6 hours were collected and PGE2 protein measured by ELISA.
Data are expressed as mean ± SE for each group. ∗P < 0.05 versus control group, #P < 0.05 versus (100, 200, or 400 nM) LXA4 groups; &
P < 0.05 versus (200 or 400 nM) LXA4 groups. (c) Supernatants from rat lung fibroblast cells treated with LXA4 at 0, 100, 200 or 400 nM in
the presence of LPS (1 μg/mL) for 6 hours were collected and PGD2 protein measured by ELISA. Data are expressed as mean ± SE for each
group. ∗P < 0.05 versus control group.

the activity of COX-2 on endotoxin-induced uveitis in rats
[28]. Interestingly, the expression of COX-2 by fibroblast
cells of its second increase (24 hours) was significantly
promoted by LXA4 in a dose-dependent manner. In addition,
and consistent with the results above, LXA4 inhibited the
production of PGE2 while promoted the production of PGD2

in the supernatants. Therefore, our study demonstrates a
novel biphasic role of LXA4 on the expression of COX-2 and
the production of PGE2 and PGD2, suggesting that LXA4 has
a potential anti-inflammatory and proresolving roles in LPS-
stimulated lung fibroblasts.

As the endogenous “braking signals” in inflammation
[18–20], lipoxins are produced locally in the lung to regulate
inflammatory cells. Furthermore, the specific receptor with
high affinity for LXA4 (LXA4R) has been cloned from
myeloid lineages [15, 16]. Expression of LXA4R is required
to evoke actions of lipoxins in each tissue therefore, the
receptor expression can also control biological function of
lipoxins in vivo. LXA4R belongs to the G-protein coupled
receptor superfamily of proteins and is widely distributed
in cells and tissues [15]. Our results indicate clearly for
the first time that LXA4R mRNA was expressed in rat
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Figure 4: The effect of LXA4 on LPS-induced expression of COX-2 protein expression and PGE2 and PGD2 production at 24 hours in
primary lung fibroblasts. (a) Rat lung fibroblast cells were treated with LXA4 at 0, 100, 200, or 400 nM in the presence of LPS (1 μg/mL)
for 24 hours. Cells were then harvested, sonicated, and COX-2 protein detected by Western blot. ∗P < 0.05 versus control group,
#P < 0.05 versus non-LXA4 groups; & P < 0.05 versus (100 or 200 nM) LXA4 groups. (b) Supernatants from rat lung fibroblast cells
treated with LXA4 at 0, 100, 200, or 400 nM in the presence of LPS (1 μg/mL) for 24 hours were collected and PGE2 protein measured by
ELISA. Data are expressed as mean ± SE for each group. ∗P < 0.05 versus control group. (c) Supernatants from rat lung fibroblast cells
treated with LXA4 at 0, 100, 200 or 400 nM in the presence of LPS (1 μg/mL) for 24 hours were collected and PGD2 protein measured
by ELISA. Data are expressed as mean ± SE for each group.∗P < 0.05 versus control group, #P < 0.05 versus (0, 100 or 200 nM) LXA4

groups.

lung fibroblasts and is upregulated by LPS stimulation.
Moreover, possibly due to a negative feedback mechanism,
LXA4R mRNA was inhibited by cotreatment of LPS and
LXA4.

In summary, this study demonstrated that COX-2 pro-
tein expression peaks initially at 6 hours but then also at
24 hours after LPS stimulation in isolated lung fibroblasts.
Moreover, LXA4 has a novel biphasic role on expression of
COX-2 and production of PGE2 and PGD2, whereby LXA4

has an anti-inflammatory and proresolving activity in lung
fibroblasts following LPS stimulation. Therefore, our study

may provide a novel target for future therapies for controlling
LPS-induced ALI.
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[5] B. Rosón, J. Carratalà, N. Fernández-Sabé, F. Tubau, F.
Manresa, and F. Gudiol, “Causes and factors associated with
early failure in hospitalized patients with community-acquired
pneumonia,” Archives of Internal Medicine, vol. 164, no. 5, pp.
502–508, 2004.

[6] C. W. Chow, M. T. H. Abreu, T. Suzuki, and G. P. Downey,
“Oxidative stress and acute lung injury,” American Journal of
Respiratory Cell and Molecular Biology, vol. 29, no. 4, pp. 427–
431, 2003.

[7] J. Beck, R. Garcia, G. Heiss, P. S. Vokonas, and S. Offenbacher,
“Periodontal disease and cardiovascular disease,” Journal of
Periodontology, vol. 67, no. 10, pp. 1123–1137, 1996.

[8] W. L. Smith, R. Michael Garavito, and D. L. DeWitt,
“Prostaglandin endoperoxide H syntheses (cyclooxygenases)-
1 and -2,” The Journal of Biological Chemistry, vol. 271, no. 52,
pp. 33157–33160, 1996.

[9] C. D. Funk, “Prostaglandins and leukotrienes: advances in
eicosanoid biology,” Science, vol. 294, no. 5548, pp. 1871–1875,
2001.

[10] C. Y. Wu, P. L. Chi, H. L. Hsieh, S. F. Luo, and C. M. Yang,
“TLR4-dependent induction of vascular adhesion molecule-1
in rheumatoid arthritis synovial fibroblasts: roles of cytosolic
phospholipase a 2α/ cyclooxygenase-2,” Journal of Cellular
Physiology, vol. 223, no. 2, pp. 480–491, 2010.

[11] I. Morita, “Distinct functions of COX-1 and COX-2,”
Prostaglandins and Other Lipid Mediators, vol. 68-69, pp. 165–
175, 2002.

[12] H. Mizuno, C. Sakamoto, K. Matsuda et al., “Induction of
cyclooxygenase 2 in gastric mucosal lesions and its inhibition
by the specific antagonist delays healing in mice,” Gastroen-
terology, vol. 112, no. 2, pp. 387–397, 1997.

[13] D. W. Gilroy, P. R. Colville-Nash, D. Willis, J. Chivers, M. J.
Paul-Clark, and D. A. Willoughby, “Inducible cyclooxygenase
may have anti-inflammatory properties,” Nature Medicine, vol.
5, no. 6, pp. 698–701, 1999.

[14] L. Vong, J. G. P. Ferraz, R. Panaccione, P. L. Beck, and J.
L. Wallace, “A pro-resolution mediator, prostaglandin D2, is
specifically up-regulated in individuals in long-term remission
from ulcerative colitis,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 107, no. 26, pp.
12023–12027, 2010.
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