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Abstract: SARS-CoV-2, or severe acute respiratory syndrome coronavirus 2, represents a new strain
of Coronaviridae. In the closing 2019 to early 2020 months, the virus caused a global pandemic of
COVID-19 disease. We performed a virtual screening study in order to identify potential inhibitors
of the SARS-CoV-2 main viral protease (3CLpro or Mpro). For this purpose, we developed a novel
approach using ensemble docking high-throughput virtual screening directly coupled with subsequent
Linear Interaction Energy (LIE) calculations to maximize the conformational space sampling and to
assess the binding affinity of identified inhibitors. A large database of small commercial compounds
was prepared, and top-scoring hits were identified with two compounds singled out, namely
1-[(R)-2-(1,3-benzimidazol-2-yl)-1-pyrrolidinyl]-2-(4-methyl-1,4-diazepan-1-yl)-1-ethanone and
[({(S)-1-[(1H-indol-2-yl)methyl]-3-pyrrolidinyl}methyl)amino](5-methyl-2H-pyrazol-3-yl)formaldehyde.
Moreover, we obtained a favorable binding free energy of the identified compounds, and using
contact analysis we confirmed their stable binding modes in the 3CLpro active site. These compounds
will facilitate further 3CLpro inhibitor design.

Keywords: COVID-19; SARS-CoV-2; Mpro; 3CLpro; 3C-like protease; virtual screening; inhibitors;
in silico drug design; free-energy calculations

1. Introduction

Severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2, the pathogen behind the
2019–2020 coronavirus pandemic (COVID-19), is a member of the Coronaviridae family, a positive-sense
single-stranded (+ssRNA) RNA virus [1,2]. As there are only a handful of therapeutic options for this
global threat, novel drug design is critical; thus, we performed a structure-based virtual screening in
order to identify potential inhibitors of the main viral protease (3CLpro or Mpro) of SARS-CoV-2 [3].

In the 3CLpro homodimer, the P1 pocket of the substrate-binding site is formed and seems essential
for the catalytically active form [4–6]. The enzyme is vital for the processing of coronavirus polyproteins
(pp1a, ppa1ab) that are then cleaved by 3C-like and papain-like proteases to form mature non-structural
proteins (NSPs), which are themselves involved in subsequent viral replication mechanisms [7]. 3CLpro

represents a cysteine protease (EC 3.4.22.69, “3C” refers to the Picornaviridae Enterovirus protease 3C) [8]
and shares 96% sequence identity with the SARS-CoV main protease (Supporting Information; aligned
PDB ID: 6LU7 and 2QIQ with 288 identical residues out of 301) [3,4,8,9]. The substrate recognition
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pockets in 3CLpro are named as P1–4, and the enzyme is currently the most studied representative in
the context of drug design, mainly due to the availability of structural data. X-ray crystal structure
of the 3CLpro in complex with the inhibitor N3 has been recently released with PDB IDs 6LU7 and
7BQY at 2.16 and 1.7 Å resolutions, respectively [3]. N3 is a covalent inhibitor of 3CLpro, featuring
a vinyl carboxyl ester as an electrophilic warhead that acts as a Michael-acceptor, reacting with the
catalytic Cys145 nucleophile [3]. Substrate specificity is described as P1-Gln, P2-Leu (hydrophobic),
P3-Val (or positively charged residues) or P4-Ala (small hydrophobic), but scientific literature also
describes preference for His at the P1 binding pocket of the protease active site [9–13]. Proteolysis itself
occurs via a catalytic dyad defined by Cys145 and His41 [14].

Considering the currently available structural data, standard in silico docking efforts towards
novel potential inhibitors of SARS-CoV-2 main protease are underway [15]. However, only two
peptide-like covalent inhibitors have been reported in scientific literature [3]. Due to drawbacks
associated with covalent inhibitors, we opted for the identification of novel non-covalent protease
inhibitors in a robust screening experiment [16]. We believe the non-covalent inhibitors offer synthetic
availability, the flexibility of optimization and can also be used for the future design of covalent
inhibitors, if necessary [17]. To this end, we developed a novel methodology directly coupling
ensemble docking high-throughput virtual screening (HTVS) with subsequent Linear Interaction
Energy (LIE) calculations. Ensemble docking affords viable starting ligand poses and ensemble protein
conformations, thereby maximizing the conformational space sampling and yielding reliable ligand
binding affinities in the following LIE step. To the best of our knowledge, only SARS-CoV 3CLpro

small-molecule inhibitors are reported in the scientific literature and can be used as starting points,
but no SARS-CoV-2 3CLpro small-molecule non-covalent inhibitors are available as of yet (Figure 1) [18].
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step was performed using OpenEye FILTER software (OpenEye Scientific Software, Inc., Santa Fe, 
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Figure 1. Existing inhibitors of SARS-CoV-2 supported by structural data. Depicted are binding pockets
(Px) and the site of covalent reaction.

2. Results and Discussion

2.1. Database Preparation

In a contemporary VS (virtual screening) or HTVS (high-throughput virtual screening) scenario,
database design is essential for efficient CPU-time usage in downstream calculations. In order to
commence a robust HTVS scenario, we gathered commercially available databases (e.g., ENAMINE,
Vitas-M, Chembridge, Maybridge, Ambinter, Otava, PrincetonBIO, Key-Organics, Life Chemicals,
Uorsy, Specs) and pre-filtered all compounds in order to exclude small fragments or extra-large
molecules, aggregators, and compounds with poor physico-chemical properties. This step was
performed using OpenEye FILTER software (OpenEye Scientific Software, Inc., Santa Fe, NM, USA;
www.eyesopen.com). The following parameters were used: min_molwt 250, max_molwt 800,
min_solubility moderately, eliminate known and predicted aggregators and allowed elements H,
C, N, O, F, S, Cl, Br, I and P. This database was subsequently filtered for PAINS [19–21] and REOS
structures in order to eliminate reactive and labile functional groups [22,23]. For this step we used
KNIME software with RDKit software nodes to compare all structures in the library to the selection
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of SMARTS-formatted flags and to remove hits from the database. We ended up with a collection of
approximately 4 million compounds that was expanded in the subsequent step where final enumeration
of undefined chiral centers, tautomeric structures, removal of structural faults, ionization at the pH of 7.4
and minimization (using OPLS 3 force-field) towards the final 3D conformation was performed. For this
work, Ligprep tool by Schrödinger (Release 2018–3, Schrödinger, LLC, New York, NY, USA 2020) was
employed [24,25]. The final database thus consisted of 8,190,951 molecules and was ultimately used
for conformer 3D-database preparation using OpenEye OMEGA2 tool (OpenEye Scientific Software,
Inc., Santa Fe, NM, USA; www.eyesopen.com). A maximum number of conformations was set at 25,
and rms threshold of 0.8 nm afforded approximately 205 million compound conformations ready for
VS (Figure 2).
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Figure 2. Database preparation for subsequent virtual screening (VS) on the SARS-CoV-2 main protease
3CLpro or Mpro. The final database contained 8,190,951 molecules before conformer generation.

2.2. Target Preparation

Next, we examined the available experimental SARS-CoV-2 3CLpro crystal structures and identified
the main protease in complex with N3 peptide-like covalent inhibitor published by Yang, H. et al.
(PDB ID: 6LU7) [3]. The ligand possessed a Michael-acceptor as an electrophilic warhead to react
with the active site cysteine. The covalent bond was cleaved, the N3 residue removed, the cysteine
amino-acid residue regenerated (Open Source PyMOL, release 2.1) and the target prepared using
Schrödinger Small-Molecule Discovery Suite (Schrödinger LLC, New York). Residue conformation at
the active site was checked by superposition with PDB ID: 6M2N with an all atom RMSD of 0.538 Å [26].
As our main goal represented the identification of potential 3CLpro non-covalent inhibitors, we did
not want to limit the VS search to a binding pocket occupied by the only reported N3 inhibitor.
Thus, we examined similar protein complexes published in the PDB database using ProBiS server
(https://probis.nih.gov/) to identify all possible small-molecule binding modes in the vicinity of the
catalytic Cys145 (Figure 3). Therefore, a PDB ID: 6LU7 3CLpro was used as an input for ProBiS
calculation and one binding site identified (binding site 1 in ProBiS; proximity of Cys145). ProBiS
server thus produced local superimposition on the defined binding site, and the ligands from the
locally superimposed proteins with structural data (PDB IDs: 2op9, 2gz8, 4mds, 3v3m, 4twy, 3vb4,
2hob, 3tnt, 3vb6, 2gx4 and 2gtb) were used for extended receptor space definition. [27,28].

The postulated binding site, located in the proximity of Cys145, was furnished with several
superimposed ligands from locally aligned similar protein structures (PDB IDs: 2op9, 2gz8, 4mds,
3v3m, 4twy, 3vb4, 2hob, 3tnt, 3vb6, 2gx4 and 2gtb), which along with the N3-3CLpro crystal complex
(PDB entry: 6LU7) served the subsequent docking definition. With the binding site defined, the receptor
structure was generated using OEDocking 3.2.0.2 software package (OpenEye Scientific Software, Inc.,
Santa Fe, NM, USA; www.eyesopen.com; details are in Supporting Information).
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2.3. Ensemble Docking

For the HTVS step, we performed a robust ensemble docking experiment coupled to a subsequent
Linear Interaction Energy (LIE) calculation workflow into the prepared receptor binding site to afford
1%� of top-scoring compounds, as depicted in Figure 4 (Fred; OpenEye Scientific Software, Inc.,
Santa Fe, NM, USA; www.eyesopen.com).
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Figure 4. HTVS workflow incorporating ensemble docking coupled to LIE calculations initiated from
multiple MD ensemble complexes for the two top-scoring compounds.

In the next step, 3CLpro ensemble was prepared via a 100 ns molecular dynamics (MD) simulation
(PDB ID: 6LU7) followed by a pairwise average-linkage Hierarchical clustering step (ClusCO software,
clustering considered the backbone atoms of the whole target protein) to afford 7 representative protein
conformations [29,30]. Using OEDocking software (3.2.0.3, OpenEye Scientific Software, Inc., Santa Fe,
NM, USA; www.eyesopen.com), mean FRED scores from the ensemble docking experiment highlighted
top-scoring compounds with the top five compounds 1 to 5 collected in Tables 1 and S5 [31–34]. FRED
scores for the top 100 scoring hits resided below −12.1 with the top-scorer 1 at −14.5, compound 2
at −13.5 and all other hits above −13.0. No molecular weight or cLogP FRED score bias could be
observed for the top-scoring compounds, so no additional docking score normalization step had to be
performed (Supporting Information, Figures S19–S23). Ensemble docking was somewhat analogous to
a classical docking experiment with all residues in the active site kept flexible during the docking runs.
Our objective was to verify the predicted binding poses and to postulate that the compounds can adopt
a favorable binding mode even with protein flexibility considered as opposed to performing a classical
docking experiment with a single rigid protein conformation (Supporting Information, Figure S18).
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Table 1. Identified top-scoring compounds in the ensemble docking VS on the SARS-CoV-2 main
protease (for the complete list see Table S5 in the Supporting Information).

No. Structure Mr (g/mol) Binding Mode Fred Docking Score 1

1
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1 Cleaved native ligand N3 from PDB ID: 6LU7 served as a re-docking validation.

2.4. Free-Energy Calculations and Contact Analysis

The Linear Interaction Energy (LIE) method was applied for calculating the binding free energy
of the identified two top-scoring compounds [35,36]. Compounds 1 and 2 with the FRED scores of
−14.5 and −13.5, respectively, displayed significantly lower values (below −13.5) and were followed by
7 compounds with scores in the narrow range of −13.0 to −12.8. Compounds 1 and 2 were, therefore,
selected for subsequent LIE calculation based on the predicted docking score and a favorable binding
pose generation. The docked conformations of the two top-scoring compounds exhibited an analogous
positioning in the S2–S3 pocket of the 3CLpro active site interacting mainly with His41, Met49, His164,
Glu166, Asp187 and Gln189 (Figure 5) [37]. The predicted binding mode is in accordance with
the crystal ligand N3 (PDB ID: 6LU7) and analogous to the reported binding mode of a potential
SARS-CoV-2 3CLpro inhibitor dipyridamole reported by Li et al. [38]. Othar et al. identified similar
interaction profiles upon MD experiments using FDA-approved compounds [39].



Molecules 2020, 25, 5808 6 of 11

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 11 

 

mode of a potential SARS-CoV-2 3CLpro inhibitor dipyridamole reported by Li et al. [38]. Othar et al. 
identified similar interaction profiles upon MD experiments using FDA-approved compounds [39]. 

  
(a) (b) 

  
(c) (d) 

Figure 5. (a): Compound 1 binding mode presented in blue colored stick model; (b): Compound 1 
key interactions; (c): Compound 2 binding mode presented in cyan colored stick model. Reference 
N3 ligand from the PDB ID: 6LU7 is depicted in green-colored stick model and the protein surface 
around the ligand calculated. (d): Compound 2 key interactions. Hydrogen bonds are denoted as 
blue lines and hydrophobic interactions as grey lines. 

Clustered complexes from the ensemble docking were used as starting ligand-receptor bound 
complexes, i.e., 7 starting complexes for each compound, subjected to the 100 ns MD production run 
along with corresponding 100 ns MD simulations in ligand-free state for maximal conformational 
space coverage. Weighted LIE calculation demonstrated the affinity towards 3CLpro for compound 1 
with ΔGLIE-BIND value of −8.2 ± 1.9 and for compound 2 with ΔGLIE-BIND value of −3.5 ± 1.7 kcal/mol using 
pre-optimized α and β parameters (Table 2). Moreover, ligand-protein contact analyses along all 7 
production runs of compound 1 confirmed the hydrogen bond formation with Glu166, Asp187, 
Gln189, His41 (for more than 90% of simulation time) and His164 (for more than 50% of simulation 
time) along with an average of 7 hydrophobic contacts along all 100 ns production runs. Similar 
observations in all MD simulation runs were made for compound 2 as well. Hydrogen bonds with 
Gln192, Glu166, Gln189, His164 (for more than 90% of simulation time), Glu166, Val186, Arg188 and 
Thr190 (for more than 50% of simulation time) along with an average of 9 hydrophobic contacts 
were formed (details on individual MD replicas can be found in Supporting Information, Figures 
S2–S15). MD simulations thus place compounds 1 and 2 near P1, tightly into the P2–P3 pockets of the 
3CLpro active site in a close proximity (under 4 Å) to the catalytic Cys145 and His41 residues. 

  

Figure 5. (a): Compound 1 binding mode presented in blue colored stick model; (b): Compound 1
key interactions; (c): Compound 2 binding mode presented in cyan colored stick model. Reference N3
ligand from the PDB ID: 6LU7 is depicted in green-colored stick model and the protein surface around
the ligand calculated. (d): Compound 2 key interactions. Hydrogen bonds are denoted as blue lines
and hydrophobic interactions as grey lines.

Clustered complexes from the ensemble docking were used as starting ligand-receptor bound
complexes, i.e., 7 starting complexes for each compound, subjected to the 100 ns MD production run
along with corresponding 100 ns MD simulations in ligand-free state for maximal conformational space
coverage. Weighted LIE calculation demonstrated the affinity towards 3CLpro for compound 1 with

∆GLIE-BIND value of −8.2 ± 1.9 and for compound 2 with ∆GLIE-BIND value of −3.5 ± 1.7 kcal/mol using
pre-optimized α and β parameters (Table 2). Moreover, ligand-protein contact analyses along all 7
production runs of compound 1 confirmed the hydrogen bond formation with Glu166, Asp187, Gln189,
His41 (for more than 90% of simulation time) and His164 (for more than 50% of simulation time) along
with an average of 7 hydrophobic contacts along all 100 ns production runs. Similar observations in
all MD simulation runs were made for compound 2 as well. Hydrogen bonds with Gln192, Glu166,
Gln189, His164 (for more than 90% of simulation time), Glu166, Val186, Arg188 and Thr190 (for more
than 50% of simulation time) along with an average of 9 hydrophobic contacts were formed (details on
individual MD replicas can be found in Supporting Information, Figures S2–S15). MD simulations
thus place compounds 1 and 2 near P1, tightly into the P2–P3 pockets of the 3CLpro active site in a
close proximity (under 4 Å) to the catalytic Cys145 and His41 residues.
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Table 2. Calculation of binding free energies for compounds 1 and 2 using LIE methodology.

Compound Free VdW
(kcal/mol)

Free Coulomb
(kcal/mol)

Complex VdW
Weighted Sum

(kcal/mol)

Complex Coulomb
Weighted Sum

(kcal/mol)

∆GBIND
LIE

(kcal/mol)

1 −16.2 ± 0.2 −32.3 ± 0.1 −22.0 ± 1.4 −37.3 ± 2.4 −8.2 ± 1.9

2 −14.7 ± 0.2 −19.0 ± 0.1 −22.5 ± 2.4 −18.7 ± 2.6 −3.5 ± 1.7

3. Materials and Methods

3.1. MD and Ensemble Docking

Crystal complex (PDB ID: 6LU7) was prepared with Yasara software [29]. Missing hydrogens
were added, overlapping atoms adjusted, hydrogen bonds optimized and residue ionization assigned
at pH = 7.4 [40,41]. The system was solvated using TIP3P (cubic; 10 Å padding, periodic boundary
conditions applied) water model, and a physiological concentration of 0.9% of NaCl ions was added with
an appropriate excess of either Na+ or Cl- to neutralize the cell (long-range Coulomb forces calculated
using particle-mesh Ewald algorithm). After steepest descent and simulated annealing minimizations
to remove sterical clashes, the MD simulation was run for 100 ns using the AMBER14 force field for
the protein, GAFF for the ligands as well as TIP3P for water [42,43]. Ligand charges were assigned
using AM1-BCC [44]. The equations of motion were integrated with a multiple timestep of 1.25 fs for
bonded interactions and 2.5 fs for non-bonded interactions at a temperature of 298K and a pressure of
1 atm (NPT ensemble) using algorithms described in detail previously with snapshots saved every
100 ps [45]. Hydrogen atom bonds were not constrained during the simulation. Energy parameters of
the system were stable throughout the production run as were root-mean-square deviation (RMSD)
values of protein backbone. Protein conformation models (MD snapshots, 100 structures) were aligned
using Theseus and iteratively clustered using ClusCo software (hierarchical clustering, pairwise
average-linkage manner, rmsd score) in order to obtain clusters covering a representative portion of
the trajectory (with all cluster occupancies above 1% and no single-structure clusters formed) [30,46].
We identified 7 clusters and centroid structures were selected for target preparation as described in the
previous chapter.

Ensemble docking was performed using FRED software and the final score calculated as the
median FRED score (7 docking experiments on 7 identified protein conformations). Docked complexes
of the top-scoring compounds 1 and 2 (Table S5) in all 7 target conformations from ensemble docking
were used in subsequent LIE calculations. We generated 14 independent 100 ns MD trajectories totaling
to 1.4 µs of simulation time for each ligand in protein and water environments in order to thoroughly
explore the conformational space of the system. Moreover, the starting coordinates of ligands and
ligand–protein complexes were as varied as possible due to preceding ensemble docking step, thereby
effectively enhancing the conformation space sampling.

Simulations of free ligands in water were performed as well to estimate potential energies for
calculating binding affinities using LIE methodology. Standard MD simulations were run on a ligand
in TIP3P water. MD simulations of 100 ns were carried out analogously as described above for
receptor–ligand complexes (no restraints were applied). Based on generated snapshots (1000 snapshots
per run), we ran MD energetics analyses to get the VDW and electrostatic interactions of the ligands,
and their average values were taken for the subsequent LIE calculation.

3.2. Free Energy Calculation Using LIE Methodology

A number of different computational approaches are available for predicting or estimating binding
free energies. Linear Interaction Energy (LIE) methodology was proposed by Aqvist et al. [47]. This is
a semiempirical method based on the linear response theory. This methodology focuses on the starting
and end states of the binding process, which are the free and the bound state of the ligand. LIE is usually



Molecules 2020, 25, 5808 8 of 11

less computationally intensive than FEP but on the contrary with the popular MM-PB(GB)SA, uses an
explicit solvent model; therefore, de-solvation can be handled in an explicit manner. The concept of the
LIE approach is to separately calculate the VdW and electrostatic interaction energies of the ligand in
water and of the ligand in complex with solvated protein. Then, average interaction energies between
the ligand and its surroundings are analyzed using Equation (1).

∆Gbind = α ΣN
i ∆VVdW

i + β ΣN
i ∆Vcoulomb

i (1)

In Equation (1) the ∆ term indicates the change in potential energy between the ligand bound
and ligand free (in water) states. The α and β represent LIE empirical parameters, determined by
comparing calculated and experimentally measured binding affinities. Their values are optimized by
Aqvist et al. [47].

For the LIE approach, the MD simulations of 100 ns of receptor-bound ligands (7 complexes
for 2 ligands, 14 in total) as well as of free ligands in water were carried out to obtain the VdW
and electrostatic interaction energies between the ligand and its surroundings. Each MD simulation
afforded 1000 snapshots (using 100 ps intervals) of each compound in different environments which
were used for calculating average electrostatic and VdW energies. Energies were simply averaged for
the ligand-free simulation (2 sets separately for compounds 1 and 2), while ligand bound potential
energies were initially weighted according to Equation (2) and subsequently used in the general LIE
Equation (1) (Table 2) [35,36,48]. The employed method was reported as suitable for calculation of
ligand binding free energy, compared to MM/PBSA and reported to produce relevant results even with
shorter simulation times when compared to alternative methodologies [49].

Wi =
e−∆Gcalc,i /kbT

Σie
−∆Gcalc,i /kbT

(2)

4. Conclusions

This work presents an extensive and robust virtual screening scenario on the SARS-CoV-2 main
protease 3CLpro or Mpro, a potential therapeutic target for COVID-19. We report two top-scoring
compounds, 1-[(R)-2-(1,3-benzimidazol-2-yl)-1-pyrrolidinyl]-2-(4-methyl-1,4-diazepan-1-yl)-1-
ethanone and [({(S)-1-[(1H-indol-2-yl)methyl]-3-pyrrolidinyl}methyl)amino](5-methyl-2H-pyrazol-3-yl)
formaldehyde, as viable binders supported by LIE calculations starting from multiple ensemble 3CLpro

conformations. This is an in silico work that warrants experimental support in future research and,
if successful, the presented set of compounds could be validated for further development of novel
non-covalent inhibitors of SARS-CoV-2 main protease (or be used as probes or experimental decoys).
Last but not least, the reported hits possess a relatively low molecular weight, their scaffolds are suitable
for synthetic optimization and should be synthetically accessible and even commercially available.

Moreover, the presented methodology where ensemble docking is used to identify viable starting
ligand poses and ensemble protein conformations directly coupled to subsequent Linear Interaction
Energy (LIE) calculations represents a novel advantageous approach to maximize the conformational
space sampling thereby facilitating reliable ligand binding free energies.

Supplementary Materials: The following are available online. Details on library and target preparation, sequence
alignment, virtual screening, MD clustering, contact analysis as well as on top hit compounds (Figures S1–S24,
Tables S1–S5).
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