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Many antibiotics available in the clinic today directly inhibit bacterial trans-

lation. Despite the past success of such drugs, their efficacy is diminishing

with the spread of antibiotic resistance. Through the use of ribosomal modifi-

cations, ribosomal protection proteins, translation elongation factors and

mistranslation, many pathogens are able to establish resistance to common

therapeutics. However, current efforts in drug discovery are focused on over-

coming these obstacles through the modification or discovery of new treatment

options. Here, we provide an overview for common mechanisms of resistance

to translation-targeting drugs and summarize several important breakthroughs

in recent drug development.

1. Introduction
Protein synthesis is an essential process that is required by all living organisms.

Through the process of translation, the ribosome reads a messenger RNA transcript

and synthesizes the encoded protein sequence. Although translation maintains

universal importance, there are distinct differences between eukaryotic and pro-

karyotic translation that have historically been exploited for the development of

antibiotics. When a bacterial pathogen is treated with a translation inhibitor,

protein synthesis rapidly halts, leading to death or severe growth limitation.

Current treatments inhibit translation through a variety of different strategies, ran-

ging from directly targeting the ribosome to targeting aminoacyl tRNA (aa-tRNA)

synthetases [1–5]. This method of treating infections has been so effective that

dozens of different translation inhibitors have been brought to the clinic since the

1940s, effectively revolutionizing healthcare [6,7]. With the development of anti-

biotics, an infection that was once life-threatening can now be cleared in a matter

of days. However, almost as quickly as these drugs have been developed, they

are also being rendered obsolete, as bacteria are rapidly acquiring and evolving

mechanisms of resistance in order to avoid eradication. Excessive and inappropri-

ate use of antibiotics has facilitated the rise and spread of multidrug-resistant

pathogens, commonly referred to as superbugs [6,8,9]. With the recent plateau in

discovery of new classes of antibiotics, infections that are currently treatable may

once again become deadly. Despite the looming threat of a post-antibiotic world,

efforts to develop new strategies to target translation leave us with an optimistic

outlook. Several recent reviews have presented an in-depth look at the mechanism

of action of antibiotics targeting translation and specific mutations that confer

resistance [1–3,5,10,11]. Here, we bring together the different points in translation

that can be targeted for antibiotic development in an overview of common trans-

lation drug targets, mechanisms of resistance, and exciting new directions in the

development of novel translation-targeting antibiotics.

2. Resistance formation
2.1. Modification of the ribosome
The ribosome is the central hub of protein production within the cell. Consisting

entirely of ribosomal RNA (rRNA) and proteins, the bacterial ribosome is

http://crossmark.crossref.org/dialog/?doi=10.1098/rsob.190051&domain=pdf&date_stamp=2019-07-10
mailto:ibba.1@osu.edu
http://orcid.org/
http://orcid.org/0000-0002-5318-1605
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


peptidyl transfer centre
phenicols

50 S

30 S

APE

3¢5¢

decoding centre

nascent peptide exit tunnel

aminoglycosides
tetracyclines
odilorhabdins

macrolides
ketolides

Figure 1. General points of inhibition on the 70 S ribosome and discussed drugs that target them.
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composed of a large 50 S and small 30 S subunit (figure 1).

Due to the large and complex nature of the ribosome, its

activity can be inhibited by a variety of different methods

with antibiotics that bind in distinct locations [1–3]. For

example, aminoglycosides generally target the 30 S subunit,

preventing translocation or A-site tRNA binding and promot-

ing miscoding, while macrolides bind the nascent peptide

exit tunnel on the 50 S subunit, preventing peptide bond

formation and translocation (figure 1) [12,13]. Though both

classes of antibiotics maintain distinct activities, both are

efficient at halting translation. Modification of the ribosome

is one of the most direct forms of antibiotic resistance. Bac-

teria will often employ methyltransferases to methylate

either the large subunit 23 S or small subunit 16 S rRNA

[13–15]. Through this methylation, interactions that anti-

biotics made with either of these rRNAs are prevented, and

drug activity is inhibited. Although modification of the ribo-

some is effective in preventing antibiotic binding, it is not

necessarily without its limitations. Some ribosomal modifi-

cations alter translation and result in a fitness cost [16]. For

this reason, ribosomal modification is often inducible so

that it is only used when necessary for survival. For example,

erythromycin will induce ribosomal pausing on the leader

peptide for the methylase responsible for the dimethylation

of the 23 S rRNA, ermC [17]. This pausing induces the

transcript to form a structure in which the Shine–Dalgarno

sequence for ermC is exposed, allowing for the translation

of ermC [15,18,19]. ErmC then methylates the nascent peptide

exit tunnel and prevents erythromycin binding. This resist-

ance often comes with a cost, as strains of Staphylococcus
aureus that are engineered to constitutively express ermC are

outcompeted by wild-type strains due to the inefficient

translation of select polypeptides [16]. This inducible

system allows S. aureus to survive in the presence of an anti-

biotic yet still maintain optimal proteome homeostasis when

conditions are favourable.

For organisms that maintain numerous copies of rRNA

genes, rRNA methylation is an ideal mode of resistance, as

each ribosome can receive the modification without the
need to acquire the exact same mutation in each rRNA in

the genome. However, in organisms that maintain a rela-

tively low number of rRNA genes, copy number is no

longer a constraint to the development of resistance

mutations. For example, Mycobacterium tuberculosis only

maintains one copy of each rRNA, and mutation of nucleo-

tides within these rRNAs is an effective way to prevent

antibiotic activity. A single amino acid substitution,

A1408G, in the 16 S rRNA has been shown to decrease suscep-

tibility of M. tuberculosis to aminoglycosides through inhibition

of binding [20]. However, as was observed with methylation

of the 23 S or 16 S, this mutation comes with a considerable fit-

ness cost. To ameliorate the impact of A1408G, M. tuberculosis
has been shown to upregulate rRNA methyltransferase tlyA,

which will then methylate C1409 in the 16 S rRNA [20].

Although this modification does improve the overall fitness

of the pathogen, it does lessen the resistance conferred by

the A1408G mutation [20]. Through this trade-off, M. tubercu-
losis maintains a middle ground between optimal fitness and

effective resistance.

Unlike rRNAs, bacteria generally only maintain a single

copy of each ribosomal protein. These proteins can easily

acquire mutations to prevent antibiotic activity. For example,

mutations in the 30 S ribosomal subunit protein S12 have

been shown to induce resistance to miscoding antibiotics

such as paromomycin and streptomycin [21–23]. S12 plays

a critical role in ensuring the correct codon–anticodon pair

is made during decoding. Although identified mutations do

not prevent drug binding, they have been shown to signifi-

cantly increase ribosomal accuracy, effectively counteracting

drug activity [24]. In vitro, these mutations often also come

with a significant fitness cost, as this increase in fidelity

also decreases the rate of translation elongation [24,25]. How-

ever, second site compensatory mutations can ameliorate

this effect, and S12 mutations have also been identified

in vivo in M. tuberculosis that are virtually cost free [26–30].

This suggests that simply reducing antibiotic use will not

necessarily result in the elimination of resistant pathogens

through competition with the sensitive strains, as is
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Figure 2. Ribosomal protection proteins bind the ribosome to dislodge inhibitory drugs and restore ribosome activity. (a) TetM binds the 16 S rRNA in the 30 S subunit
to dislodge tetracycline [31]. (b) VmlR binds the E site and extends into the peptidyl transfer center to dislodge 50 S targeting drugs such as steptogramin A or
lincosamides [32].
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commonly believed [26,27]. The gravity of this observation

highlights the need for future drug development.

2.2. Ribosomal protection proteins
While modification of the ribosome is effective, it generates

ribosomes that are not operating at maximum efficiency. As

an alternative method of prevention of antibiotic binding,

many bacteria employ ribosomal protection proteins (RPPs).

An RPP will inhibit drug activity without also permanently

altering ribosomal activity. Through direct, reversible binding

to the ribosome, several different RPPs have been identified

that can prevent drug binding or even dislodge drugs that

target either the 50 S or 30 S subunit (figure 2) [11,33].

Both TetM and TetO are RPPs that inhibit the activity of

tetracycline, an antibiotic that directly targets the 30 S subunit

and prevents aa-tRNA binding at the A site [11,34]. Structural

studies have indicated that the protection provided by these

proteins is twofold. First, TetM (or TetO) will bind and

induce a conformational change in the ribosome. This struc-

tural change disrupts key bonds between tetracycline and

the ribosome and dislodges it from its binding pocket

[31,35]. Second, this new conformation prevents the drug

from rebinding, further potentiating the protection [31,35].

Thus, through both of these activities, TetO and TetM are

effective in preventing tetracycline binding and removing

drug once bound (figure 2a). For a recent specialized review

on tetracycline resistance mechanisms, see Nguyen et al. [11].

A second class of RPPs is the antibiotic resistance (ARE)

ATP-binding Casette F (ABCF) proteins. ARE ABCFs are a

widespread family of proteins that have been shown to med-

iate resistance against a diverse set of 50 S targeting drugs.

Although they are named for their ability to bind and hydro-

lyse adenosine triphosphate (ATP), recent evidence indicates

they also hydrolyse other nucleotide triphosphates (NTPs)

[36]. On average, bacteria maintain four ABCFs per genome,

with the most being found in Firmicutes and Actinobacteria

[37]. Although the general activity of these proteins had

been known for some time, the precise mechanism of action

had been controversial. Until recently, there were competing

theories postulating that these proteins either associated with

a transmembrane domain and acted as efflux pumps, or that

they directly inhibited antibiotic activity as RPPs [33]. How-

ever, in vitro translation experiments provided strong
evidence for the latter theory, as addition of an ARE ABCF

protein to an in vitro translation assay prevented macrolide

inhibition of translation in a concentration-dependent

manner [38]. This was further solidified with the recent eluci-

dation of the structures of two ARE ABCF proteins, MsrE and

VmlR, bound to the 70 S ribosome [32,39]. From these struc-

tures, it was evident that these RPPs directly bind to the E-

site of the 50 S subunit. Upon binding, the linker domain

extends into the peptidyl transfer centre, inducing a confor-

mational change in the ribosome that will result in drug

release (figure 2b) [32,37,39]. Through these studies, the

scope of RPPs was significantly broadened to show that

this mechanism of resistance can be applied to the 50 S as

well as the 30 S subunit. For a recent specialized review on

ABCF-mediated ribosomal protection, see Ero et al. [10].

2.3. Translation factors
Although the ribosome is the central hub of protein synthesis,

it cannot function properly without the assistance of

additional translation factors. Translation factor elongation

factor G (EF-G) is an essential GTPase that catalyses tRNA

translocation through the ribosome. EF-G activity can be

directly or indirectly inhibited through the use of several

different drugs [40]. For example, fusidic acid binds directly

to EF-G and traps it by binding it to the ribosome [41].

Although this will efficiently halt translation, fusidic acid

resistance can be easily acquired through point mutations in

EF-G that alter drug activity [42]. Such mutations have

been identified in clinical isolates of S. aureus [42,43].
Although such mutations generally come with a fitness

cost, clinical isolates of S. aureus have been identified that

maintain both the resistance mutation and compensatory

mutations to reduce this cost [44]. To lower the rate of resist-

ance formation, fusidic acid is generally only used in a clinical

setting in combination with other drugs [43]. Ribosome bind-

ing drugs can also indirectly inhibit EF-G activity. Several

crystallography studies have found that thiopeptides,

GE82832 and dityromycin bind the ribosome and inhibit

EF-G-catalysed translocation [3,45]. However, resistance can

be acquired to these drugs through point mutations within

the ribosomal protein S12 that prevent drug binding [45].

In addition to EF-G, the ribosome also requires another

essential GTPase, elongation factor Tu (EF-Tu). EF-Tu binds
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Figure 3. Mistranslation exacerbates deleterious mutations in antibiotic-resist-
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aminoacylated tRNAs and escorts them to the A-site of the

ribosome. Upon codon–anticodon pairing, EF-Tu will hydro-

lyse guanosine triphosphate (GTP), release the aa-tRNA and

dissociate from the ribosome. Although EF-Tu plays a critical

role in translation elongation, drugs found to target EF-Tu

generally have low solubility and permeability and are not

amenable to clinical use [46]. However, further optimization

of such drugs could provide useful compounds in the

future. To date, over 30 EF-Tu inhibitors (also known as elfa-

mycins) have been identified [46]. EF-Tu activity can be

inhibited with drugs that will trap EF-Tu bound to the ribo-

some or with drugs that will prevent EF-Tu:GTP aa-tRNA

ternary complex formation [47–49]. Although resistance for-

mation against elfamycins has never been characterized in a

clinical setting, strides have been made to anticipate potential

mechanisms of resistance to such drugs. Given that many

bacteria maintain two copies of EF-Tu, elfamycin resistance

can be rather complicated. In the case of drugs that prevent

ternary complex formation, only one copy of EF-Tu needs

to acquire the resistance mutation to continue functioning

in translation [50]. In the case of drugs that trap EF-Tu on

the ribosome such as kirromycin, both copies of EF-Tu

would have to acquire resistance mutations, as a single

non-resistant EF-Tu will have a dominant effect due to

increased affinity. Resistance to kirromycin has only been

observed in bacterial strains in which one copy of EF-Tu

has been inactivated [51]. Although this makes elfamycins

an enticing lead in drug discovery, significant optimization

will be required to improve their pharmacokinetic proper-

ties before they are brought to the clinic [46]. For a recent

specialized review on elfamycins, see Prezioso et al. [46].

2.4. Mistranslation-mediated resistance
During translation, the ribosome must correctly pair each

codon with the corresponding aminoacylated tRNA so that

the appropriate amino acid will be incorporated into the nas-

cent peptide chain. Although accuracy in this process is

critical for maintaining the fidelity of the genetic code,

errors in translation have been estimated to be as high as

1024 per codon [52,53]. These errors in translation are com-

monly referred to as mistranslation and have been shown to

influence antibiotic resistance in a number of different ways.

First, mutations in ribosomal proteins can have a

significant impact on ribosome activity, often enhancing or

diminishing decoding accuracy depending on the location

of the mutation [54]. For example, it has previously been

observed that mutations in ribosomal protein RpsD result

in a marked increase in the rate of mistranslation [53,55,56].

Although strains harbouring this mutation generally exhibit

a decrease in fitness due to the high number of errors in

their proteome, these errors can be advantageous for the

population as a whole when confronted with cefotaxime

[54]. In the presence of low levels of this drug, weakly dele-

terious mutations in the cefotaxime resistance protein

(TEM-1) are tolerated (figure 3). Although such a mutation

would not be beneficial, when the concentration of the anti-

biotic is low, the fitness cost associated with the mutation is

not significant enough to result in complete elimination of

the organism. However, if the organism maintains a high

level of mistranslation, then the TEM-1 can harbour both

this weakly deleterious mutation as well as mistranslated

residues. This combination exacerbates the deleterious effects
of the mutation, and it is effectively purged from the popu-

lation, resulting in enhanced fitness overall (figure 3) [54].

In this way, mistranslation can be advantageous to a popu-

lation that is met with an antibiotic stress. However, it is

noteworthy that this effect is only observed in the presence

of low levels of antibiotic, where organisms with weakly

deleterious mutations are able to survive. When the antibiotic

stress is high enough, even weakly deleterious mutations in

an antibiotic-resistance gene cannot be tolerated. Although

this suggests that this phenomenon would not be relevant

in a patient being treated with a high dose of an antibiotic,

it could be critical for the survival of resistant pathogens in

the environment. With the inappropriate and overuse of anti-

biotics, low levels of these drugs make their way into the

environment [6]. Within this context, it is likely that mistran-

slation could aid in enhancing fitness of organisms that are

tolerating this low level of antibiotic stress.

A second source of mistranslation arises from errors in

aminoacylation of tRNAs. Aminoacyl tRNA synthetases

(aaRSs) are the enzymes responsible for correctly pairing

each tRNA to its cognate amino acid. Errors in this process

can result in misacylated tRNAs that are then used for trans-

lation, allowing non-cognate amino acids to be incorporated

into a protein. Mutation of aaRSs and related proteins can

disrupt the fidelity of aminoacylation and allow for mistransla-

tion. Such mutations have often been found in clinical isolates

that display enhanced antibiotic resistance. For example,

clinical isolates of M. tuberculosis have been shown to harbour

mutations in gatA, an amidotransferase that facilitates the

conversion of Glu-tRNAGln to Gln-tRNAGln and Asp-tRNAAsn

to Asn-tRNAAsn [57]. These mutations in gatA result in an

increase in misincorporation of Glu at Gln codons and Asp

at Asn codons. Through such misincorporation, an Asn

residue in RpoB that is critical for rifampicin binding is mis-

translated as an Asp. This substitution prevents rifampicin

binding and makes M. tuberculosis highly tolerant of rifampicin

treatment [57,58].

Mutations in aaRSs have also been shown to influence

antibiotic resistance through indirect effects. For example,

strains that are resistant to ciprofloxacin often harbour
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mutations in several different aaRSs [59]. These mutations

result in inappropriate activation of the stringent response,

presumably through the accumulation of deacylated tRNAs.

Through the stringent response, the cell activates a number

of efflux pumps, which remove the antibiotic from the cell.

Although these mutations were initially identified in the pres-

ence of ciprofloxacin, activation of the stringent response

through aaRS inhibition was also shown to increase resistance

to drugs that act through diverse mechanisms including

rifampicin, chloramphenicol, mecillinam, ampicillin and

trimethoprim, indicating that partial aaRS inactivation can

have broad implications for resistance formation [59]. Escherichia
coli clinical isolates have also been identified that harbour

similar aaRS mutations, indicating that this mechanism is

likely relevant in vivo [60–63].

3. New frontiers in antibiotic development
Mechanisms of resistance have been identified for nearly

every translation inhibitor in the clinic [6]. As many of

these drugs are being inappropriately overused, resistance

will likely continue to spread until these drugs become obso-

lete [6,8,9]. This ominous threat merits the development of

new treatment options. Given the past success of translation

inhibitors as therapeutics, many are developing new strategies

to target this process. Currently, approximately one-third of

new drugs under clinical development target translation

(figure 4) [64].

3.1. Discovery of novel antibiotics
The years between 1940 and 1960 were the golden age of anti-

biotic development [6]. During this time, the majority of the

antibiotics used today were identified in soil-dwelling actino-

mycetes. However, as only 1% of bacteria can be cultured in a

laboratory setting, the number of compounds identified from

these organisms is limited [65]. After this short 20-year span,

screening cultivable actinomycetes for drugs was only lead-

ing to rediscovery of known compounds. This roadblock

was a major factor behind the plateau in antibiotic develop-

ment. However, in recent years, scientists have begun to

revisit this approach. Within previously unculturable organ-

isms, several promising new antibiotics have been identified.

Actinomycetes maintain a high number of non-ribosomal

peptide synthetases (NRPSs) and polyketide synthetases

(PKSs) that allow for the production of diverse metabolites
and antibiotics. Due to the previous success in identifying

drugs in actinomycetes, it is likely that other organisms that

maintain genes with similar functions will also produce

useful compounds. Like actinomycetes, the Xenorhabdus
genus maintains a relatively high number of diverse NRPSs

and PKSs [66]. However, Xenorhabdus is not typically used

for antibiotic discovery, as it is naturally a symbiont in soil-

dwelling nematodes. In a recent screen for antimicrobial

activity in Xenorhabdus extracts, a novel class of translation-

targeting antibiotics was identified. Odilorhabdin binds the

30 S ribosomal subunit at the decoding centre and induces

ribosomal stalling and miscoding, presumably through

increasing affinity of non-cognate aa-tRNAs for the A-site

[67]. Though this activity is reminiscent of aminoglycoside,

tetracycline and negamycin inhibition, the binding site of odi-

lorhabdin does not overlap with any of these drugs [67].

Further, odilorhabdin displays antimicrobial activity for a

wide spectrum of both Gram-positive and Gram-negative

pathogens while exhibiting low levels of toxicity in a murine

model, indicating odilorhabdin has a promising future as the

basis for new therapeutics [67].

Attempts have also been made to identify drugs in the

other 99% of bacteria that have never been cultured. Through

the use of isolation chips (iChips), scientists can now culture

bacteria directly in a soil environment, allowing for the

identification and characterization of previously uncultured

organisms [68]. New antibiotics can then be identified in

the extracts of these elusive organisms. For example, through

the use of iChips, teixobactin, a cell wall biosynthesis inhibi-

tor, was identified in Eleftheria terrae, an organism that was

previously uncultivable [69]. Although teixobactin does not

inhibit translation, this discovery highlights the potential for

discovery of novel translation-targeting drugs in previously

uncultured organisms.

3.2. Modification of existing antibiotics
Although the isolation of antibiotics from natural sources is a

relatively new development in modern medicine, these drugs

and the corresponding resistance genes are ancient [70–72].

Over millions of years, bacteria have evolved these compounds

and protection mechanisms for competition, communication

and regulation of gene expression. Isolation of previously

existing natural compounds comes with both significant

benefit and cost. On the one hand, the drugs that are being

isolated are the result of millions of years of evolution and

are therefore highly effective. On the other hand, the genes

that are required for resistance have also been selected for

over evolutionary time and can easily spread between organ-

isms in the presence of sufficient selective pressure. In an

effort to still use these potent antibiotics while avoiding

resistance mechanisms, drug development is turning to the

chemical modification of previously isolated compounds.

The modification of tetracycline has resulted in several ami-

nomethylcyclines and fluorocyclines that are currently under

clinical development or that have recently been approved by

the US Food and Drug Administration (FDA) [64]. The amino-

methylcycline omadacycline was FDA approved in 2018 to

treat community-acquired bacterial pneumonia and acute bac-

terial skin and skin structure infections and KBP-7072 (another

aminomethylcycline) is in clinical development for the treat-

ment of pneumonia and is effective against S. aureus and

Streptococcus pneumoniae in a murine model [64,73]. Of the
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fluorocyclines, TP-271, TP-6076 and eravacycline have dis-

played potent in vivo efficacy, and eravacycline was FDA

approved in 2018 [64,74–78]. These drugs have also been

shown to be effective in vitro against tetracycline-resistant clini-

cal isolates, including isolates that are known to maintain

ribosomal protection proteins [76,78]. This indicates that

these modified drugs have the potential to avoid existing

resistance mechanisms.

Aminoglycosides have also been used as a scaffold for

chemical modification to generate more powerful antibiotics.

Plazomicin (ACHN-490) is a modified aminoglycoside that

was FDA approved in 2018 [64,79]. It is effective against

drug-resistant clinical isolates, including strains that are

known to be resistant to aminogyclosides and carabapenem-

resistant Enterobacteriaceae, which have been identified by

the Centers for Disease Control as an urgent threat in the

rise of antibiotic-resistant pathogens [79,80]. However,

plazomicin was not effective in vitro against strains expres-

sing 16 S methylase armA, indicating that it is not immune

to all modes of aminoglycoside resistance [79]. Attempts

have also been made to use aminoglycosides as carriers

that will target a ‘catalytic warhead’ directly to the ribosome.

Neomycin can be modified with diverse diamine compounds

that have been shown to accelerate the cleavage of

adenylyl(30 –50)adenosine [81]. It would be expected that, as

this modified neomycin binds the ribosome, the diamine

would stimulate cleavage of the 16 S rRNA, permanently dis-

abling the ribosome. Although initial results do not reveal

rRNA cleavage, structural data indicate that two diamine

modifications do induce a significant structural change in

the phosphate backbone of the 16 S rRNA [81]. Though this

change is not sufficient to stimulate rRNA cleavage, this

result indicates that, through remodelling of the diamine

modification, these warheads will be effective in disabling

ribosomes.

Synthetically derived ketolides are a promising class of

antibiotics that are currently under clinical development

[64,82,83]. Nafithromycin (WCK 4873) and solithromycin

(T-4288) are effective against a wide range of pathogens,

including some that are known to be resistant to macrolides

[84–86]. Although a recent metanalysis indicated that such

ketolides are not necessarily more potent than current treat-

ments, these drugs are believed to not fully induce

expression of the corresponding resistance gene and are

therefore powerful alternatives to avoid this mechanism

[84,87]. That being said, such drugs are less effective against

strains that display a constitutive macrolide–lincosamide–

streptogramin B-resistance phenotype [84,86]. It is important

to also note that ketolides could come with additional

limitations. Although all of the clinically relevant ketolides

are chemically derived from macrolides, a single naturally

occurring ketolide, pikromycin, has been isolated from Strep-
tomyces venezuelae [88]. In order to resist inhibition from the

pikromycin it produces, S. venezuelae must also maintain

two inducible methyltransferases ( pikR1 and pikR2) that pro-

vide resistance to this drug. Despite the diversity of the

synthetically derived ketolides, bacteria that have acquired

pikR1 or pikR2 become resistant to the synthetic compounds,

suggesting that chemically derived compounds are not

immune to all resistance mechanisms [88].

Recently, strides have also been made in the modification of

chloramphenicol, a phenicol that binds to the petidyl transfer-

ase centre and inhibits accommodation of the A-site aa-tRNA
(figure 1) [89,90]. Aminoacyl derivatives of chloramphenicol

have been shown to display both an increased affinity for the

ribosome and an altered drug binding site [89]. Owing to

this change in site specificity, structural data suggest that

these derivatives would not be inhibited by methylation of

the 23 S rRNA, a common resistance mechanism against pheni-

cols. However, these analogues do not display the same level of

translation inhibition as the parent molecule [89]. Further

chemical optimization would be required for these modified

compounds to be useful in a clinical setting. Derivatization of

chloramphenicol can also have a significant impact on which

cellular process the drug will target. For example, chloramphe-

nicol-derived enone and enal analogues have been shown to

inhibit cell wall biosynthesis rather than translation [90].

Although these derivatives have a drastically different mechan-

ism of action, they are still highly efficient in inhibiting bacterial

growth and exhibit a significantly lower propensity for

resistance formation than the parent molecule. Despite these

advantages, these analogues will also require more optim-

ization before they are ready for a clinical setting, as they

display high levels of toxicity in mammalian cell lines [90].

Many groups are taking the chemical modification of

drugs a step further by creating hybrid compounds that

merge two existing drugs with distinct mechanisms of

action. For example, MCB3837 (DNV3837) is an oxazolidi-

none/quinolone hybrid that is under clinical development

for the treatment of Clostridium difficile [64]. MCB3837 is

converted to MCB3681 upon intravaneous infusion, and

MCB3681 has been shown in vitro to have a lower minimum

inhibitory concentration (MIC) than cadazolid, fidaxomicin,

metronidazole and vancomycin against C. difficile clinical iso-

lates [91]. As C. difficile is an opportunistic pathogen that

colonizes as other bacteria are depleted, significant efforts

have been made to analyse changes in the microbiome in

response to MCB3837 treatment [92]. In proof-of-principle

human trials, MCB3837 had no significant impact on the

levels of resident Gram-negative bacteria in the human

skin, nose, oropharynx and intenstine microbiome, but

there was a significant reduction in clostridia, bifidobacteria,

lactobacilli, enterococci and S. aureus levels, indicating that

MC3837 does alter Gram-positive colonization, and could

be effective against C. difficile in the clinic [93,94].

3.3. Using translation for developing adjuvants
As a considerable amount of time and resources have gone

into the development of drugs currently in the clinic, it

would be desirable to prevent these treatments from becoming

obsolete. An alternative to complete drug redesign is to

identify compounds that can be used to potentiate current

treatments. Such additive therapies are referred to as adju-

vants, and they present several advantages in the future of

drug development. Adjuvants have the potential to broaden

the use of existing drugs and directly overcome resistance

mechanisms. As many adjuvant therapies in development

do not impact viability, they are often able to achieve this with-

out generating significant selective pressure for resistance

formation [95]. Several new strategies are under development

to look for adjuvants that will potentiate translation inhibitors.

One strategy in adjuvant development is to identify com-

pounds that will make existing drugs more effective against a

broader spectrum of bacteria. Many large, hydrophobic

translation-targeting drugs are ineffective against Gram-
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negative organisms, as they maintain an additional outer

membrane that prevents penetration of such drugs [96–99].

This barrier has resulted in fewer treatments available for

Gram-negative infections [65,96]. Many groups have used

high-throughput screening to look to adjuvant treatments

that sensitize the Gram-negative outer membrane to broaden

the scope of available treatments for such infections.

Polymyxin B non-apeptide (PMBN), pentamidine and oligo-

acyl-lysyls (OAKs) are small molecules that permeabilize

the Gram-negative outer membrane and allow for more effi-

cient penetration of translation inhibitors that are currently

only used to treat Gram-positive infections [96,100–103].

Although these treatments are not available in the clinic,

they have shown promise in vitro against clinical isolates

and in murine and Galleria mellonella infection models

[96,100–103]. For example, PMBN with erythromycin and

OAK with rifampicin combination therapies improve mouse

survival after Klebsiella pneumoniae infection [100,103]. Such

adjuvants have the potential to broaden the scope of patho-

gens that can be cleared with drugs that are already FDA

approved [102].

An alternative strategy in adjuvant development is to

identify drugs that directly inhibit resistance factors. For

example, resistance to aminoglycosides is often conferred

by aminoglycoside-modifying enzymes (AMEs) that inacti-

vate aminoglycosides with the addition of an acetylation or

phosphorylation [104]. Several groups have made strides

towards identifying AME inhibitors. Aminoglycoside bisub-

strates and cationic antimicrobial peptides have been shown

to directly inhibit AMEs in vitro, and several aminoglycoside

bisubstrates also have been shown to potentiate kanamycin

against Enterococcus faecium [105–108]. Inhibitors of the

acetyltransferase Eis (enhanced intracellular survival) also

potentiate kanamycin against M. tuberculosis [109]. In a simi-

lar strategy, enzymes that modify the ribosome can also

be directly targeted for adjuvant development. Several

groups have designed in silico or in vitro high-throughput

screens to identify compounds that target 23 S methylase

ErmC and prevent interactions with either the substrate

RNA or S-adenosyl-L-methionine [110–112]. E. coli expres-

sing ErmC are sensitized to erythromycin when co-treated

with such compounds [110,111]. ErmC inhibitors also lower

the azithromycin MIC for S. aureus, E. coli and Enterococcus
faecalis in vitro, but this result was not supported in a

murine model [112].

Pathogens have also been shown to use mistranslation as

a mode of resistance by altering target residues and prevent

antibiotic binding. In one of the aforementioned examples,

M. tuberculosis relies on the mistranslation of RpoB to prevent

rifampicin binding [57,58]. For this reason, preventing mis-

translation in M. tuberculosis is an attractive target for

developing an adjuvant therapy to potentiate rifampicin

treatment. As kasugamycin has previously been shown to

increase ribosomal accuracy, it is an intriguing candidate

for such a therapy. It has been demonstrated that kasugamy-

cin does in fact increase susceptibility of mycobacteria to

rifampicin both in vitro and in vivo [113]. However, the com-

bination of the drugs is poorly tolerated in a murine model

system and therefore unlikely to be a viable option in a clini-

cal setting [113]. Although kasugamycin specifically may not

be appropriate for patients, this example highlights the

potential for new drugs that alter translational accuracy to

be used as adjuvant therapies.
Bacterial translation can also be directly targeted in adju-

vant development. Elongation factor P (EF-P) is a universally

conserved translation factor that is required for efficient trans-

lation of polyproline motifs [114,115]. Although EF-P has

the same functional role in all bacteria characterized thus

far, the relative importance of EF-P in maintaining cellular

physiology varies between different organisms [116–123].

Despite the clear differences in the physiological significance

of EF-P, one unifying feature remains: antibiotic sensitivity.

Although it does not directly inhibit drug activity, EF-P has

repeatedly been shown to establish antibiotic resistance in

diverse pathogenic and non-pathogenic bacteria [119,121,123].

It is noteworthy that efp mutants are hypersensitive to

drugs with diverse mechanisms of action. For example,

a Salmonella enterica efp mutant displays increased suscepti-

bility to polymyxin B, a cell wall biosynthesis inhibitor, as

well as gentamicin, an aminoglycoside targeting the 30 S sub-

unit of the ribosome [119]. It is also important to note that,

although EF-P is required to maintain proteome homeostasis

and full antibiotic resistance, this impact is limited to con-

ditions of rapid growth. Recent evidence indicates that EF-P

activity is dispensable under conditions that induce slow

growth such as low temperatures and nutrient limitation, pre-

sumably due to decreased translational demands [124].

Therefore, the antibiotic hypersusceptibility observed in an

efp mutant is abolished when growth of the pathogen is

slowed. Given that a pathogen must undergo rapid proteo-

mic reprogramming as it adapts to survive in various cell

types within a host, within the context of infection, the role

of EF-P in facilitating antibiotic resistance is highly relevant

[125]. Though, it would likely lose this relevance in the

case of dormant persistors. This variability in the require-

ment for EF-P highlights the potential for culture

conditions to influence our interpretation of resistance for-

mation and drug discovery. For any infection, the

pathogen is not present as a pure culture, but rather a

single player within the vast human microbiome. Such

different environmental conditions can have a significant

impact on the relevance of any one translation factor and

should be considered in future work.

4. Conclusion
Bacterial translation has been successfully exploited for the

development of powerful antibiotics. Though they maintain

diverse mechanisms of action, translation inhibitors have

been used in the treatment of a wide variety of infections

and saved countless lives. However, with the rise and

spread of antibiotic-resistant pathogens, these treatments

are being rendered obsolete [6,7]. This threat is rapidly

becoming a global health crisis, resulting in tens of thousands

of deaths and billions of dollars in added healthcare costs.

Although scientists have made significant strides in the

fight against antibiotic resistance with translation inhibitors,

targeting translation comes with limitations. Translation is

an essential process, and inhibition of any process required

for viability creates immense selective pressure. Only patho-

gens that have evolved or acquired resistance are able to

survive, and they are able to thrive as non-resistant competi-

tors are eliminated. Furthermore, as translation is equally

important for the host’s beneficial microbiome, translation

inhibitors can have undesirable side effects. Development of

new drugs that do not impose such a strong selective
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pressure will be a significant challenge. An additional

problem in the future of drug development will be overcom-

ing persistence, a dormancy state that allows bacteria to

survive in the presence of an antibiotic and then resume

growth after treatment. Persistence is particularly proble-

matic in a clinical setting, as it has been shown to increase

the likelihood of antibiotic-resistance formation and trans-

lation inhibitors are ineffective against such pathogens

[126]. Despite these challenges in drug development, trans-

lation inhibitors have proven to be effective therapeutics in
many settings. With new strategies in antibiotic identification

and redesign, translation may yet be the perfect solution to

antibiotic resistance.
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