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Purpose. The effect of preoperative anesthesia on coronary artery bypass grafting without extracorporeal circulation is not apparent.
We want to investigate the effects and molecular mechanisms of two anesthesia methods on the treatment of coronary artery bypass
grafting (OPCABG) under extracorporeal circulation. Patients and Methods. The data of inhaled anesthesia and intravenous
anesthesia before coronary artery bypass grafting were downloaded from the GEO database, and the differences were analyzed
with the control group. The combination of multiple analytical methods can decipher the mechanism of anesthesia on surgery,
including protein interaction network analysis, enrichment analysis, and regulatory subprediction. Results. This study obtained
6699 differential genes under two kinds of anesthesia before OPCABG. By constructing a protein interaction network of
differentially expressed genes, we obtained 14 functional module networks. By predicting regulators of functional module genes,
we revealed a series of ncRNAs (miR-129-5p, miR-340-5p, and miR-410-3p) and transcription factors (VHL and YBX1).
Conclusion. Based on functional module network analysis, we identified the effects of preoperative inhalation anesthesia and
intravenous anesthesia on OPCABG, which provides a valuable theoretical reference for subsequent clinical studies.

1. Introduction

Off-pump coronary artery bypass grafting (OPCABG) is the
latest surgical procedure in cardiac surgery [1]. OPCABG has
proven to be an effective surgical revascularization program
[2]. Surgery has determined the safety of OPCABG and its
short-term efficacy, but long-term clinical outcomes are
uncertain. OPCABG is still the treatment of choice in
modern cardiac surgery, considering that surgical practice
is continuously changing [3]. Compared with cardiopulmo-
nary bypass grafting, OPCABG has particular advantages in
reducing postoperative complications, including systemic
inflammatory response, myocardial injury, renal injury, and
brain injury [4]. In theory, OPCABG can improve long-
term survival by reducing perioperative complications, such
as stroke, myocardial damage, cardiac-related mortality,
and neurocognitive impairment [5].

Most importantly, OPCABG reduces the risk of neurolog-
ical complications compared with extracorporeal coronary
artery bypass grafting [6]. OPCABG, a high-tech myocardial
revascularization program, can reduce sympathetic stress
and improve hemodynamic changes [7]. OPCABG has
become the standard surgery in Japan [8]. The transplantation
of OPCABG in high-risk patients remains controversial, but
studies have shown its potential benefits. Therefore, in high-
risk patients, the application of its technology is still valued
and studied [9]. For patients undergoing OPCABG surgery,
the measurement of anesthesia depth is clinically significant
and can achieve the effects of avoiding intraoperative percep-
tion and cardiac suppression. The recent introduction of
entropy as a monitor of anesthesia depth determines the
amount of anesthetic used in patients with OPCABG surgery
[10]. Given the high hemodynamic instability and the risk of
organ damage in OPCABG surgery, xenon anesthesia has
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become an attractive aesthetic with good hemodynamic and
organ protection properties [11]. Studies have shown that
during OPCABG, compared with total intravenous anesthesia,
volatile anesthetics can reduce myocardial damage, which is
measured via cardiac troponin levels [12]. Compared with
the sputum, the anesthetic function of sevoflurane in
OPCABG reduces the risk of OPCABG surgery due to vaso-
pressin [13]. Changes in magnesium levels can cause abnor-
mal blood coagulation, leading to bleeding complications
after OPCABG [14]. In OPCABG, ropivacaine and fentanyl
can be used to temporarily reduce arterial pressure, optimize
myocardial function, and affect perioperative fluid and vasoac-
tive treatment [15]. Recent studies have shown that dexmede-
tomidine, as an effective adjuvant, can reduce hospital stays in
patients receiving OPCABG [16]. Different expressed genes
and their functional modules in anesthesia for OPCABG need
to be further explored. Based on a functional modular
network, we analyze the effects of preoperative inhalation
anesthesia and intravenous anesthesia on OPCABG to explore
the underlying molecular mechanisms. It provides not only
valuable research directions but also abundant valuable theo-
retical references for further research on the clinical applica-
tion of anesthesia.

2. Material and Methods

2.1. Data Resource. The STRING database [17] is a search
tool specifically designed to retrieve protein-protein interac-
tions, which provides comprehensive insight into the currently
available PPIs and can, therefore, be used for a wide range of
PPI analyses. In this study, the STRING database was utilized
for the access of all human protein interaction data, and we set
the interaction score > 900, involving 405,916 interaction pairs
of 10,514 proteins.

2.2. Differential Expression Analysis. We collected an
expression microarray data set for inhaled anesthesia and
intravenous anesthesia before coronary artery bypass grafting
from the NCBI Gene Expression Omnibus database [18],
numbered GSE4386. In this data matrix, patients scheduled
for off-pump CABG were randomized into a group with the
anesthetic gas sevoflurane (n = 10) or the intravenous
anesthetic propofol (n = 10). Atrial samples were collected at
the beginning and end of bypass surgery to determine gene
expression profiles. A two-difference analysis (anaerobic gas
sevoflurane-intravenous anesthesia with propofol) was per-
formed on the collected samples and calculated using “limma”
package in R [19]. The 6699 differential genes were combined
to construct an expression profile matrix for nonexternal
coronary artery bypass grafting.

2.3. Functional and Pathway Enrichment Analysis. We
explored the function of differential genes and their involved
signaling pathways. We performed a GO function (with a cut-
off p value of 0.01 and a cutoff q value of 0.01) and a KEGG
pathway enrichment analysis (with a cutoff p value of 0.05
and a cutoff q value of 0.2) for the 14 modules of the gene
using clusterProfiler [20]. We screened the process-related

functions and pathways during anesthesia for OPCABG and
mapped the bubbles.

2.4. Identification of Transcription Factors (TFs) and Modules
of ncRNA Regulation. We defined the pivot regulator as a
kind of modulator that significantly affects the functional
modular network of off-peak coronary artery bypass grafting.
Noncoding genes and TFs often drive the transcription, as
well as the posttranscriptional regulation of the genes. We
downloaded the relevant TF target data from the TRRUST
database [21] and finally obtained 33 interaction pairs of 25
TFs. Afterwards, ncRNA-mRNA data was accessed from
the RAID database [22], and 660 interaction pairs including
486 ncRNAs were also obtained. Pivot analysis was then
performed according to these interactions to further identify
the regulatory effects of these TFs and ncRNAs in the
module. The saliency of the interactions among the drivers
and the modules is calculated based on the hypergeometric
test. TF and ncRNA are pivoted for the essential regulatory
module, with a p value < 0.01 as the screening standard.
We performed a statistical analysis of the pivot, and the
central function of the more dysfunctional module was iden-
tified as the core pivot.

3. Results

3.1. To Determine the Effect of Preoperative Anesthesia on
Gene Expression during an OPCABG.We performed a differ-
ential analysis of the gene expression profiles of OPCABG
under two kinds of anesthesia to further understand the effect
of anesthesia on OPCABG. The 5701 differential genes in the
CABG state of sevoflurane anesthesia were obtained, and
3210 differential genes were anesthetized by propofol in the
CABG state. We combined the two sets of differences to
obtain 6699 differential genes, which were considered to be
critical genes for the effects of anesthesia on OPCABG.

3.2. Identify Functional Module Networks. Further, we
explained the effects of two anesthesia methods on OPCABG
from the gene network level. Based on PPI analysis, a protein
interaction network was constructed using 6699 differen-
tial genes from OPCABG. As a result, a total of 14 inter-
active networks were obtained, called functional modules
(Figure 1). According to functional modules, we identify
the critical genes for each module. Analysis of its essential
genes may be involved in different functions and path-
ways, causing different effects of OPCABG in both anes-
thesia situations.

3.3. Functions and Pathways Involved in Specific Genes. To
further understand the biological aspects of themodule genes,
GO function and KEGG analyses were performed on 14
functional module networks. We obtained GO terminology,
including 1314 cell composition entries, 1640molecular func-
tional terms, and 13,160 biological processes (Figure 2(a)).
Most of the modular genes are associated with the regulation
of the cytokine-mediated signaling pathway and positive
regulation of lymphocyte differentiation. The results of
KEGG pathway enrichment reveal that the functional mod-
ule genes are mainly responsible for platelet activation,
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cytokine-cytokine receptor interaction, and apoptosis-
multiple species (Figure 2(b)). The above results of modular
gene enrichment are firmly related to OPCABG; we there-
fore identified the 14 dysfunction modules.

3.4. Regulation of TF and ncRNA of Genes Associated with
OPCABG under Anesthesia. To explore the regulatory factors,
we applied regulator-predictive analysis to functional modules
according to the regulatory relationships in transcriptional and
posttranscriptional processes. Based on the number of regula-
tory modules and the significance of the p values, we obtained
486 ncRNAs involving 660 ncRNA-module target pairs and 25
TFs involving 33 TF-module target pairs. Also, we analyzed the
predicted results and found that miR-129-5p targets up to six
dysfunction modules with a significant impact on OPCABG
(Figure 3). The miR-129-5p and miR-410-3p also regulate five
dysfunction modules, having remarkable regulatory effects on
the module network. VHL and YBX1 have significant regula-
tory effects on three dysfunction modules and play a key role

in the impact of anesthesia on OPCABG (Figure 4). Other
TFs also have their specific regulatory effects on the functional
module genes, whichmay have a significant impact on surgery.

4. Discussion

In the study of OPCABG, anesthesia can help to reduce
intraoperative blood loss and intraoperative blood transfu-
sion demands to varying degrees, shortening hospital stay.
The most important is to reduce myocardial enzyme leakage,
inflammation, and kidney and nerve damage [23]. However,
the use of different anesthesia in OPCABG has different effects
on postoperative outcomes. For example, the use of volatile
anesthetics to maintain anesthesia in OPCABG surgery con-
tributes to adequate anesthesia depth and reduces the need
for analgesia [24]. Helium shows less hemodynamic instability
in OPCABG than in conventionally used anesthetics, and it
reduces the need for vasopressors [25]. For patients receiving
OPCABG, it is important for them to reduce myocardial

Figure 1: Based on the human interaction protein network, we obtained a protein interaction network map of 6699 differential genes
clustered into 14 functional module networks. This network may represent the mechanism of anesthesia affecting nonexternal coronary
artery bypass grafting.
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Figure 2: Functional pathways included in modular gene identification of dysfunction modules for osteoarthritis. (a) GO analysis for module
genes; (b) KEGG pathway enrichment analysis. The color depth represents the degree of enrichment, and the size of the circle represents the
proportion of the genes in the module. FDR: false discovery rate.
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damage during surgery. The volatility induction and mainte-
nance of sevoflurane has a certain degree of improvement in
cardiac function in patients receiving OPCABG. Therefore,
compared with intravenous propofol, sevoflurane has a more
protective effect on heart damage [26]. The volatile drugs
sevoflurane and desflurane can be considered to have a more
protective effect on the myocardium of the whole vein [27].
These studies have validated the important role of inhaled
anesthesia and intravenous anesthesia in the process of
OPCABG, which prompted us to explore the effects of anes-
thesia in OPCABG. We constructed a PPI network according
to differentially expressed RNA data sets for OPCABG after
anesthesia and explored 14 functional modules.We found that
these modules are mainly involved in positive regulation of
lymphocyte differentiation and cytokine-cytokine receptor
interaction. The Holler E. study found that after OPCABG,
circulating endothelial cell number and apoptotic endothelial
cell death are markers of endothelial cell activation and injury.
Studies have shown that in OPCABG surgery, in order to pro-
tect circulating lymphocytes, the combination of intravenous

propofol and gas anesthesia with sevoflurane is superior to
the use of sevoflurane to maintain anesthesia [28]. One of
the potential advantages of OPCABG is to attenuate systemic
inflammatory responses caused by neutrophil activation [29].
Moreover, OPCABG is beneficial to the secretion of endoge-
nous erythropoietin in patients, reducing the blood loss of
surgery [30]. Studies have found that OPCABG is associated
with decreased troponin I levels and activation, while elevated
levels of troponin I and proinflammatory cytokines are pres-
ent in most cardiac surgery patients [31]. To elucidate the
transcriptional regulatory factors of OPCABG by anesthetic
gases and intravenous anesthesia, we performed an analysis
according to the regulatory relationships both in transcription
and posttranscription. It was found that microRNAs (miR-
129-5p, miR-340-5p, and miR-410-3p) and transcription
factors (VHL and YBX1) have remarkable regulatory effects
on functional modules. MicroRNAs play a key role in a variety
of cellular processes [32]. miR-129-5p acts on neurons, which
have an inhibitory effect on blocking the synaptic reduction
in vitro and reducing the severity of seizures in vivo [33]. This
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Figure 3: Noncoding RNA (ncRNA) regulatory network of nonexternal coronary artery bypass grafting. The blue triangles represent the
module while the pink ovals represent the ncRNA corresponding with the module.
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also indicates that anesthesia has an important influence on
postoperative cell regulation. Abnormal expression of long
noncoding RNA plays a crucial part in regulating the progres-
sion and drug resistance of human tumors [34]. LGR5 expres-
sion was downregulated by the Wnt/β-catenin pathway. It
leads to overexpression of miR-340-5p, which inhibits apopto-
sis, cell proliferation, and its resistance [35]. This validated the
regulatory changes in genes affected by gene expression after
OPCABG. Also, the transcription factor VHL plays a key role
in the inactivation of the hypoxia-inducible factor (HIF-1)
through regulating the PI3K/AKT/mTOR pathway activity
[36]. YBX1 is a multifunctional protein [37]. It is involved in
all kinds of DNA/RNA-dependent events, such as DNA

repair, mRNA packaging, mRNA transcription and splicing,
translational regulation, and mRNA stability. At the cellular
level, various activities of YBX1 appear to be involved in stress
response, cell differentiation and proliferation, and malignant
cell transformation [38]. By regulating cell differentiation,
cytokine synthesis, and chemokine synthesis, monocyte
YBX1 has a prominent and unique role in cell feed-forward
crosstalk and regression of inflammatory processes [39]. Based
on the understanding of the anesthetic gas and intravenous
anesthesia for the pivot regulator of OPCABG, we can identify
the effects of these significant regulators on postoperative out-
comes. Different functions are performed in the development
of OPCABG after anesthesia.
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5. Conclusion

A comprehensive functional module network was obtained.
The modules, which offer some proven genes and transcrip-
tion factors to be tested for OPCABG after anesthesia,
provides a theoretical basis and reference for further research.

Data Availability

The data associated with our study was downloaded from
GSE4386.
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