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Background: B lymphocytes play a pivotal regulatory role in the development

of the immune response. It was previously shown that deficiency in B

regulatory cells (Bregs) or a decrease in their anti-inflammatory activity can

lead to immunological dysfunctions. However, the exact mechanisms of Bregs

development and functioning are only partially resolved. For instance, only a

little is known about the structure of their B cell receptor (BCR) repertoires in

autoimmune disorders, including multiple sclerosis (MS), a severe

neuroinflammatory disease with a yet unknown etiology. Here, we elucidate

specific properties of B regulatory cells in MS.

Methods: We performed a prospective study of the transitional Breg (tBreg)

subpopulations with the CD19+CD24highCD38high phenotype from MS patients

and healthy donors by (i) measuring their content during two diverging courses

of relapsing-remitting MS: benign multiple sclerosis (BMS) and highly active

multiple sclerosis (HAMS); (ii) analyzing BCR repertoires of circulating B cells by

high-throughput sequencing; and (iii) measuring the percentage of CD27+ cells

in tBregs.

Results: The tBregs from HAMS patients carry the heavy chain with a lower

amount of hypermutations than tBregs from healthy donors. The percentage of
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transitional CD24highCD38high B cells is elevated, whereas the frequency of

differentiated CD27+ cells in this transitional B cell subset was decreased in the

MS patients as compared with healthy donors.

Conclusions: Impaired maturation of regulatory B cells is associated with

MS progression.
KEYWORDS

B regulatory cells, BCR, CD19+CD24highCD38high, multiple sclerosis, MS,
transitional Breg, TrB, activated memory-like transitional cells
Introduction

Multiple sclerosis is a highly heterogenous severe

autoimmune neurodegenerative disorder with an evident

inflammation component (1) . Despite considerable

advances in this field, the mechanism triggering it remains

elusive, hindering the development of effective therapeutics

(2–8). MS progression is mostly associated with the

promotion of the T cel l response (9, 10). Yet the

contribution of B cells to various autoimmune disorders,

including MS, should not be underestimated (11–16). Apart

from antibody production and antigen presentation, B cells

play a crucial role in regulating the immune response through

their antibody-independent effector functions (17, 18).

In 1974, professor James Turk and coauthors suggested

that B cells could inhibit inflammation during delayed

hypersensitivity reactions (19). Further on, regulatory

properties of B cells were confirmed in experimental

autoimmune encephalomyelitis (EAE), an animal model of

MS (20). The subpopulation of B cells performing regulatory

functions were termed Bregs. In mice, the Breg population

constitutes up to 5% of total B cells in the spleen and lymph

nodes, and their number significantly increases during

inflammation development (21–23). In humans, Bregs

account for l e s s than 5% of b lood B ce l l s (24 ) .

Abnormalities in the Breg counts or their function were

observed in patients with autoimmune diseases (25–29) and

allergies (30).

Different phenotypes of Bregs are described so far.

Transitional Bregs (tBreg cells) CD19+CD24highCD38high

(24, 26, 29, 31) and memory Bregs CD19+CD24highCD27+

are the most studied regulatory B cell subpopulations

that modulate the immune response in humans (32, 33).

Meanwhile, several other Breg phenotypes are reported:

CD19+CD25+CD71+CD73- (34), CD19+CD27intCD38+IgM+

( 3 5 ) , CD 1 9 +CD2 4 h i g h CD2 7 +CD3 9 h i g h I gD - I gM+

CD1c+ (36), CD19+CD5+Foxp3+ (37), and CD19+CD38+
02
CD1d+IgM+CD147+ (38). Transitional CD19+CD24high

CD38high Bregs can be found in the peripheral blood of

healthy adults representing a minor subset (approximately

4%) of all circulating B cells (39). This tBreg subset was

previously shown to produce IL-10, regulate CD4+ T cell

proliferation/differentiation toward T helper effector cells

(40), and contribute to the cytokine imbalance during

autoimmune diseases (41).

Since the molecular underpinnings of MS onset and

progression were revealed, T cell–mediated immunity was

believed to play the leading role in it. However, it is evident

now that B cells are crucial for MS pathogenesis as well (42, 43).

Autoreactive B cells in MS may produce catalytic antibodies,

hydrolyzing myelin basic protein (13, 44, 45), and cause humoral

cross-reactivity between myelin and viral antigens (46–50). Still,

the existing studies on Bregs functioning in MS are controversial

and far from conclusive. The percentages of IL-10–producing

Bregs in MS patients are shown to be lower than in healthy

controls (28, 51). Other works report either unaltered (52, 53) or

even increased (25, 54) Breg numbers during MS progression. A

recent study shows no association between the reduced

peripheral blood Bregs levels and the Expanded Disability

Status Scale (EDSS) score in MS (51).

These inconsistencies most likely arise from several Breg

populations coexisting (55, 56). Indeed, these regulatory

subpopulations can comprise B cells at different stages of

deve lopment ; there fore , the leve l o f cer ta in BCR

hypermutations can be lower at the earlier stages of

maturation of these B cells. The specificity of Bregs’ BCRs

and pathways that mediate their maturation are still poorly

elucidated. It is still not known whether the specificity of

Bregs BCRs undergoes alteration in autoimmune disorders.

This study aims to identify the possible abnormalities in the

structure of BCRs in the tBregs isolated from peripheral blood of

MS patients as compared with HD. Thus, we suggest that analyzing

BCR repertoires of tBregs may reveal the disease-related alterations

occurring at the early stage of B cell development.
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Materials and methods

Patients and healthy donors

Peripheral blood was obtained from the Neuroinfection

Department of the Research Center of Neurology, Moscow,

Russia. Venous blood was collected in EDTA Vacutainers
Frontiers in Immunology 03
(BD) from 19 MS patients (nine with BMS (57) and 10 with

HAMS) (58) and 16 HD (Table 1). The age of the MS patients

ranged between 23 and 70 years old. Their EDSS scores

ranged between 1.5 and 8.5. The EDSS values (scored on a

scale of 0 to 10) were calculated based on the Kurtzke EDSS

scale (59). BMS was diagnosed if the EDSS score was less than

4 for at least 10 years after the disease onset in the absence of
TABLE 1 Baseline and clinical characteristics of patients with multiple sclerosis and healthy donors.

MS
phenotype

Age,
years

Gender EDSS Treatment Disease duration,
years

BCR repertoire
analysis

CD27+ phenotypic
analysis

BMS 56 female 2.5 No treatment 11 + –

BMS 61 female 3 No treatment 26 + –

BMS 43 female 1.5 No treatment 12 + –

BMS 36 male 2.5 No treatment 14 + –

BMS 46 female 2 No treatment 27 – +

BMS 43 female 2.5 No treatment 27 – +

BMS 43 male 4.0 No treatment 18 – +

BMS 58 female 3.5 No treatment 30 – +

BMS 70 female 4.0 No treatment 30 – +

HAMS 33 male 6 IFNb1b (2006-2011; 2014-
2017)

12 + –

HAMS 23 male 5 No treatment 3 + –

HAMS 37 female 5 IFNb1b (2014-2016)
GA (2016-2017)

5 + –

HAMS 29 female 8 GA (2012-2014)
IVIG (2014)

IFNb1b (2015-2016)

12 + –

HAMS 39 female 8.5 No treatment 8 + –

HAMS 22 female 4.5 No treatment 1 – +

HAMS 46 male 6 IFNb1b (2019) 2 – +

HAMS 44 male 8.5 IFNb1b (2014-2015) 13 – +

HAMS 24 male 4.0 No treatment 2 – +

HAMS 44 female 4.5 No treatment 2 – +

Healthy 24 female N/A N/A N/A + –

Healthy 40 female N/A N/A N/A + –

Healthy 36 male N/A N/A N/A + –

Healthy 27 female N/A N/A N/A + –

Healthy 42 female N/A N/A N/A + –

Healthy 25 female N/A N/A N/A + –

Healthy 39 male N/A N/A N/A – +

Healthy 42 female N/A N/A N/A – +

Healthy 35 female N/A N/A N/A – +

Healthy 51 female N/A N/A N/A – +

Healthy 24 female N/A N/A N/A – +

Healthy 34 male N/A N/A N/A – –

Healthy 24 female N/A N/A N/A – –

Healthy 35 male N/A N/A N/A – +

Healthy 68 female N/A N/A N/A – +

Healthy 47 male N/A N/A N/A – +
IFNb1b, interferon-b-1b; GA, glatiramer acetate; IVIG, intravenous immunoglobulin; HAMS, highly active MS; BMS, benign MS; HD, healthy donors; N/A, not applicable.
“+” indicates that the corresponding analysis has been carried out.
“-” indicates that the corresponding analysis has not been performed.
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treatment; HAMS relapsing-remitting MS was diagnosed

based on an EDSS score of 4.0 within five years after the

disease onset, poor response to disease-modifying treatments,

and two or more relapses with incomplete recovery during

one year. None of the patients received glucocorticoid

treatment or immunomodulatory treatment for at least six

months prior to blood collection. Data on the course of the

disease, its duration, and history of administration of disease-

modifying treatments are presented in Table 1. HDs (24–68

years old) had neither autoimmune nor oncology diseases nor

recent infections. The study was approved by the Local Ethics

Committee of the Research Center of Neurology and was

conducted in full compliance with the WMA Declaration of

Helsinki, ICH GCP, and appropriate local legislation. All

patients provided written informed consent for enrollment,

followed by a discussion of the study with the investigators.
FACS sorting of tBreg and total B
cell subsets

Blood samples were diluted two times in PBS with 2mMEDTA

and layered onto Ficoll–Paque Plus (GE Healthcare) and then

centrifuged at 900 g for 40 minutes at room temperature. PBMC

isolated from MS patients were incubated with ACK lysing buffer

for complete removal of red blood cells. Cells were washed with

PBS, incubated with a-CD19-PE-Cy7, a-CD24-PE, a-CD38-APC,
a-CD27-FITC, and a-CD45-APC-Cy7 antibodies (Biolegend,

USA) or a-CD19-PE-Cy7, a-CD24-PE, a-CD38-APC, a-CD45-
APC-Cy7, and sytox green dead cell stain (ThermoFisher Scientific)

for 60 minutes at +4°C in the dark. Human Fc-blocker (Miltenyi

Biotec) was added to all samples before cell staining. B cell subsets

were identified by the following markers on their surface:

transitional Bregs (CD19+CD24highCD38high), T1 transitional cells

(CD19+CD24+++CD38+++), T2 transitional cells (CD19+CD24++

CD38++), memory Bregs (CD19+CD24highCD27+), and

memory (CD19+CD24+/highCD38+/lowCD27+) or naïve

(CD19+CD24+CD38+/lowCD27-) peripheral B cells (60). Following

incubation, the cells were washed with PBS and resuspended in

PBS. To distinguish T1 and T2 cells by CD24 and CD38 expression,

we used gates for flow cytometry analysis, which provided a T2/T1

ratio of approximately 3:1 in HDs (61). Leukocyte and total

lymphocyte counts per mm3 were determined using a

hematology analyzer (Nihon Kohden MEK-7222, Nihon Kohden,

Japan). All samples were analyzed for B cell and tBreg frequencies

by flow cytometry. For nine MS patients (four with BMS and five

with HAMS) and six healthy donors, a live CD19+ pool of total B

cells or CD19+CD24highCD38high tBreg was sorted into two distinct

populations (Table 1). The cells were sorted directly into 1.5-mL

microcentrifuge tubes containing Qiazol lysis reagent (Qiagen,

Germany). Sorting was carried out using a BD FACSAria III, and

the data were analyzed using FlowJo software 9.7.5 (TreeStar,

Ashland, OR, USA).
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Library preparation for immunoglobulin
sequencing (RT-PCR)

RNA extraction was performed using the RNeasy Mini Kit

(Qiagen, Germany) according to the manufacturer’s protocol.

Reverse transcription (RT) was performed in 20 µL reaction

volume using MMLV RT according to the manufacturer’s

protocol (Evrogen, Russian Federation). Multiplex PCR with a

modified set of the previously described VH- and VL-specific

primers was used for cDNA amplification (62). The primers

included 15 human VH-specific forward primers and four

human JH-specific reverse primers for the IGH chain, 13

human Vk-forward primers and two Jk-reverse primers for

Vk genes, and 16 human Vl-forward primers and three Jl-
reverse primers for Vl genes (Table S1). Each VH, Vk, and Vl
primer pair was added to a separate 50 µl reaction mix with an

appropriate equimolar mixture of the four JH, two Jk, or three Jl
reverse primers. Then, 0.5 ng cDNA was used in each PCR

reaction using the Hot Start Taq Master Mix Kit (Evrogen,

Russian Federation). The conditions of PCR were as follows:

1 step (94°C—3 min), 1 cycle (94°C—25 s, 62°C—25 s, 72°C—

25 s), 2 cycles (94°C—25 s, 60°C—25 s, 72°C—25 s), 2 cycles

(94°C—25 s, 58°C—25 s, 72°C—25 s), 3 cycles (94°C—25 s, 56°C

—25 s, 72°C—25 s), 3 cycles (94°C—25 s, 54°C—25 s, 72°C—

25 s), 30 cycles (94°C—25 s, 52°C—25 s, 72°C—25 s), and 1 step

(72°C—4 min). The products of 15 PCR reactions for VH genes,

13 PCR reactions for Vk genes, and 16 PCR reactions for Vl
genes were combined for each chain and concentrated to 50–80

µl using Amicon 30 kDa (Merck, Millipore). The PCR products

(~400 bp length) of VH, Vk, and Vl were loaded on 1.5%

agarose gels and purified with the Gel Extraction Kit

(Monarch, NEB).
Deep sequencing of VH and VL genes
from individual patients

Next, 1 mg of the PCR product was ligated with adapters

using the NEBNext Ultra DNA Library Prep Kit for Illumina

with the NEBNext Multiplex Oligos set (NEB). Libraries were

sequenced on Miseq using a 2x300 bp paired-ends sequencing

kit (Illumina) in the SB RAS Genomics Core Facility (ICBFM SB

RAS, Novosibirsk, Russia).
Sequencing data processing and
repertoire analysis

MiXCR (63) software was used to extract BCR clonotypes

from raw sequencing data. Raw reads were aligned to the

standard reference set of V, D (for heavy chain), and J gene-

segment sequences. Successfully aligned reads were used for
frontiersin.org
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clonotype sequence assembly with the following parameters:

Oassembl ingFea tures=“ {CDR1Beg in : CDR3End}”

-OmaxBadPointsPercent=0. To normalize the repertoire

analysis depth, equal numbers (13,000 for IGVH or IGVK and

7000 for IGVL) of read pairs covering the full target sequence

(CDR1+FR2+CDR2+FR3+CDR3) were randomly sampled from

each data set. A BCR clonotype is referred to here as a unique

nucleotide sequence covering BCR from the beginning of CDR1

to the end of CDR3. Repertoire sequencing results are

summarized in Table S2.

Repertoire data analysis was performed using the R

programming language (R Core Team (2017) R: the language

and environment for statistical computing (R Foundation for

Statistical Computing, Vienna, Austria. URL https://www.R-

project.org/). Unproductive IGVH/IGVK/IGVL sequences

were filtered out before analysis. To characterize the germline

identity for each clonotype, a nucleotide sequence covering the

CDR1-FR3 part was used for calculating the percentage of

identity with the corresponding reference V-segment sequence.

The VDJ tools software (64) with the CalcCdrAaStats subroutine

was used to obtain the statistics on composition and physical-

chemical properties of amino acids in the CDR3 region. For

CDR3 length analysis, we defined the length as a number of

amino acids from conservative Cys at the end of the part

encoded by the V-segment to the conservative Phe/Trp

encoded by the J-segment (65).
IL-10 secretion assay

B cells from isolated PBMC were enriched using magnetic

Dynabeads (negative selection; Invitrogen, Thermo Fisher)

following the manufacturer’s instructions with >95% purity.

Enriched B cells were maintained in the complete glutamine-

enriched RPMI-1640 medium supplemented with 10% fetal

bovine serum (FBS) and 10 mM HEPES at a concentration of

0.5•106 cells/mL in six-well culture plates at 37°C with 5% CO2.

IL-10 production was induced by the incubation with 10 µg/mL

CpG-B ODN 2006 for 20 hours. CpG-stimulated B cells were

restimulated by adding up to 50 ng/mL PMA (Sigma-Aldrich)

and 0.5 µg/mL ionomycin (Sigma-Aldrich) for four hours.

Stimulated B cells were washed twice with PBS and stained

for assessing the cell viability with Zombie Violet Fixable

Viability Kit (Biolegend, USA) according to the manufacturer’s

instructions. Next, B cells were washed with cold (MACS) buffer

containing PBS supplemented with 0.5% BSA and 2 mM EDTA;

106 of B cells were then resuspended in 90 µl of cold RPMI-1640

medium supplemented with 10% FBS and incubated with 10 µl

IL-10 Catch Reagent (IL-10 secretion assay, Miltenyi Biotec) for

five minutes on ice. Subsequently, 1 mL of warm (37°C) RPMI-

1640 medium supplemented with 10% FBS was added, and cells

were kept for 45 minutes at 37°C under slow continuous

rotation. B cells were washed twice with a cold (MACS)
Frontiers in Immunology 05
buffer, resuspended in 80 µl cold (MACS) buffer with the

addition of 10 µl IL-10 detection antibody (APC) (IL-10

secretion assay, Miltenyi Biotec) and 10 µl of the antibody mix

(a-CD19-PE-Cy7, a-CD24-PE, and a-CD38-AlexaFluor700).
After 20 minutes of incubation on ice, B cells were washed

with cold buffer and resuspended in PBS. IL-10+ and IL-10− B

cells were analyzed using FACS Aria III (BD Biosciences).
Statistical analysis

The data were analyzed using Prism 9 software. The

significance of differences was assessed using the two-tailed

Student’s t-test, Mann Whitney U-test, or ANOVA. p-values

<.05 were considered to be significant.
Results

The elevated level of transitional
CD19+CD24highCD38high Bregs in
peripheral blood correlates with
MS severity

We analyzed patients with two diverging courses of

relapsing-remitting MS (RRMS): (i) BMS (57), characterized

by an infrequent relapse and low levels of disability over long

periods of time, and (ii) HAMS (58) with elevated levels of

inflammatory activity and rapid progression that facilitate a shift

to secondary progressive MS with severely disrupted control of

the immune response. The peripheral blood samples were

obtained from 19 MS patients and 16 HDs (Table 1). To gain

further insight into the nature of Breg development and

maturation, we analyzed the CD19+CD24highCD38high

subpopulation, which is the most studied phenotype of tBreg

(26, 66). Mononuclear cells were stained against CD45, CD19,

CD24, and CD38 markers. A gating strategy is shown in

Figure 1A. We found that the cell number and frequency of

CD19+CD24highCD38high B cells were significantly increased in

the MS patients (4.5 ± 2.4%) as compared with the HDs (2.6% ±

1.8%). This upregulation was most pronounced in the HAMS

patients (5.5% ± 2.7%) (Figures 1B, C). Wherein we observed no

differences in the absolute counts for B cells between HDs and

MS patients with various courses of MS (Table 2).

Previously, Cherukuri and colleagues showed that the

activity of regulatory B cells varies depending on the

composition of the tBreg subpopulation (67). A reduced T2/

T1 ratio is associated with elevated IL-10 production and the

most efficient T cell suppression (61). We studied the ratio

between the transitional T1 and T2 subsets (the gating

strategy is shown on Figure 4) distinguished by CD24 and

CD38 expression (Table 2). The absolute T1 count was

significantly elevated in the MS patients (p = .037) in
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comparison with healthy donors. The absolute T2 counts in

peripheral blood were also significantly increased in the MS

patients as compared with HDs (p = .0007), especially during

HAMS (p = .0002). Whereas the mean value of the T2/T1

ratio is elevated during MS progression, no statistically

significant difference in comparison to healthy donors was

observed. To carefully distinguish between T1 and T2 cells,

we analyzed CD24 and CD38 expression as well as the

expression of IgD, being an important marker of B cell

developmental stage and maturation (68, 69). We observed

no significant difference in the T2(CD24highCD38highIgD+)/

T1(CD24highCD38highIgDlow/-) ratio between the two groups

of six MS and four HDs, respectively (Figure S3).

To characterize the BCR repertoire of tBregs cells, we

sorted total CD19+ B cells and CD19+CD24highCD38high

subpopulations and performed high-throughput sequencing

of BCR cDNA libraries for variable heavy (VH) and light (VL)

chains in these cell subsets. On average, we obtained ~40,000
Frontiers in Immunology 06
and ~37,000 IGVH- and IGVK-containing reads for tBregs

and total B cells, respectively. We obtained ~25,000 and

~17,000 IGVL-containing reads for tBregs and total B cells,

respectively. We achieved the minimum depth of two IG

sequence-containing reads per cell in most samples. Heavy

and light chain clonotypes were assembled by the MiXCR

with sequencing error correction (63). To reduce a potential

bias, we used the equal repertoire analysis depth for all

individuals (see Material and Methods section). For the

CD19+CD24highCD38high B cell subpopulation, we obtained

and included in our analysis ≈4500 functional clonotypes for

the heavy chain, ≈3500 for the kappa, and ≈550 for lambda

chains for individuals in the MS and HD cohorts. For total B

cells (the CD19+ subpopulation), we obtained ≈4000

functional clonotypes for heavy chain, ≈4300 for kappa, and

≈830 for lambda chains from the raw sequencing data and

included this in our analysis for the individuals from the MS

and HD cohorts (Table S2).
TABLE 2 Total numbers and frequency of T1/T2 subpopulations of transitional B cells in peripheral blood from the MS patients and healthy donors.

Clinical group HD MS BMS HAMS

Absolute counts B cells per mm3 455 ± 52 508 ± 74 508 ± 98 508 ± 112

Absolute counts tBreg cells per mm3 8.4 ± 1.0* 24.0 ± 5.2* 17.7 ± 3.0* 29.1 ± 9.0*

T2/T1 ratio 2.8 ± 0.2 3.9 ± 0.7 3.2 ± 0.3 4.4 ± 1.1

Absolute counts T1 cells per mm3 2.3 ± 0.3* 6.6 ± 2.1* 3.5 ± 0.8 8.1 ± 3.1

Absolute counts T2 cells per mm3 6.1 ± 0.7* 16.3 ± 3.6* 9.9 ± 2.2 19.4 ± 5.1*
fron
All values are expressed as mean values ± SEM. Significantly different values evaluated by a Mann Whitney test between the healthy donors and MS patients are indicated with asterisks.
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FIGURE 1

MS severity correlates with the elevated level of transitional CD19+CD24highCD38high Bregs in peripheral blood. (A) Total CD19+ B cell pool and
transitional regulatory CD19+CD24highCD38high subpopulation (tBregs) from peripheral blood were sorted individually for subsequent RNA
isolation and RT-PCR amplification of IGVH, IGVK and IGVL followed by high-throughput sequencing and subsequent bioinformatic clustering
and analysis. (B) The percentage and (C) absolute cell count of transitional Bregs in MS patients (MS) and healthy donors (HD). BMS denotes
benign multiple sclerosis, HAMS is highly active multiple sclerosis. Data are shown as mean values, interquartile range, and p-values. The
statistical significance was evaluated with the Mann Whitney test (only significant p-values are shown).
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Transitional CD19+CD24highCD38high

Bregs of MS patients are characterized
by a lower number of hypermutations
compared with the healthy individuals

The tBregs are suggested to be the exogenous antigen-naïve

cell population, therefore exhibiting fewer somatic

hypermutations than the total pool of CD19+ B cells from

peripheral blood (Figure 2A). VH and Vk genes of

CD19+CD24highCD38high tBregs from MS patients are

generally less mutated as compared with the HDs. There was a

statistically significant difference between the HDs and HAMS

patients yet not between the donors and BMS patients

(Figure 2A). These data are in line with an increased level of

tBregs in the peripheral blood from the HAMS patients. We

observed approximately the same number of the IGH clonotypes

in tBregs and total CD19+ B cells in the MS patients and healthy

donors (Figure 2B). Analysis of repertoire diversity of the light

chains showed that in the HDs the ratio in number of the IGK

and IGL clonotypes in the total CD19+ pool was higher than in

tBregs, whereas it remained unchanged in MS patients

(Figure 2B). The lowest repertoire diversity was observed for

the lambda light chain. The ratio of tBreg/total B cell clonotypes

between MS patients and HDs was different only for the lambda

chain (Figure 2C).

Because in the MS patients we observed fewer somatic

hypermutations in the tBreg clonotypes, one could suggest a
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higher number of CDR3 in this cell subset shared among MS

patients. However, we detected only a few tBreg IGH clonotypes

common for at least two different donors. Furthermore, we did

not observe any significant differences in the number of shared

amino acid CDR3 sequences between MS and HD (data

not shown).
Characteristics of the CDR3 region of
tBreg clonotypes do not vary between
MS and healthy states

CDR3 is the most variable region of immunoglobulin

molecules. It can be used for identifying clonal lineages and

characterizing their functional repertoire (70). First, we

examined CDR3 characteristics by comparing the amino acid

CDR3 length of the heavy, kappa, and lambda chains among

HDs, HAMS, and BMS disease states in tBregs and total

peripheral B cells. In line with our expectations, we detected a

significant difference in amino acid length between the heavy

chain (18.3 ± 0.7 a.a.) and both light chain types (11.2 ± 0.1 a.a.

for the kappa chain and 11.5 ± 0.3 a.a. for the lambda chain) due

to the presence of the D-segment in the IGH.

For the heavy chain, the CDR3 length significantly varied

between the tBreg and the total B cell populations (Figure 3A) in

contrast to the previously reported data (71). Nonetheless, there

was no statistically significant difference in the CDR3 length
B C

A

FIGURE 2

Delayed maturation of CD24highCD38high transitional B lymphocytes in the MS patients. (A) Mutation frequency for VH, Vk, and Vl genes; (B) the
number of unique clonotypes per sorted cells; and (C) the tBreg/total B cell clonotype ratio of the total blood B cells and CD24highCD38high

transitional Bregs from the multiple sclerosis patients (MS) and healthy donors (HD). Mutation frequency refers to the percentage of clonotype
sequence different from the corresponding germline V- and J-segment sequences excluding CDR3 region. BMS denotes benign multiple
sclerosis, HAMS is highly active multiple sclerosis. Bar and line plots represent a median and interquartile range. Statistical significance of the
differences between donor groups was assessed using the Mann-Whitney test (A, B) and ratio paired T-test (C). p-values <.05 after correction
for multiple comparisons were considered statistically significant and designated with asterisks.
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between the MS patients and healthy individuals (Figure 3B).

We did not detect any significant differences in the length of

CDR3 of the kappa and lambda light chains between the tBreg

subset and total B cells (Figures 3C, D, S1).

Furthermore, we compared the physicochemical properties

of the CDR3 amino acids for the clonotypes from tBregs and

total peripheral B cells. We observed no significant differences in

the charge and hydrophobicity or amino acid usage in the CDR3

regions between the B cell subsets of the MS patients and HDs

(data not shown).
The CD19+CD24highCD38high

subpopulation in MS patients is
characterized by less mature phenotype

It is previously reported that the number of mature memory

CD27+ peripheral B cells (72) in MS patients tends to decrease as

compared with healthy individuals (73). Importantly, the ratio of

different B cell populations and especially of the memory B cells

varies with age (74). To avoid any age-related bias, the samples from

sex- and age-matched MS patients (44 ± 14 y.o.) and HDs (43 ± 13

y.o.) were enrolled in this study (Table 1; Figure 4C). To examine

the phenotypic stage of tBreg maturation, we analyzed the

percentage of CD27 positive cells in this subpopulation

(Figure 4A). We found that the CD27+ cell content in the

CD19+CD24highCD38high tBregs cells was significantly reduced in
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the MS patients (1.0% ± 0.5%) as compared with healthy

individuals (2.2% ± 1.4%). We observed no correlation between

a g e and t h e f r e qu en c y o f CD27 + c e l l s i n t h e

CD19+CD24highCD38high subpopulation (Figure S2). Our findings

correlate well with previously reported data suggesting that Bregs

(CD19+IL10+) mostly had the CD27- phenotype in HD and MS

patients in remission (28), whereas the percentage as well as the

absolute counts of memory Bregs (CD24highCD27+) and naïve and

memory B cells were similar in the HDs and MS patients

(Figure 4B; Table 3).
CD19+CD24highCD38high B cells are
characterized by an elevated production
of IL-10 in MS patients and HDs

Because the regulatory properties of B cells are not limited

exclusively to the CD19+CD24highCD38high subpopulation (55,

56), we analyzed the frequencies of the IL-10-positive cells

among the total pool of B lymphocytes after a short CpG

stimulation. Such rapid stimulation (less than 24 hours) allows

estimating IL-10 production only in Bregs and not in the B cells

predisposed for the IL-10 expression. There were no statistically

significant differences in the IL-10–producing B cell subsets

between MS and HD, whereas more IL-10–positive B cells

were observed in the CD19+CD24highCD38high subpopulation

than in total B cells for both MS and HD (Figure 5A).
B

C D

A

FIGURE 3

Differences in CDR3 length. The distribution of B cell subset CDR3 amino acid length for heavy (A), kappa (C), and lambda (D) light chains. Bar
and line plots show mean ± SD. (B) The CDR3 amino acid length distribution for IGVH clonotypes in different B cell subsets. To balance the
sample size, an equal number of clonotypes (n = 1000) were randomly sampled from each donor repertoire. Rare clonotypes with CDR3 length
<6 a.a. or >35 a.a. were excluded. Mean values are displayed by numbers. The difference in CDR3 length between tBreg and total B cell fraction
was analyzed by the ratio paired T-test. The difference in CDR3 length between donor groups was assessed using the Mann Whitney test. Only
statistically significant p-values are indicated. The total CD19+ B cell pool and transitional regulatory CD19+CD24highCD38high subpopulation
from peripheral blood are designated as B cells and tBregs, respectively. ns , not significant.
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Conversely, IL-10–positive B cells in MS and HD were enriched

with CD19+CD24highCD38high cells (Figure 5B).
Discussion

The existence of several alternative methods of Breg

differentiation might lead to different subsets of B cells with

regulatory functions coexisting in an inflammatory milieu (75).

The Breg population can originate from either multiple or a
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limited set of independent pre-Bregs progenitors. Furthermore,

it results in either a diverse or restricted clonal repertoire, the

latter being ensured by the clonally related Bregs. Moreover,

almost any B cell can become a regulatory B cell at a certain stage

of its development upon exposure to permissive environmental

stimuli (35, 55). In the present study, we focus on the repertoire

of tBregs with the CD19+CD24highCD38high phenotype.

The mechanism of immune regulation mediated by B cells

was first proposed by S. Fillatreau and colleagues. They first

identified a subpopulation of B cells (B10 cells) that produced IL-
TABLE 3 Total numbers of B cell subpopulations in peripheral blood of the MS patients and healthy donors (gating strategy is shown in Figure 4).

Clinical group HD MS BMS HAMS

Memory B cells 51 ± 9 41 ± 6 34 ± 5 46 ± 9

Naïve B cells 192 ± 40 216 ± 47 172 ± 42 246 ± 75

Memory Breg cells 89 ± 17 77 ± 22 44 ± 6 100 ± 34
fronti
All values are given as absolute counts per mm3 and presented as mean ± SEM.
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Frequencies of the CD27-positive B cells in peripheral blood of MS patients and healthy individuals. (A) The percentage of CD27-positive activated
memory-like transitional cells in CD19+CD24highCD38high tBreg subpopulation and (B) the frequency of memory (CD19+CD24+/highCD38+/lowCD27+),
naïve (CD19+CD24+CD38+/lowCD27-) or memory Breg (CD24highCD27+) among peripheral B cells in multiple sclerosis patients (MS) and healthy donors
(HD). The bottom panel shows the gating strategy of flow cytometric analysis. (C) Age and gender comparison of MS and HD analyzed in the same
experiment. The difference in cell frequency was analyzed by Mann Whitney test. Statistically significant p-values are shown.
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10, alleviating the clinical manifestations of EAE (76). Bregs can

also affect the differentiation of T cells to T regulatory cells

(Tregs) (24) and inhibit differentiation of the effector T cells via

the IL-10–driven suppression of dendritic cells (35). Bregs are

shown to suppress inflammation by producing transforming

growth factor-b (TGF-b) (77), IL-35 (i35 Breg) (78), IgM, IgG4,

the co-inhibitory receptor TIGIT (T cell immunoreceptor with

Ig and ITIM domains) (36), and BTLA (B and T lymphocyte

attenuator or CD272) (79). Nonetheless, IL-10 production is still

believed to be the key mechanism for Bregs to control the

immune response in healthy individuals as well as during

immune-related disorders (26, 27, 80–82) and organ

transplantation (83).

Breg maturation may be induced via BCR and/or TLR

signaling (84). Using EAE, the experimental mouse model of

autoimmune diseases, a significant impact of TLR-signaling

on B cells was revealed (85). TLR-4 and TLR-9 induce a

significant increase in IL-10 secretion by B cells in a MyD88-

dependent manner. Their activation via TLR and CD40

ligands is also described for infectious diseases of viral

(HIV (31), HBV (86)), bacterial (87, 88), and parasitic

origins (89). Exposure of PBMC from both healthy donors

and patients with rheumatoid arthritis to CD40L and CpG led

to an increased number of IL-10–producing Bregs (90). A

significantly lower level of IL-10 production by B cells

stimulated in the presence of CD40L was found in the

groups with relapsing-remitting (29) and secondary-

progressive MS as compared with HDs. A similar effect was

observed in the CpG-stimulated B cells (82). The fact that

CD40 ligation on B cells plays an important role in this
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process promoting cell survival (91) is in line with the

inductive model of Breg formation. The latter implies that

B cells may become regulatory and exhibit suppressive

capacity in response to specific environmental stimuli.

Another mechanism to induce Bregs is to activate them

through BCR signaling (76). Matsumoto et al. demonstrate the

importance of correct antigen recognition by Breg BCR (92).

The antigen-mediated calcium influx in Bregs is shown to

depend on STIM-1 (stromal interaction molecule) and STIM-

2. A deficiency in these molecules impairs the ability of Bregs to

produce IL-10, disrupts T cell activation, and eventually prevents

alleviating EAE in mice. The number of Bregs was reduced in

CD19-deficient mice with disrupted BCR-signaling, whereas

CD19 overexpression resulted in an increased number of B10

cells (93–95). The antigen-specific interaction between CD4+ T

cells and B10 cells is crucial for generating B10 effector cells,

whereas antigen-specific T cell response is downregulated by

B10-mediated IL-10 production (96). Therefore, the B10 cell

effector function primarily depends on antigen specificity;

however, it might also be mediated by suppressing antigen

presentation by dendritic cells and macrophages (97).

We observed that CD19+CD24highCD38high tBregs have a

significantly longer CDR3 in the heavy chain as compared with

the total pool of peripheral B cells. Antigen-experienced B cells

were previously shown to have shorter CDR3 than naïve or

immature B cells (98, 99), thus indicating that, in tBregs, longer

CDR3 can point at their immature state. This can also be related

to the differences in V/J-usage between tBregs and total B cells

(100, 101). Finally, in tBregs, longer CDR3 may reflect the higher

poly-/self-reactive potential of their BCRs (102).
BA

FIGURE 5

Frequencies of the IL-10–positive B cells in peripheral blood of MS patients and healthy individuals after rapid CpG stimulation. (A) The percentage
of IL-10–positive cells in CD19+CD24highCD38high tBreg subpopulation and total B cells. (B) The percentage of CD19+CD24highCD38high tBreg in IL-
10–positive and IL-10–negative B cells. Results are expressed as a median, interquartile range, and p-values analyzed by ratio paired T-test. Statistical
significance of the differences between donor groups was assessed by the Mann Whitney test, and significance of differences between B cell
subpopulations was assessed by the ratio paired T-test. Statistically significant p-values (p <.05) are shown.
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Another piece of evidence underlying the importance of BCR

during Breg activation is that human B10 cells are often defined as

CD27+. This allows for classifying them as memory cells, which is

in line with their in vivo antigen experience (25). Of note, in the

RRMS patients at the relapse stage, the ratio of naïve and memory

Bregs is decreased, resulting in an elevated memory/naïve ratio

(28). The presence of the CD27+ subpopulation in early immature

transitional B cells could be explained by the recently proposed

class-switching of antibodies in early human B cell development

(71). Therefore, even transitional cells can undergo early

maturation or, according to the alternative hypothesis, the

CD19+CD24highCD38highCD27+ subset might belong in the IgM

memory population (103, 104). Here, we show that the

CD19+CD24highCD38high tBregs from MS patients contain a

statistically lower number of CD27-positive cells as compared

with HDs.

Our findings allow us to conclude that the elevated absolute

number and frequency of CD19+CD24highCD38high tBregs

observed in MS patients is characterized by a greater germline

identity as compared with HD. At the same time, the absolute

cell counts of the recently immigrated from the bone marrow T1

and more mature T2 cells both increased, thus more or less

maintaining the overall T1/T2 ratio as in a healthy state. We

propose at least three scenarios explaining these findings: (i)

deficient maturation of transitional B cells (TrB); (ii) delayed

TrB maturation, and (iii) elevated TrB counts that compensate
Frontiers in Immunology 11
for deficient maturation (Figure 6). The latter seems to be the

most likely scenario because the T1/T2 ratio and, especially,

percentage and absolute counts of TrB are increased in MS

patients, whereas the numbers of memory and naïve B cells

remain unaltered. Nonetheless, current evidence is not

conclusive yet.

The tBregs maturation failure could arise from either an

intrinsic defect in pre-Bregs or insufficient antigen-induced

maturation. The BCR sequences of B10 cells were recently

shown to be closer to germline and harbor only rare

mutations (105). The authors state that, similarly to the

splenic B10 cells, the peritoneal cavity B10 cells expressed

clonally diverse BCRs that were predominantly germline

encoded. Despite the germline proximity, B10 cells are shown

to produce IgG as well as IgM (106). Thus, the so-termed “low

differentiated” BCR may provide low-affinity antigen-BCR

stimulation during chronic disease and development of the

B10 precursor to B10, whereas a strong stimulation may

switch the Breg precursor to another differentiation pathway

(25, 94, 105). In the present work, we revealed no differences in

IL-10 production between MS and HD via functional analysis.

Therefore, increased tBreg counts along with the absence of

increased IL-10 production can serve as indirect evidence in

favor of their disrupted functioning and altered inflammatory

profile during MS development. We suggest that, in future

studies, tBregs should be analyzed for IL-10 production as well
FIGURE 6

Abnormalities in transitional B cell maturation in MS. An elevated frequency of CD19+CD24highCD38high transitional B cells (TrB) observed in MS
patients is characterized by greater germline identity compared with healthy donors. There are least three possible coexisting or independent
scenarios explaining these findings: (i) deficient maturation of TrB, (ii) delayed TrB maturation, and (iii) an increased number of TrB compensating
deficient maturation.
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as co-expression of other cytokines as IL-10+ B cells are

previously shown to co-express pro-inflammatory cytokines

such as IL-6 and tumor necrosis factor alpha (TNFa) (55).

Here, we put forward that the observed stagnation in the

maturation of the transitional Bregs potentially may be the first

step in the fatal sequence of events leading to the systemic failure

of humoral regulative immunity. Being accompanied by one or

multiple factors, such as HLA haplotype, cytokine background,

abnormal T cell negative selection, enhanced blood–brain

barrier permeability, or lack of vitamin D, it may trigger the

uncontrolled breakdown of the immunological tolerance toward

myelin antigens. On the other hand, the elevated absolute count

of tBregs and T1/T2 B cell subset ratio may be a sign of the

already activated compensatory mechanisms, which may be

monitored on the border of a clinically isolated syndrome and

clinically defined multiple sclerosis. Further studies should

elucidate if modulating the immunological checkpoints

regulating B cell development may be regarded as opening up

the avenue for putative therapeutical applications in

MS treatment.
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