
Acta Physiologica. 2021;231:e13528.	﻿	     |   1 of 15
https://doi.org/10.1111/apha.13528

wileyonlinelibrary.com/journal/apha

Received: 15 January 2020  |  Revised: 29 May 2020  |  Accepted: 22 June 2020

DOI: 10.1111/apha.13528  

R E V I E W  A R T I C L E

Mechanisms coupling sodium and magnesium reabsorption in the 
distal convoluted tubule of the kidney

Gijs A. C. Franken   |   Anastasia Adella   |   René J. M. Bindels   |    
Jeroen H. F. de Baaij

Gijs A. C. Franken and Anastasia Adella have contributed equally to this work.  

Department of Physiology, Radboud 
Institute for Molecular Life Sciences, 
Radboud University Medical Center, 
Nijmegen, the Netherlands

Correspondence
Jeroen H. F. de Baaij, Department of 
Physiology (286), Radboud Institute 
for Molecular Life Sciences, Radboud 
University Medical Center, P.O. Box 9101, 
6500 HB, Nijmegen, The Netherlands.
Email: jeroen.debaaij@radboudumc.nl

Funding information
Nederlandse Organisatie voor 
Wetenschappelijk Onderzoek, Grant/Award 
Number: Veni016.186.012

Abstract
Hypomagnesaemia is a common feature of renal Na+ wasting disorders such as 
Gitelman and EAST/SeSAME syndrome. These genetic defects specifically affect 
Na+ reabsorption in the distal convoluted tubule, where Mg2+ reabsorption is tightly 
regulated. Apical uptake via TRPM6 Mg2+ channels and basolateral Mg2+ extru-
sion via a putative Na+-Mg2+ exchanger determines Mg2+ reabsorption in the dis-
tal convoluted tubule. However, the mechanisms that explain the high incidence of 
hypomagnesaemia in patients with Na+ wasting disorders of the distal convoluted 
tubule are largely unknown. In this review, we describe three potential mechanisms 
by which Mg2+ reabsorption in the distal convoluted tubule is linked to Na+ re-
absorption. First, decreased activity of the thiazide-sensitive Na+/Cl− cotransporter 
(NCC) results in shortening of the segment, reducing the Mg2+ reabsorption capac-
ity. Second, the activity of TRPM6 and NCC are determined by common regulatory 
pathways. Secondary effects of NCC dysregulation such as hormonal imbalance, 
therefore, might disturb TRPM6 expression. Third, the basolateral membrane po-
tential, maintained by the K+ permeability and Na+-K+-ATPase activity, provides 
the driving force for Na+ and Mg2+ extrusion. Depolarisation of the basolateral 
membrane potential in Na+ wasting disorders of the distal convoluted tubule may 
therefore lead to reduced activity of the putative Na+-Mg2+ exchanger SLC41A1. 
Elucidating the interconnections between Mg2+ and Na+ transport in the distal con-
voluted tubule is hampered by the currently available models. Our analysis indicates 
that the coupling of Na+ and Mg2+ reabsorption may be multifactorial and that ad-
vanced experimental models are required to study the molecular mechanisms.
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1  |   INTRODUCTION

The distal convoluted tubule (DCT) is an essential nephron 
segment for blood pressure regulation and potassium (K+) ho-
meostasis. In the DCT, 10% of the filtered sodium (Na+) and 
magnesium (Mg2+) is reabsorbed in a transcellular mechanism,1 
which is highly regulated by endocrine regulation.2-10 Genetic 
and acquired diseases of the DCT segment are therefore associ-
ated with renal Na+ and Mg2+ wasting. Notably, hereditary Na+ 
wasting disorders often present with hypomagnesaemia (serum 
Mg2+ <0.7 mmol L−1), a condition in which serum Mg2+ concen-
trations are below normal (normal 0.7-1.05 mmol L−1). However, 
the mechanisms that explain hypomagnesaemia in these patients 
are largely unidentified. In this review, we present three hypoth-
eses of mechanisms underlying the hypomagnesaemia caused 
by genetic DCT Na+ wasting disorders. In addition, we provide 
detailed descriptions on Na+ and Mg2+ reabsorption in the DCT.

1.1  |  Mechanisms of Na+ reabsorption 
in the DCT

The DCT is responsible for the reabsorption of 5-10% of the 
filtered Na+ load.1 Early micropuncture studies demonstrate 

that this may increase up to 30%-45% when required, show-
ing the enormous compensatory capacity of this segment.11 
In the early DCT, apical Na+ uptake is facilitated by the thi-
azide-sensitive sodium chloride (Cl−) co-transporter (NCC) 
(Figure 1). Given that NCC is the sole Na+ transporter in the 
luminal plasma membrane in the DCT, decreased NCC activ-
ity results in renal Na+ wasting.12,13 Basolateral Na+ extrusion 
towards the peritubular fluid depends on Na+-K+-ATPase ac-
tivity. The activity of this pump and the high permeability of 
K+ via Kir4.1/Kir5.1 K+ channels set the basolateral mem-
brane potential difference that typically ranges between −60 
and −90 mV in the DCT.14,15 Na+-K+-ATPase function de-
pends directly on Mg2+-bound ATP (Mg-ATP) availability, 
and indirectly on free Mg2+ and the back-leak of K+.16-21 This 
so-called “pump-leak coupling” of K+ recycling between 
Na+-K+-ATPase is essential to maximise the Na+ reabsorp-
tion capacity of the DCT.22

Na+ reabsorption in the DCT depends on the number 
of NCC transporters present in the plasma membrane and 
subsequent activation by phosphorylation.23 Three residues 
in the intracellular N-terminal region of NCC can be phos-
phorylated by Ste20-like proline-alanine–rich kinase (SPAK) 
and oxidative stress response kinase 1 (OSR1).23,24 In turn, 
SPAK and OSR1 are activated by With-No-Lysine (WNK) 

F I G U R E  1   Electrolyte transport in the DCT. In a physiological condition, Mg2+ is reabsorbed into the cell by TRPM6 and is extruded into 
the blood compartment via SLC41A1 in exchange for Na+. Both Na+ and Cl− are reabsorbed from the pro-urine by NCC. At the basolateral 
side, Kir4.1/Kir5.1 channels are responsible for K+ extrusion, generating a negative membrane potential at ± 70 mV, which is maintained by the 
Na+-K+-ATPase using ATP. This K+-recycling mechanism by the Kir4.1/Kir5.1 channels and Na+-K+-ATPase is called “pump-leak coupling”. 
At the apical side, K+ is released to the pro-urine by Kv1.1. Cl− is extruded by ClC-Kb to the blood. CD, collecting duct; ClC-Kb, voltage-gated 
Cl− channel; CNT, connecting tubule; DCT, distal convoluted tubule; Kir4.1, K+ inwardly rectifying channel 4.1; Kv1.1, K+ voltage-gated channel 
subfamily A member 1; NCC, Na+/Cl− cotransporter; PT, proximal tubule; SLC41A1, solute carrier family 41 member 1, Na+-Mg2+ exchanger; 
TAL, thick ascending limb; TRPM6, transient receptor potential melastatin 6
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kinases.25 WNK kinases are, therefore, the main target of 
pathways regulating Na+ reabsorption including, but not lim-
ited to, angiotensin II, vasopressin, insulin and aldosterone.2-6 
Mutations in WNK1 and WNK4 are associated with familial 
hyperkaliaemic hypertension (FHHt) or pseudohypoaldoste-
ronism type II (PHAII) (OMIM: 145260) as a result of in-
creased NCC activity.26-28 Of note, most PHAII patients have 
mutations in ubiquitin ligase Cullin 3 (CUL3) or its adaptor 
protein Kelch-like-3 (KLHL3).29 The CUL3-KLHL3 com-
plex is essential for the ubiquitination of WNK1 and WNK4, 
thereby regulating their expression levels and indirectly de-
termining NCC activity.30,31

Recently, plasma K+ levels were identified as a major 
physiological determinant of NCC activity.32 A multitude 
of in vitro and in vivo studies have demonstrated that low 
extracellular K+ levels increase NCC phosphorylation inde-
pendently of Na+ and angiotensin II levels.33-36 These find-
ings have resulted in the current model in which Kir4.1/
Kir5.1 channels serve as a K+ sensor.37 K+ efflux via Kir4.1/
Kir5.1 hyperpolarises the membrane and decreases the intra-
cellular Cl− concentration. Crystallography studies revealed 
that Cl− binds to WNK kinases and thereby inhibits their 
autophosphorylation/activation.38,39 Therefore, low [K+]i ul-
timately results in the increase in NCC phosphorylation and 
thereby enhances Na+ reabsorption. This K+ sensing mech-
anism is the main determinant of the Na+ delivery to the al-
dosterone-sensitive distal nephron, where the epithelial Na+ 
channel ENaC-mediated Na+ uptake is coupled to K+ secre-
tion via renal outer medullar K+ channel (ROMK). Na+ re-
absorption in the DCT lowers the Na+ load in the CD, which 
allows retention of K+ via decreased ROMK-mediated K+ 
secretion.40-44 As such, the DCT determines the downstream 
K+ handling and is an essential mediator of K+ homeostasis.

1.2  |  Mechanisms of Mg2+ reabsorption 
in the DCT

The DCT plays a crucial role in determining the urinary Mg2+ 
excretion as subsequent nephron segments cannot reabsorb 
Mg2+ from the pro-urine. Transient receptor potential mel-
astatin 6 (TRPM6) channels facilitate Mg2+ influx from the 
lumen (Figure 1).45 Each protein consists of 6 transmembrane 
domains and forms a tetramer to become functional at the 
apical membrane. Recent data suggest that TRPM6 requires 
heterotetramer formation with its family member TRPM7 to 
function.46-49 The chemical gradient for Mg2+ is negligible 
(0.2-1.0 mmol L−1 in the lumen vs 0.5-1.0 mmol L−1 intra-
cellular) and the TRPM6-mediated Mg2+ influx is, therefore, 
dependent on the voltage gradient across the luminal mem-
brane. It is postulated that this is orchestrated by the luminal 
voltage-gated K+ channel Kv1.1.50,51 The activity of TRPM6 
is regulated by several external and internal factors, such as 

EGF, insulin, oestrogens, dietary Mg2+ intake and intracel-
lular Mg2+ concentrations.8-10,52,53 Inactivating mutations in 
TRPM6 have been associated with hypomagnesaemia with 
secondary hypocalcaemia (HSH; OMIM: 602014).54,55 In 
HSH patients, serum Mg2+ levels drop below 0.3 mmol L−1 
and endanger proper brain development if left untreated.54

Unlike the influx of Mg2+ from the luminal side, the play-
ers facilitating Mg2+ efflux towards the blood compartment 
have not yet been conclusively elucidated. Two main mecha-
nisms have been proposed, although they remain controver-
sial. Mg2+ efflux towards the blood compartment requires an 
anti-porter or ATPase, since no chemical gradient exists for 
Mg2+ while the voltage gradient favours Mg2+ influx. The 
presence of a Na+-Mg2+ exchanger has been demonstrated 
as the mechanism for Mg2+ efflux in multiple cell types.56,57 
Although the molecular identity of the putative Na+-Mg2+ 
exchanger has not been definitively identified, the most 
promising candidate is the solute carrier family 41 member 
1 (SLC41A1). This transmembrane protein is located at the 
basolateral domain of the DCT and has been shown to facili-
tate Mg2+ efflux.58 Mutations in the gene have been observed 
in one patient of a consanguineous family suffering from a 
nephronophthisis-like phenotype, although these patients do 
not experience hypomagnesaemia or renal wasting of mag-
nesium.59 An alternative candidate for basolateral Mg2+ ex-
trusion is cyclin M2 (CNNM2). This transmembrane protein 
localizes specifically to the basolateral compartment of the 
DCT and contains two cystathionine-beta-synthase (CBS) 
domains capable of binding Mg2+-ATP.60,61 Inactivating mu-
tations have been implicated in a syndrome that prominently 
features hypomagnesaemia and renal magnesium wasting 
(OMIM: 613882).14,60,62 Although CNNM2 has been pro-
posed as the Na+-Mg2+ exchanger in the DCT, this hypothe-
sis remains to be confirmed experimentally.63-65

2  |   Renal  salt  wasting disorders and 
hypomagnesaemia

Genetic disorders that reduce Na+ reabsorption in the DCT 
are associated with hypomagesaemia (Table 1). Patients with 
Gitelman syndrome, which is caused by mutations in the 
SLC12A3 gene encoding the thiazide-sensitive NCC (NCC; 
OMIM: 263800), suffer from renal Na+ wasting, hypokalae-
mia, metabolic alkalosis and hypomagnesaemia.66-68 A simi-
lar renal phenotype is observed in EAST/SeSAME syndrome 
caused by mutations in KCNJ10 encoding Kir4.1 (OMIM: 
612780).16,69 Indeed, Kir4.1 determines NCC activity by in-
directly affecting the [Cl−]i and, in turn, WNK kinase activa-
tion.37-39 The hypokalaemia and metabolic alkalosis is likely 
caused by compensatory actions in the collecting duct (CD), 
where Na+ reabsorption is increased at the expense of K+ 
and H+ reabsorption. However, the mechanisms that explain 
hypomagnesaemia in these patients are largely unidentified.
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Bartter syndrome is a hereditary disorder of Na+ reab-
sorption in the TAL, which is characterized by hypoka-
laemia, metabolic alkalosis, polyuria, hypercalciuria and 
nephrocalcinosis. Bartter syndrome is caused by mutations 
in SLC12A1 encoding NKCC2 (type I), KCNJ1 encoding 
ROMK (type II), CLCNKB encoding ClC-Kb (type III) or 
BSDN encoding Barttin (type IV) (OMIM: 601678, 241200, 
607364 and 602522, respectively).70-75 Notably, hypomag-
nesaemia is not uniformly present in Bartter syndrome 
(Table 1). Hypomagnesaemia is generally only observed in 
Bartter syndrome type III and IV, in which patients can pres-
ent with features of antenatal Bartter as well as Gitelman 
syndrome.76 Mice deficient for ClC-Kb indeed shown hy-
permagnesuria, in line with the observed decreased serum 
Mg2+ concentrations in patients with type III Bartter. 
Generally, this phenomenon is explained by the expression 
pattern of ClC-Kb and Barttin, which are not limited to 
TAL, but also present in the DCT. In line with this obser-
vation, the incidence of furosemide, an inhibitor of NKCC2, 
rarely results in hypomagnesaemia.77-79 Indeed, in an animal 
study, furosemide treatment did not result in hypomagnesae-
mia and was associated with increased TRPM6 expression 
in the DCT.80 Altogether we, therefore, hypothesise that the 
presence of hypomagnesaemia depends on reduced Na+ re-
absorption in the DCT.

Congenital syndromes that impair Mg2+ reabsorption 
in the DCT, such as TRPM6 and CNNM2-associated 
disorders, do not involve disturbances of Na+ or K+ ho-
meostasis.54,55,60,62 Drugs that reduce TRPM6 activity, eg 
EGFR inhibitors, cause hypomagnesaemia, but are not 
associated with increased Na+ wasting.52,81-84 Only drugs 
that affect both TRPM6 and NCC activity such as rapa-
mycin and calcineurin inhibitors concomitantly result in 
Mg2+ and Na+ wasting.85-87 Altogether, these findings 
suggest that Na+ reabsorption affects Mg2+ reabsorp-
tion in the DCT but not vice versa. From a physiological 
point of view, this would mean that the Mg2+ reabsorp-
tion would be proportional to the Na+ reabsorption in the 
DCT. However, since Mg2+ homeostasis is also dependent 
on reabsorption in other nephron segments, bone storage 
and intestinal absorption, such correlations are rather 
complex to determine.

Given that patients with loss-of-function mutations in 
NCC or long-term thiazide treatment suffer from hypomag-
nesaemia66,67 and that both SPAK−/− and NCC−/− mice de-
velop hypomagnesaemia,13,88-91 it is generally accepted that 
Mg2+ reabsorption is affected by Na+ reabsorption in the 
DCT. However, the nature of this relationship and the molec-
ular mechanisms explaining this phenomenon are largely un-
known. In the following part of this review, we will critically 
assess three mechanisms that may explain the link between 
Mg2+ reabsorption and NCC activity.

2.1  |  Does DCT remodelling affect Mg2+ 
reabsorption?

NCC−/− mice often serve as a model for Gitelman syndrome 
because they display similar features as patients, such as in-
creased renin mRNA levels in kidney, hypomagnesaemia 
and hypocalciuria.13,91 Since the first generation of NCC−/− 
mouse, several groups have demonstrated atrophy of the 
DCT region,12,13 suggesting that NCC activity is essential 
for DCT cell survival. Interestingly, TRPM6 expression is 
lowered in NCC−/− mice and is accompanied by renal wast-
ing of Mg2+,92 which potentially could be explained by struc-
tural differences in the DCT segment (Figure 2). Recently, 
Schnoz et al shown that NCC−/− mice essentially lack DCT1 
cells which has been attributed to an increase in apopto-
sis.93 Likewise, a mouse model suffering mutations found 
in Gitelman syndrome shown reduced early DCT mass.94 
Consequently, a decrease in TRPM6 expression on protein 
level was observed. Yet, it cannot be excluded that the DCT 
cells, although less numerous, are capable to compensate by 
increasing TRPM6 activity at the cellular level.

Likewise, increased phosphorylation of NCC via gain-
of-function (GoF) mutations in WNK4 in mice, which leads 
to PHAII in humans, has been shown to elongate the DCT 
and associated with a mild increase in serum Mg2+ levels.95 
Similarly, mice with constitutively active SPAK (CA-SPAK) 
display DCT hyperplasia and hypertrophy,96 while depletion 
of SPAK was associated with reduced DCT mass.89 This sug-
gests that NCC activity, ie Na+ reabsorption in the DCT, is 
directly linked to DCT length. Interestingly, the GoF-WNK4 
mouse model shown impaired K+ secretion and hyperka-
laemia which was attributed to increased NCC and reduced 
ENaC activity, resulting in diminished ROMK-mediated K+ 
excretion.95 In contrast, it was reported that loss of Kir4.1, 
which leads to reduced NCC activity, is accompanied by a 
shortening of the DCT.97 In line, dietary K+ restriction re-
sulted in increased phosphorylation of NCC as a result of in-
creased Kir4.1 activity, and was accompanied by elongation 
of the DCT.97 Interestingly, long-term use of furosemide, the 
inhibitor of NKCC2 in the TAL, has been associated with 
hyperplasia and hypertrophy in the DCT, CNT and CD.11,98 
Nevertheless, furosemide treatment generally does not result 
in hypermagnesaemia.77,79,80 However, it should be noted that 
furosemide decreases the driving force for Mg2+ reabsorption 
in the TAL, which may be compensated by increased Mg2+ 
reabsorption in the DCT. Moreover, increased renal Mg2+ re-
absorption can be counteracted by reduced intestinal Mg2+ 
absorption or increased bone Mg2+ storage.

The mechanism by which altered Na+ or K+ load cues 
the DCT for adaptation remains obscure. It can, however, be 
hypothesized that DCT length is coupled to energy demand. 
The epithelial cells are packed with mitochondria owing to the 
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need of ATP for proper Na+-K+-ATPase functioning. Lowered 
Na+ loads to the DCT will result in a decreased basolateral 
Na+ efflux and a decreased ATP requirement. Indeed, NCC−/− 
DCT cells had decreased mitochondrial mass.13 In line, rats 
treated with thiazides demonstrated a decrease in cellular mi-
tochondrial content, which was concomitant with a stimulation 
of apoptosis.99 Similarly, rats on enriched Na+ diets or on fu-
rosemide showed an increase in DCT volume and increase in 
mitochondrial content,11 associated with a higher metabolic de-
mand of the cells.100,101 Mitochondrial biogenesis, the process 
of producing more functional mitochondria, can be stimulated 
via pharmacological agents, such as AICAR or Rapamycin.102 
It would be interesting to investigate if, under the right condi-
tions, DCT shortening can be rescued via intervention of this 
mTOR-AMPK pathway. It should be mentioned that Mg2+ re-
absorption via TRPM6 has also been shown in vitro to be sen-
sitive to mitochondrial activity. Electrophysiological analyses 
have shown that TRPM6 activity can be inhibited by H2O2, a 
by-product of mitochondrial activity.103 Yet, other models are 
required to test its validity in vivo.

However, patients suffering hypertension and treated with 
thiazides already display an increased renal Mg2+ leakage 
within hours, suggestive that there are also acute responses at 
hand, eg hormonal, rather than DCT remodelling that modu-
late Mg2+ reabsorption in the DCT.104

2.2  |  Is Mg2+ reabsorption regulated via the 
same pathways that regulate the NCC?

The NCC phosphorylation cascade is well-known for its sen-
sitivity to hormones such as angiotensin II, aldosterone and 
insulin in order to maintain blood pressure.2-6 Interestingly, a 
number of paracrine and endocrine factors have been shown 
to regulate TRPM6.7-10 Therefore, it can be speculated that 
there are common endocrine pathways that regulate both Na+ 
and Mg2+ reabsorption.

Aldosterone has been described as a regulator of both 
renal Na+ as well as Mg2+ reabsorption.2-4,105-107 To regu-
late NCC, aldosterone targets the mineralocorticoid ste-
roid receptor (MR) and stimulates SGK1 phosphorylation, 
which halts the E3 ubiquitin ligase NEDD4-2, resulting in 
increased NCC activation .108 Moreover, it has been shown 
that aldosterone also increases the activity of WNK/SPAK 
axis indirectly by modulating blood K+ levels, although it is 
not fully understood how the two pathways interact (Figure 
3).2-4,109 Although the direct effect of this axis on the ac-
tivity of TRPM6 has never been determined in vitro, van 
Megen et al have shown that DCT-specific CA-SPAK mice, 
in which NCC activity is increased, exhibit normomagnesae-
mia. Moreover, renal TRPM6 mRNA expression level was 
not altered.110 This suggests that TRPM6 regulation does not 

F I G U R E  2   DCT remodelling affects the expression of TRPM6. Disturbed K+ recycling owing to the inactivating mutations in K+ channels 
(grey Kir4.1/Kir5.1) decreased Na+ reabsorption by NCC via the WNK/SPAK axis. Lowered NCC activity—inhibited or mutated (grey NCC)—
leads to lowered K+ recycling and renal outer medullary K+ channel (ROMK)-mediated K+ excretion in the CD. Consequently, due to the 
lowered Na+ reabsorption, the energy demand to fuel the Na+-K+-ATPase among others in form of ATP is reduced. This mechanism might cause 
a reduction in DCT cell mitochondrial mass and even apoptosis, which via an unknown mechanism leads to the shortening of the DCT segment. 
This will ultimately result in the overall decreased expression of TRPM6 and thereby lowered blood Mg2+ concentrations. OSR1, oxidative stress 
response kinase 1; P, phosphorylation; SPAK, Ste20-like proline-alanine rich kinase; WNKs, with no lysine kinases
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involve the WNK/SPAK axis and more direct pathways are 
likely involved.

Nevertheless, hypomagnesaemia and increased renal 
Mg2+ wasting have been described in patients suffering 
from hyperaldosteronism owing to the presence of primary 
adrenocarcinoma.105,111 In rat models, aldosterone admin-
istration increased Mg2+ and Ca2+ levels in the urine and 
faeces, which was reversible upon spironolactone treatment, 
an antagonist of the aldosterone receptor.112,113 It is, how-
ever, not clear whether changes in Mg2+ reabsorption are 
directly linked to decreased DCT-mediated electrolyte re-
absorption or if it is a systemic effect caused by changes 
in blood pressure.112 For instance, aldosterone administra-
tion in C57B6 mice was associated with decreased renal 

TRPM7 expression independent of changes in blood pres-
sure, suggesting a direct effect of aldosterone on DCT Mg2+ 
reabsorption.114 On the other hand, hypertensive mice with 
an innate lowered serum Mg2+ levels displayed decreased 
TRPM6 expression upon aldosterone treatment, suggesting 
that these effects might be mediated by the changes in the 
extracellular volume.115 In addition to the difference in basal 
blood pressure levels, it is also important to note that the two 
mice models have different genetic backgrounds. Therefore, 
interpretation of results and conclusions drawing should be 
taken cautiously.

Currently, assessing the effect of aldosterone on TRPM6 
function remains difficult because of the lack of cell mod-
els that express the protein endogenously. Nevertheless, the 

F I G U R E  3   Dysregulation of NCC and TRPM6 common regulatory pathways. Inactivation of NCC frequently gives rise to secondary effects 
such as secondary hyperaldosteronism and insulin resistance in Gitelman patients. Under normal conditions, aldosterone (top) modulates NCC 
activation via MR/SGK1/NEDD4-2 and WNK/SPAK axes. To regulate DCT Mg2+ reabsorption, aldosterone potentially acts on TRPM6/7 directly, 
although the mechanisms remain undetermined. Insulin (bottom) orchestrates NCC phosphorylation pathway by the PI3K/mTORC2 pathway while 
it modulates TRPM6 activity through the PI3K/Akt pathway. In Na+-wasting disorders, hormonal disturbances will possibly dysregulate these 
signalling pathways, inhibiting TRPM6/7 activity in the process and ultimately resulting in hypomagnesaemia. Akt, protein kinase B; IR, insulin 
receptor; MR, mineralocorticoid receptor; mTORC2, mechanistic target of rapamycin complex 2; P, phosphorylation; PI3K, phosphoinositide 
3-kinases; SGK1, serum/glucocorticoid-regulated kinase 1; TRPM7, transient receptor potential melastatin 7; Ub, ubiquitination
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effect of aldosterone treatment on TRPM7 expression in 
the kidney has been studied in vitro. For instance, TRPM7 
expression was increased via the SGK1-mediated phos-
phorylation of the TRPM7-kinase domain upon exposure 
of aldosterone in HEK293 cells and mediated Mg2+ influx, 
although these effects were not acute.116,117 Yet, it is still not 
elucidated whether these results are specific for TRPM7 or 
could potentially be extended to TRPM6.116 Consequently, 
the effect of aldosterone on Mg2+ reabsorption in the kidney 
remains to be experimentally confirmed.

Interestingly, recent studies have disclosed that dietary 
depletion of Mg2+ can directly affect NCC-mediated Na+ re-
absorption. Ferdaus et al demonstrated that dietary Mg2+ re-
striction decreased the renal NCC expression.118 Unlike with 
K+ restriction diets, which leads to increased NCC phosphor-
ylation via increased Kir4.1 activity,119 Mg2+ restriction led 
to degradation of NCC, possibly via the ubiquitin E3 ligase 
NEDD4-2 (Figure  4). Mice deficient for NEDD4-2 exhib-
ited resistance to dietary Mg2+-dependent NCC degradation. 
More recently, the same authors published a proposed mech-
anism by which NEDD4-2 regulates Kir4.1/Kir5.1 function, 
which indirectly affects the intracellular Cl− concentration, 
and thereby the WNK/SPAK-axis.120 Whether the effects of 
Mg2+ were directed via Kir4.1/Kir5.1 was not explored. Free 
Mg2+ and Mg2+ bound ATP (Mg-ATP) are known factors that 
inhibit TRPM6 function, as they can directly block channel 
activity.121,122 How (intracellular) Mg2+ levels regulate NCC 
expression in the DCT should be experimentally investigated, 
since this could also aid in the understanding why patients 
suffering HSH or HSMR syndrome do not have altered Na+ 
reabsorption in the DCT.

Insulin stimulates Na+ reabsorption in the kidney, as 
notoriously known by the increased risk of hypertension in 
diabetic type II patients.123,124 Apart from increasing Na+ 
transport in the proximal tubule and loop of Henle,125,126 
insulin has be shown to both modulate NCC and TRPM6 
activity by a PI3K (phosphoinositide 3 kinases), mTORC2 
(mechanistic target of rapamycin complex 2) and AKT1 
(AKT serine/threonine kinase 1)-dependent phosphorylation 
cascade (Figure 3).5,6,10 Although impaired glucose metabo-
lism and insulin resistance have been described in Gitelman 
patients,127-129 the minor changes in plasma insulin levels 
make it unlikely that insulin is responsible for hypomagne-
saemia in Na+ wasting disorders.

In addition to insulin and aldosterone, oestrogens has been 
shown to regulate TRPM6 and NCC expression.130-135 For 
example, oestrogens increase renal NCC expression and ac-
tivity via its phosphorylation136,137 and TRPM6 mRNA levels 
in animal models.53,138 Yet, no reports have been found that 
show a relationship between inactivating mutations in NCC 
and oestrogen level disturbances, making it unlikely that oes-
trogen affects DCT-mediated Mg2+ reabsorption in patients 
with Na+ wasting disorders.

2.3  |  Could a depolarised membrane 
potential difference reduce Mg2+ reabsorption?

In the DCT, there is no chemical gradient for Mg2+ reab-
sorption since the extracellular and intracellular Mg2+ con-
centration are within the same range. TRPM6-mediated 
Mg2+ influx in the DCT, therefore, depends solely on the 
electrical gradient.51 Consequently, maintaining the apical 
membrane potential difference is essential for Mg2+ reab-
sorption in this segment. Since Na+ and Cl− co-transport 
is electroneutral, and is not dependent on the apical mem-
brane potential difference, it is unlikely that NCC directly 
affects TRPM6-mediated Mg2+ transport. Studies in im-
mortalized mouse DCT cells demonstrated that a reduced 
apical membrane potential significantly decreased Mg2+ 
uptake.139 It has been postulated that the apical K+ channel 
Kv1.1 contributes to the apical membrane potential differ-
ence, which would facilitate Mg2+ influx.50,51,140 Although 
direct membrane potential measurements in the DCT are 
technically challenging and therefore not available, a depo-
larised state of the apical membrane will inevitably result 
in a reduced driving force for apical Mg2+ transport via 
TRPM6.

The Na+-K+-ATPase plays a central role in DCT phys-
iology, specifically in electrogenic ion transport (Figure 1). 
The DCT has the highest activity of this heterodimer within 
the kidney, which is accompanied with the highest density of 
mitochondria as generator of ATP.141 The Na+-K+-ATPase 
provides the driving force that is required for NCC activ-
ity, and sets the basolateral membrane potential difference 
at ±−70 mV. Mutations in ATP1A1 and FXYD2, encoding 
the alpha and gamma subunits, respectively, of the Na+-K+-
ATPase have been associated with hypomagnesaemia and 
renal Mg2+ wasting.142-144 Moreover, prolonged treatment 
with Na+-K+-ATPase inhibitors increased the incidence of 
hypomagnesaemia.145,146 These findings highlight the im-
portance of the Na+-K+-ATPase for renal Mg2+ reabsorption 
(Figure 5).

Salt-wasting disorders of the DCT indirectly cause de-
creased Na+-K+-ATPase activity. As Kir4.1 is essential 
for basolateral K+ recycling at the basolateral membrane, 
Kir4.1 mutations that cause EAST/SeSAME syndrome, 
impair Na+-K+-ATPase activity.16,69,147 By uncoupling the 
“pump-leak mechanism” at the basolateral membrane, the 
plasma membrane will be depolarised via reduced Kir4.1 
K+ extrusion. This would limit the Cl− extrusion via 
ClC-Kb, lead to an increased intracellular Cl− concentra-
tion, the inhibition of WNK kinases, and ultimately inhib-
ited NCC-mediated Na+ reabsorption. Indirectly, changes 
in the basolateral membrane potential could thereby reg-
ulate NCC function. On the other hand, interestingly, al-
though Na+-K+-ATPase activity has never been directly 
assessed in Gitelman syndrome, data from thiazide-treated 
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rats demonstrate reduced Na+-K+-ATPase activity in the 
DCT.148 Upon thiazide treatment, the reduced NCC activ-
ity may decrease the intracellular Na+ in the DCT, reducing 

the Na+ supply to the Na+-K+-ATPase. Indeed, Na+-K+-
ATPase activity in the proximal tubule and loop of Henle 
was not altered by thiazide treatment.148

F I G U R E  4   Model of NEDD4-2 role in NCC activity. In normal condition, NCC activation and degradation is well-orchestrated by the WNK/
SPAK axis and the E3 ubiquitin ligase NEDD4-2, respectively. Recently, NEDD4-2 has also been shown to regulate basolateral K+ extrusion by 
ubiquitinating Kir4.1/Kir5.1. NEDD4-2, neuronal precursor cell developmentally downregulated 4-2
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Given that the Na+-K+-ATPase is crucial for the K+ recy-
cling and thereby contributes to K+ permeability, its reduced 
activity in EAST/SeSAME and Gitelman syndrome will 
result in a depolarised basolateral membrane. Basolateral 
Mg2+ extrusion is generally considered to be Na+ depen-
dent. A wide range of experiments in different cell types 
have demonstrated the presence of a Na+-Mg2+ exchange 
mechanism.149 Reduced Na+-K+-ATPase in salt-wasting syn-
drome of the DCT may, therefore, directly reduce the Na+ 
gradient that is required for Mg2+ extrusion. Although the 
exact molecular identity of the Mg2+ extrusion mechanism 
is under debate, Kolisek and colleagues have advocated that 
SLC41A1 functions as Na+-Mg2+ exchanger in a 2:1 stoichi-
ometry.150,151 However, the Na+ dependence of Mg2+ efflux 
via SLC41A1 is under debate.150 Arjona et al recently showed 
that SLC41A1 facilitates Na+ and Cl− independent Mg2+ ef-
flux in overexpression models.152 Further studies in native 
DCT cells are required to further elucidate this mechanism. 
The nature of the Mg2+ extrusion mechanism is important 
to understand the effects of Gitelman and EAST/SeSAME 
syndrome on Mg2+ reabsorption.

3  |   Conclusion and perspectives

Na+ and Mg2+ reabsorption in the DCT are closely coupled. 
Atrophy of the DCT caused by loss of NCC activity is the most 
supported hypothesis to explain hypomagnesaemia in Na+ wast-
ing disorders. Although these data are mainly obtained in animal 
models and biopsies of Gitelman patients are rarely executed, 
recent data suggest that progressive regression of the DCT ex-
plains the late clinical onset of the syndrome.93 However, hor-
monal pathways that co-regulate NCC and TRPM6 and the 
effects of changed basolateral Na+ and K+ transport cannot be 
excluded and may also contribute to hypomagnesaemia.

In conclusion, further studies should provide final an-
swers on the coupling of Na+ and Mg2+ reabsorption of the 
DCT. Our comprehensive analysis shows that this process is 
not dependent on a single factor, emphasizing the complex-
ity of experimental design mimicking physiologically rep-
resentative conditions. Recent advances in kidney organoid 
cultures may provide an advanced tool to dissect how Mg2+ 
transport is dependent on NaCl reabsorption, as they pro-
vided insights in other congenital disorders.153-155 Dissecting 
the underlying molecular mechanisms would not only add to 
the fundamental knowledge of ion transport in the kidney but 
it would also be an invaluable addition towards understand-
ing the development of hypomagnesaemia in inherited Na+ 
wasting disorders.
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